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Abstract

This paper shows how analysis of programs in terms of
pre- and post- conditions can be improved using a gen-
eralisation of conditioned program slicing called pre/post
conditioned slicing. Such conditions play an important
role in program comprehension, reuse, verification and re-
engineering.

Fully automated analysis is impossible because of the
inherent undecidability of pre- and post- conditions. The
method presented here reformulates the problem to circum-
vent this. The reformulation is constructed so that programs
which respect the pre- and post-conditions applied to them
have empty slices. For those which do not respect the condi-
tions, the slice contains statements which could potentially
break the conditions. This separates the automatable part
of the analysis from the human analysis.

1 Introduction

It is well known that program verification and related
condition-based analyses can only be partially automated
[6, 25, 48]. There are often several ‘eureka’ steps in the
analysis process which any automated system is insuffi-
ciently powerful to detect. Theorem provers and validity
checkers [43, 42, 4] will either answer ‘verified’, ‘not ver-
ified’, or ‘unsure’ when presented with propositions con-
cerning programs. Of course, there will always be some
programs and specifications for which the answer is ‘un-
sure’ due to the inherent undecidability of the questions em-
bodied in the conditions.

This paper focuses on pre- and post-conditions as a
mechanism through which a program’s behaviour can be
captured. Pre- and post- conditions play an important role

in software maintenance and evolution. They form a basis
for program comprehension [15, 47] and are useful in reuse
[8], migration [9] and re-engineering [10].

The paper introduces a new analysis method called
pre/post conditioned slicing1. This method addresses the
undecidability problem by reformulating the analysis ques-
tion as a program simplification problem. The basis of the
idea is to use the pre- condition and the negation of the post-
condition as the basis for a generalised form of conditioned
slicing which combines forward and backward condition-
ing.

Informally2, the pre/post conditioned slicing process is
based upon the following rule:

“Statements are removed if they cannot lead to
satisfaction of the negation of the post condition,
when executed in an initial state which satisfies
the pre-condition.”

Suppose this rule is applied to a program which correctly
implements the pre- and post- condition. In this case, it will
be possible to remove all statements from the program to
form the slice according to the above rule. This observation
is at the heart of the approach presented here. The essence
of the idea is to use conditioned slicing to form slices ac-
cording to this rule. The rule is constructed so that the slic-
ing process will remove all statements which can be shown
to preserve the behaviour of the original program with re-
spect to the pre- and post-condition. This leaves behind just
those statements which are either incorrect (with respect to
the pre- and post- condition) or which are ‘innocent’ but

1This should not to be confused with the p � slices introduced by
Comuzzi and Hart [13] to determine the statements which merely affect a
predicate.

2This is made precise by a formal unification of forward and backward
conditioning presented in Section 6.
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pre-condition: x 6= 0
if (x<0)

x = x*x;
negated post-condition: x � 0

Figure 1. A Simple Illustrative Example

cannot be detected to be so by slicing, due to the inherent
undecidability of the problem.

For example, consider the code fragment in Figure 1.
Suppose the pre-condition is x 6= 0 and the post-condition is
x > 0. Observe that the program respects the pre- and post-
condition. That is, if the pre-condition is satisfied, then the
program’s execution will satisfy the post-condition.

This is revealed by the generalised conditioned slicing
defined by the informal rule above, because both the assign-
ment and its controlling predicate can be removed according
to this rule.

The rest of this paper is organised as follows. Section 2
summarises existing work on backward and forward con-
ditioning and slicing and informally introduces the gener-
alization of conditioned slicing which combines backward
and forward approaches. In section 3 this generalisation is
used as the basis for the pre/post conditioned slicing anal-
ysis method. Section 4 illustrates the method with an ex-
ample of the analysis of an engine controller program. Sec-
tion 5 briefly describes the way in which the approach could
be applied to verification, reuse and program comprehen-
sion. Section 6 provides a theoretical foundation for the
method, formalizing the unification of forward and back-
ward program conditioning introduced in Section 2. Sec-
tion 7 concludes with directions for future work.

2 Unifying Forward and Backward Condi-
tioning

Program slicing was introduced by Weiser [48], and
since then has been developed as a tool for static [32]
and dynamic analysis [35, 1]. Slicing has been applied
to many problems in software maintenance and evolution,
such as re-engineering [10, 36], testing and regression test-
ing [5, 23, 27], decomposition, integration and modification
[21, 20, 31], decompilation [12], program comprehension
[15, 24, 25] and debugging [26, 37, 33].

