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Abstract: Microfluidic techniques are employed to investigate air-liquid flows in the pulmonary airway tree. 
A network of microchannels with five generations is made and used as a simplified model of the pulmonary 
airway tree. Liquid plugs are injected into the network and pushed by air flow to divide at every bifurcation 
before reaching the exits. The resistance associated with the presence of one plug in a given generation is 
defined to establish a linear relation between the driving pressure and the total flow rate in the network. 
Based on this resistance, we have good predictions of the flow of two successive plugs in the network. For 
two-plug flows under the same driving pressure, the total flow rate depends not only on the lengths of the 
plugs but also the initial distance between the two. Strong long range interactions are found between 
daughter plugs, especially when they are flowing through the bifurcations. We also observe different flow 
patterns under different pushing conditions. Under a constant pressure forcing, the flow develops 
symmetrically while a constant flow rate push achieves an asymmetric flow. 
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1. Introduction 
 
The lung is a mechanically dynamic organ 
where stresses play an important biological 
role. Many respiratory problems, such as 
asthma, pneumonia, cystic fibrosis, are related 
to the presence of liquid plugs in the airway, 
which changes the mechanical environment in 
the lung. Moreover, previous studies have 
shown that the rupture of liquid plugs in the 
airway can cause fatal damage to endothelial 
cells which line the lung surface (Huh 2007). 
On the other hand, instillation of liquid plugs 
into the pulmonary airway is common in 
medical treatments such as partial liquid 
ventilation (PLV) and drug delivery (Cassidy 
2001). In this case, it is very important to 
understand the liquid transport as well as its 
ultimate distribution in different generations of 
the lung. 
 
However, due to the complex interactions of 
surface tension effects and the hierarchical 
geometry, the investigation about liquid plugs 
in the airways remains a complicated one. 
Compared to single-phase flow, the air-liquid 

interfaces modify the relation between the 
volumetric flow rate and the pressure drop in 
one airway path. At the same time, the lung 
presents a bifurcating network where the mean 
diameters of successive branches follow from 

1/3
1 2i id d−
+ ∼ (Weibel 1984). In an adult human 

lung, there are more than 20 generations of 
dichotomous branches with diameters ranging 
from 2cm to 200μm . This branching geometry 
introduces further complexity to the flow 
inside the airway. 
 
Microfluidic techniques offer a way to 
investigate air-liquid flow at small scales. 
Plugs of liquid can be injected into a 
microfluidic network which reproduces some 
of the important aspects of the pulmonary 
airway tree and the flow can be traced in space 
and time. In this approach, the fine control 
over the control parameters, namely the 
volume fraction of liquid and its distribution, 
or the details of the branching geometry, 
allows us to develop some of the fundamental 
laws of plug transport in a branching geometry. 
In addition to the application to physiological 



2nd Micro and Nano Flows Conference 
West London, UK, 1-2 September 2009 

- 2 - 

flows, this study can also yield information 
into flows in porous media, in cracks, or other 
geophysical phenomena. 
 
2. Experimental setup 
 
Our experiments are conducted in a micro 
network consisting of branching channels 
made of PDMS (polydimethylsiloxane). Soft 
lithography techniques are employed to make 
the channels. At the same time, a thin flat layer 
of PDMS is spin-coated on a glass microscope 
slide. The channels are bonded on this PDMS 
layer of the same quality in order to guarantee 
identical boundary condition at the channel 
walls. 
 
The network inlet consists of a Y-junction 
connected to the first generation for creating 
and injecting liquid plugs into the network 
(Ody C.P., Baroud C.N. and de Langre E. 
2007). One inlet of the Y-junction is connected 
to a syringe filled with PFD and the syringe 
can be pushed by a pump. PFD 
(Perfluorodecalin) is a fluorocarbon whose 
viscosity and surface tension 
are 35 10 Pa sη −= × ⋅ and 320 10 N/mγ −= × , 
respectively. It is chosen to form the plug 
because of its good properties such as having a 
very small contact angle on PDMS and not 
swelling the channels. Through the other inlet 
of the Y-junction, the air goes into the network 
and a driving force between the first and the 
last generations is applied. Either constant 
pressure or constant flow rate is used. When 
pushing at constant pressure, the inlet of the 
air is connected to a computer-controlled 
pressure source (FLUIGENT, MFCS-8C). To 
apply a constant flow rate, a syringe is filled 
with water and fixed to the air inlet. Only a 
small volume of air near the network entrance 
is left in order to reduce the effects of 
compressibility. A syringe pump ensures a 
constant flow rate of the water. Thus the water 
pushes the air into the network at the constant 
flow rate. 
 
In the present experiments, we fabricate a 
network of bifurcating channels as shown in 
Fig. 1. Generation series are labeled with a 

number inside parentheses. The height of all 
the branches is50μm . The width of the branch 
in the first generation is 720μm . Cross-
sectional areas of successive generations iS  
decrease at a constant rate 1i iS Sρ+ = , 
where ρ is a constant parameter (here 0.83ρ = ) 
and the subscript denotes the generation 
number. The width of the last generation is 
about 340μm . PFD plugs (bright part) 
surrounded by air (grey part) are indicated in 
Fig. 1. The plugs are injected into the first 
generation and pushed through the network, 
dividing into two daughters at every 
bifurcation. At the exits of the last generation, 
16 holes (black parts) are punched and fix the 
exit condition at atmospheric pressure. 
 

 
 

Fig. 1. Microfluidic network with 5 
generations. Three plugs are travelling in two 

successive generations. The two early plugs (A 
and B) in generation (2) are the daughters of 
the first plug injected. The second plug (C) is 

moving in the first generation. 
 
Experiments are recorded with a high speed 
camera (Photron Fastcam, 1024 PCI) through 
a microscope (Leica, MZ16). The resolution of 
the camera is 1024  1024 pixels (1 pixel 
for 24.8μm ). For the single plug experiments, 
60 images are taken per second for the 
constant pressure driving and 30 images per 
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second for the constant flow rate case. For two 
successive plugs under a constant pressure 
driving, 125 images per second are recorded. 
From the image sequences obtained, the 
positions of the front and the rear interfaces of 
the plug, ax and rx , are manually recorded 
while the plug is traveling in the network. 
Based on the measurements, the length of the 
plug L and its velocityU are readily calculated 
as: ( ) ( )a rL x t x t= − and

( ( ) ( )) /a aU x t x t dt dt= − − or
( ( ) ( )) /r rU x t x t dt dt= − − , where dt is the time 

step between successive images. 
 
3. Movement in the straight sections 
 
In this section, we focus on the length and the 
velocity of the plug as it travels in the straight 
channels, between two successive bifurcations. 
The plugs are pushed by a constant pressure. 
 
3.1 A single plug in the network 
Injecting a single plug into the network and 
pushing it by a constant driving pressure 
of 250Pa , it will divide in two at every 
bifurcation. We measure the velocities of all 
the daughters of the injected plug and compare 
the velocity in each branch according to 
generation numbers, as shown in Fig. 2. We 
calculate the mean value of velocities in each 
generation and use this value as the plug 
velocity in that generation. This velocity is 
shown in Fig.2 as a solid line and found to 
increase before later decreasing. 
 
A resistance iR , associated with the presence 
of one plug in generation i , is defined 
as dr i i i iP R L Q N= , where iL and iQ are the length 
of the plug and volumetric flow rate in one 
branch of generation i and iN is the total 
number of branches in that generation. The 
length of the plug is introduced in the 
definition since the flow is affected by the size 
of the plug. We suppose the plug divides in 
two daughters of the same length at every 
bifurcation, which is in agreement with 
experimental observation. iL can be written 

as 1
1(0.5 / )i

iL Lρ −= , where 1L is the initial 
length of the plug and measured when the plug 
is in the first generation. Flow rate iQ is 
calculated as i i iQ U S= , with iU being the plug 
velocity in that generation, and 12i

iN −=  in our 
branching network. The product i iQ Q N=  

makes the total flow rate in the network. The 
resistance iR can be calculated since the 
constant driving pressure, the initial length of 
the plug and the flow rate based on velocity 
measurement are known. If we consider the 
product of i iR L , it is found to decrease with the 
generation number, as shown in Fig. 3, leading 
to an increase in the total flow rateQ as the 
plug reaches the later generations (shown by ◊ 
in Fig. 4). Because of the fixed relation 
between the lengths of plugs in different 
generations, we treat the product of i iR L as 
resistance associated with a given plug later in 
this paper. Remember that the value of this 
resistance varies according to the initial length 
of the plug but it keeps the evolution trend. 