Slices are constructed according to a criterion known as
the ‘slicing criterion’. Weiser’s slicing criterion consisted
of a set of variables of interest V and a point of interest
within the original program n. Statements which cannot af-
fect the values of variables in V at n are removed to form
the slice. For example, consider the program in section (a)
of Figure 2. Slicing this program with respect to the crite-
rion (fxg; 8) yields the slice in section (b).

Conditioned slicing was introduced by Canfora, Cimi-
tile and De Lucia [7, 14, 15]. It forms a bridge between
the two extremes of static and dynamic analysis. It aug-
ments the traditional static slicing criterion with a condition
which captures a set of initial program states of interest.
This allows a programmer to further specialize a program
by eliminating statements which do not contribute to the
computation of the variables of interest when the program
is executed in one of the initial states of interest.

The conditioned slicing criterion is thus a triple, (p; V; n)
where p is some initial condition of interest and (V; n) are
the two components of the ‘static’ slicing criterion. For ex-
ample, the conditioned slice of the original program in sec-
tion (a) of Figure 2 for the criterion (x > 0; fxg; 8) is shown
in section (c) of the figure. This slice is also the dynamic
slice for all input sequences in which the first element, x of
the sequence satisfies the condition x > 0.

More recently [19], the present authors introduced back-
ward conditioning. In backward conditioning, a statement
is deleted if, when executed, it cannot lead to the condi-
tion being satisfied. By contrast, in forward conditioning
a statement is deleted if, when the condition is satisfied, it
cannot be executed. By combining backward and forward
conditioning a generalization of conditioned slicing is ob-
tained. This generalisation makes conditions as flexible as
static slicing criteria, which can also be inserted at arbitrary
program points and also operate in either a forward or back-
ward direction.

The ability to specify backward and forward conditions
requires a notation which indicates the direction of condi-
tions. This is achieved using arrow notation [19]. Using the
notation, the slicing criterion for the traditional conditioned
slice in section (c) of Figure 2 is reformulated as

f(#dx > 0e; 1); (fxg; 8)g

Forward conditioning assists the programmer by consid-
ering the effect of propagating state information forward
from a condition. This addresses questions of the form

“what would happen if the program continued
from here in some state satisfying p.”

Backward conditioning is similar to forward condi-
tioning; a condition is inserted into the program text.
The effect however, is the ‘mirror-image’ of that for for-
ward conditioning. For example, section (d) of Figure 2
shows the effect of backward conditioning on the origi-
nal program in section (a) with respect to the condition
f("bx < 0c); 8); (fxg; 8)g. This slice removes code which
cannot leave the program in a final state satisfying x < 0.

Backward conditioning assists the programmer by con-
sidering the effect of propagating state information back-
ward from a condition. This addresses questions of the form
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“how could the program have arrived here in
some state satisfying p.”

This paper advocates an approach which combines for-
ward and backward conditions. Forward conditions will be
used to propagate forward the meaning of the pre-condition,
while backward conditions will be used to propagate back-
ward, the meaning of the post condition.

For example, consider the conditioned slicing crite-
rion f("bx < 0c); 8); (#dx > 0e; 1); (fxg; 8)g. That is, if x
starts out non-negative, then no statement can cause it to
become negative.

Section 6 formalised the generalisation of conditioned
slicing introduced informally in this section.

3 The Pre/Post Conditioned Slicing Analysis
Method

Forward conditioning with respect to a condition p re-
moves statements which cannot be executed in any state
which satisfies p. Backward conditioning with respect to
a condition q removes statements whose execution cannot
lead to a state which satisfies q. In analysis of a program
with respect to pre-condition � and post-condition !, it
would be expected that no execution could start in a state
satisfying � and lead to a state satisfying :!. Therefore, if
the program is conditioned with respect to the forward con-
dition � and the backward condition :! the conditioned
slice should to be empty. That is, if the program is correct
with respect to � and !, the slice should to be empty.

This provides a new approach to the verification and
analysis of the pre- and post-conditions. Rather than at-
tempting to prove that the pre-condition implies the post-
condition, an attempt is made to reduce the slice to the
empty program when applying generalised conditioned slic-
ing to the pre-condition and the negation of the post-
condition.

In situations where the pre-condition implies the post-
condition, slicing will be capable of reducing the slice to
empty. Unfortunately, due to undecidability, empty slices
may not be achievable in practice. However, in situations
where the pre-condition does imply the post-condition, but
no automated technique can establish this fact, the slicing
approach improves upon true/false verification. This is be-
cause it will typically reduce the size of the problem re-
maining for human analysis, by slicing away some of the
statements of the program which can be shown to be ‘inno-
cent’.