 
Fig. 2. Comparison of plug velocities in 

different generations. Each symbol represents 
the plug velocity in one branch of a given 

generation. 
 
3.2 Two successive plugs 
If two plugs are injected successively, the 
relation between the driving pressure and the 
volumetric flow rate can be written as 

1 1 1 1 2 2 2 2 1 1 2 2( )dr i i i i j j j j i i j jP R L Q N R L Q N R L R L Q= + = + , 
where the superscript (1 or 2) denotes the first 
or second plug and the subscript ( i or j ) is the 
generation number relative to the position of 
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that plug. Knowing the value of iR and the 
initial lengths of two plugs, the 
resistance i iR L is derived for this case. For a 
given driving pressure 500PadrP = , we can 
predict the values of flow rate for a two-plug 
train. Fig. 4 gives a comparison of flow rate 
measurement with this prediction. Open 
symbols denote the experimental 
measurements while closed ones are the 
predicted values. Good agreement between 
experiments and theory is obtained, indicating 
that the linear description of the flow in the 
network gives a good approximation in the 
current conditions. 

 
Fig. 3. Dependence of i iR L on the generation 

number. 
 

Notice that although the lengths of the plugs 
and the driving pressure are kept constant, the 
total flow rate displays a clear dependence on 
the distance between the two plugs, as shown 
in Fig. 4. When the plugs get further apart, a 
higher flow rate is observed. This can be 
understood by noting that the resistance due to 
the downstream plug decreases with 
generation number and thus the sum of 

1 1 2 2( )i i j jR L R L+  also decreases. 
 
4. Passage through a bifurcation 
 
Consider a plug just arriving at the bifurcation, 
as shown in Fig. 5(a). The curvature of the 
front interface decreases before the rear one is 
affected by the bifurcation, which introduces a 
capillary pressure difference across the plug. 
This pressure difference difP between the rear 

and front interfaces can be expressed 
as / /dif a r a rP P P r rγ γ= − = − , where ,a rP P  
denote the capillary pressures at the front and 
rear interfaces and ,a rr r are the radii of 
curvature of the interfaces. It is seen in Fig. 
5(a) that a rr r> , so we have 0difP < . The 
pressure difference across the plug 
becomes dr dif drP P P P= + < . By the same 
analysis, one can know dr dif drP P P P= + > in 
Fig. 5(b), in which situation the front interface 
touches the next generation. During the 
passage of the bifurcation, the pressure drop 
across the plug changes. It decreases and then 
increases, as shown qualitatively in Fig. 6(a).  

 
Fig. 4. Evolution of the total flow rate in a 

single plug experiment (◊) (driving pressure 
250PadrP = ) and two-plug experiments 

( 500PadrP = ) when they always flow in the 
same generation (□), in two successive 

generations (△) and with one generation gap 
(▽). Open symbols denote experimental data 
and closed ones are values derived from the 

linear law. 
 

The plug arrives at the bifurcation, as shown at 
position A in Fig. 6. The pressure drop across 
it begins to decrease (Fig. 6(a)), as well as its 
velocity (Fig. 6(b)). At position B, the front 
interface of the plug touches the next 
generation. As a result, the pressure drop and 
its velocity increase rapidly between position 
B and C. Then the pressure drop remains the 
same until the rear interface also enters the 
next generation at position D. After position D, 
the plug returns to the stage where no capillary 
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pressure difference exists. So the pressure drop 
decreases until it returns to drP . The same 
change in velocity is found in Fig. 6(b) after 
position C. 
 

 
 

Fig. 5. The passage through a bifurcation. (a) 
A plug arrives at the bifurcation. The radius of 

curvature ar is bigger than rr and increasing 
while the plug is advancing. (b) After the front 

interface touches the next generation, 
ar becomes smaller than rr . 

Fig. 6. Comparison between the hypothesis of 
pressure drop (a) and experimental 

measurements of velocity (b) during the 
passage of the bifurcation. 

 
Due to the great variation of the pressure drop 
across the plug while it is passing the 
bifurcation, there exists a minimum value of 
pressure thrP necessary to push the plug through 
a given bifurcation. We calculate this 
threshold pressure in the following 
way: 0thr difP P P= + ≥ . That is to 
say ,max ,max ,max/ /thr dif r a r aP P P P r rγ γ= = − = − . 
Here, ,maxar is the maximum possible value of 

ar in Fig. 5(a) and can be computed from the 
network geometry. In our network, we have a 
bifurcating angle of 60D , which is half of the 
angle between the two branches of the same 

generation. Knowing the surface tension of 
PFD and its contact angle on PDMS, we can 
obtain the threshold pressure, which increases 
with generation number. In the first bifurcation, 
the threshold pressure is 51Pa . The other 
threshold values are: 61Pa,74Pa,89Pa  for the 
second, the third and the fourth bifurcations, 
respectively. 
 
5 Long range interactions 
 
In the network, we have more than one 
bifurcation, which induces long range 
interactions among plugs at different positions 
in the network. 
 
Take two plugs (I) and (II) for example and 
suppose that they are about to pass two 
different bifurcations as shown in Fig. 7. If 
plug (I) touches the next generation a little 
earlier than the other, will this asymmetry be 
amplified? As plug (I) touches the next branch, 
its velocity, as well as the flow rate in that 
branch, will increase according to the previous 
analysis. If the air is driven by a constant 
pressure drP , the driving condition for plug (II) 
does not change; it will slow down and then 
speed up to pass the bifurcation, independent 
of the behavior of plug (I). However, if the air 
is pushed by a constant flow rate tQ , the flow 
behavior may be different. When plug (I) 
passes the bifurcation, the flow rate IQ  
increases. Because of the conservation of flow 
rate: I II .tQ Q Q const+ = = , IIQ decreases. If 

IQ increases, IIQ  may be zero or even 
negative, because II I 0tQ Q Q= − ≤ . This means 
that plug (II) may stop or even move back, 
depending on the value of the driving flow 
rate tQ . 
 
In the following two subsections, we use 
experimental data to confirm our analysis 
about long range interactions in the network. 
 
5.1 Constant pressure driving 
Here, a single plug is injected into the network 
and pushed by a constant driving pressure of 
250Pa . As the plug divides in two at every 
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bifurcation, we trace the movement of the 
daughters as they travel through four 
representative paths in the network, as labeled 
in Fig. 8. The plug velocities are measured and 
plotted in Fig. 9. 
 

 
 

Fig. 7. A sketch for illustrating long range 
interactions between two plugs which pass the 

bifurcations simultaneously. 
 
Fig. 9 provides a clear understanding of the 
velocity variations while the plug is travelling 
in the network. Path labels and generation 
numbers are marked in the figure. In the first 
generation, there is only one plug, so we have 
the same velocity in the four paths. In the 
second generation, two different patterns are 
found, which is in agreement with the number 
of plugs in the network. As for the third and 
fourth generations, there are four different 
plugs traveling in different paths. We have 
different curves for each path. The velocity in 
the fifth generation is not given here, because 
the fifth generation is just before the network 
exit and flow there is affected by the boundary 
condition. The passage in the bifurcation can 
be detected by observing that the plug velocity 
initially decreases before going through a large 
increase as it passes the bifurcation. Thus the 
position of the plug is known from the figure. 
For example, before the first great increase of 
velocity, the plug is in the first generation. 
Then another velocity increase indicates that 
the plug passes the second bifurcation and 
enters the third generation. 
 

 
 

Fig. 8. Paths in which plug positions and 
velocities are measured. 

 
Under the constant pressure driving, the 
daughters of the single plug travel at similar 
velocity in the same generation. As a result, 
they arrive at the next bifurcation 
simultaneously. A careful examination reveals 
a small difference of the times when the plugs 
pass the second bifurcation. However, this 
difference is not amplified in later generations. 
There is no significant lag for any plug to enter 
the third bifurcation. The flow remains 
symmetric during its progress. 
 
5.2 Constant flow rate driving 
In this subsection, the single plug is pushed by 
a constant flow rate, which is achieved by the 
syringe pump. Here, the driving flow rate 
is 2μL/min . 
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Fig. 9. Velocity evolutions along four paths 

under a constant pressure driving 250PadrP = . 
The vertical line indicates the time when the 

plug passes a bifurcation. 
 

 
Fig. 10. Velocity evolutions along four paths 
under the constant flow rate of 2μL/min . The 
vertical line indicates the time when the plug 

passes a bifurcation. 
 
Fig. 10 gives velocity evolutions of the plugs 
along four paths. The same paths as Fig. 8 are 

traced, but different curves are obtained. It 
takes a longer time for the plugs to go through 
the network. Velocity fluctuations are much 
larger than for the previous case, which is a 
result of flow rate conservation and long range 
interactions between plugs. We can find a 
representative example in the second 
generation. The sum of the flow rate in two 
branches should be a constant. This means that 
the velocity sum of these two plugs should 
also be a constant because they are in the same 
generation with the same cross-sectional area. 
When the plug in path 1 speeds up, the other 
one in path 3 slows down and vice versa. 
These two plugs are adjusting their velocities 
during their travel in the straight part of the 
network, which results in the fluctuations. 
Then, the plug in path 3 passes the second 
bifurcation and enters the next generation 
earlier. Its velocity increases dramatically 
when the plug in path 1 stops at the bifurcation. 
This is a clear sign of long range interaction 
between two plugs. A similar trend can be 
seen when comparing the other parts of these 
curves. If one plug passes a bifurcation, it 
speeds up immediately but all the others stop 
at their positions. 
 
From the values of threshold pressure in the 
network, we can explain the velocity 
fluctuations in another aspect. As the plugs 
advance, the threshold pressure needed for 
passing through a bifurcation increases. It is 
easier to push plugs passing this bifurcation 
than passing the next one. Even if one plug 
arrives at the next bifurcation earlier, the 
driving force prefers to push the other plugs 
through this bifurcation than to push the early 
one through the next bifurcation. So early 
plugs stop at the bifurcation and wait for all 
the others to arrive at the bifurcations of the 
same generation. Then one plug starts to move 
on. The passage of a bifurcation is 
distinguished by a velocity decrease followed 
by a big increase later. In Fig. 10, the plug in 
path 4 arrives earliest at the third bifurcation 
and then its velocity decreases almost down to 
zero. It waits a long time until the latest plug 
in path 2 arrives at the bifurcation. 
Immediately after that, the plug in path 4 
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advances into the next generation, which is 
shown by a big increase of velocity. 
 
The velocity of the plug is not only affected by 
the driving flow rate, but also related to the 
length of the plug. It is harder to push a longer 
plug than to push a short one, so the short one 
is pushed to move faster. However, under 
constant flow rate, the long plug moves even 
slower. This is to say that the short plugs move 
faster, pass the bifurcation earlier and limit the 
movement of the longer plugs. If there is tiny 
asymmetry in the flow, which is hard to avoid, 
it will be amplified later, which is shown in 
Fig. 10. As the generation number increases, 
the first plug that passes a certain bifurcation 
waits a longer time for all the other plugs to 
pass the same bifurcation. In this way, the flow 
under constant flow rate driving is not 
symmetric. 
 
6. Conclusion 
 
The propagation of plugs has been 
experimentally investigated in a microfluidic 
network. A resistance model is proposed and 
has good agreement with experimental data. 
This model is promising to be used in future 
research on plug trains. For a two-plug train, 
changing the initial distance between them 
also changes the total flow rate in the network. 
A single plug moves almost symmetrically 
under constant pressure driving, whereas large 
fluctuations of velocity are observed under 
constant flow rate and small symmetry 
perturbations are amplified. 
 
The flow phenomena associated with plugs in 
the airway are considered to be one of the 
reasons of many respiratory problems in the 
human lung and also an important way of 
medicine delivery. This work provides a 
fundamental understanding of plug flows in 
the pulmonary airway tree. It can be used for 
in-depth study about the network dynamics 
and the biological process in the lung. 
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