Of course, not all programs are correct with respect to
their pre- and post-conditions. Indeed, for some applica-
tions, such as program comprehension, the pre- and post-
condition used may be merely speculative rather than re-
quired. In situations where the pre-condition does not im-

float Tmp1, Tmp2;
Tmp1= CurrentVal-GoodVal;
Tmp2= GoodVal-CurrentVal;
if (Tmp1>SmoothThresh ||

Tmp2 SmoothThresh)
f Ct= Ct+1;

if (Ct<Thresh)
OutputVal= GoodVal;
else
f OutputVal= CurrentVal;

GoodVal= CurrentVal;
Ct= 0; g

g
else
f OutputVal= CurrentVal;

GoodVal= CurrentVal;
Ct= 0; g

Figure 3. Engine Control System Code

ply the post condition, the slicing approach is also more
appropriate than a true/false verification approach. This is
because slicing will remove those statements which can be
shown to respect the pre- and post-conditions, leaving the
‘suspect’ statements behind.

4 A Worked Example

This section illustrates the pre- and post- condition slic-
ing method using the code fragment in Figure 3. This code
is a fragment of production software that forms part of an
engine controller [40].

The code fragment has six parameters. Three of these
(CurrentVal, SmoothThresh, and Thresh) are used
for input only. Two parameters (GoodVal and Ct) are used
for input and output while OutputVal is used for output
only.

In the specification of the program, there are two con-
straints [40]:

“ The value of Ct lies between 0 and Thresh (in-
clusive).”

The method can be applied to the problem of examining
this invariant constraint. Where the constraint is required,
the pre/post condition slicing method is therefore an aid to
verification. Where it is merely speculated by a human an-
alyst in an attempt to understand the behaviour of the code,
the method is an aid to comprehension.

To examine whether or not the constraint is maintained
by the program the constraint will be asserted as a pre-
condition and post-condition. Using the pre/post condi-
tioned slicing method, this will entail conditioning with re-
spect to the following conditions:

3
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1 scanf("%d",&x); 1 scanf("%d",&x); 1 scanf("%d",&x); 1 scanf("%d",&x);
2 y=2*x; 2 y=2*x; 2 y=2*x; 2 y=2*x;
3 if (y>x) 3 if (y>x) 3 if (y>x) 3 if (y>x)
4 f x=x+1; 4 x=x+1; 4 x=x+1;
5 y=y*y;g

else else else
6 f x=x*2; 6 x=x*2; 6 x=x*2;
7 y=y-x;g
8 printf("%d",x);
(a) Original (b) slice on (fxg; 8) (c) Conditioned on #dx > 0e (d) Conditioned on "bx > 0c

Figure 2. Comparison of forward and backward conditioning

Tmp1= CurrentVal-GoodVal;
Tmp2= GoodVal-CurrentVal;
if (Tmp1>SmoothThresh ||

Tmp2>SmoothThresh)
Ct= Ct+1;
else
;

Figure 4. The Result of Slicing

1. Pre-condition: Ct>=0 && Ct<=Thresh (forward
condition)

2. Negated Post-condition: Ct <0 || Ct >Thresh
(backward condition)

Generalised conditioned slicing with respect to this con-
dition yields the empty slice. This establishes the fact that
if the value of Ct is within the required range at the begin-
ning of the procedure then no statement will take it out of
this range at the end of the procedure.

Of course, it is possible that the value of Ct slips in and
out of range during the execution of the program, although
it always finishes up in range.

In order to analyse this situation, assertions an be in-
serted into the body3 of the program at each assignment to
Ct. In this case there is only one. The procedure is sliced
with the condition Ct < 0 || Ct > Thresh immedi-
ately after the assignment to Ct and the pre-conditionCt>0
&& Ct<=Thresh. Slicing on this criterion yields the frag-
ment in Figure 4.

Implementations of conditioned slicing [14, 7] construct
conditioned slices in terms of path conditions. The Con-
SIT implementation [14] also simplifies these path condi-
tions using the Isabelle theorem prover [43, 42]. This can
be useful in examining the conditions which could lead to
an exception (such as the one captured by the value of Ct
going out of range during a computation).

3The formalisation of generalised conditioning presented in Section 6
allows assertions to be located at arbitrary points in programs, though it is
often convenient to think of them as pre- and post-conditions.

The path condition in this case is:

Ct � 0 ^ Ct � Thresh ^ Ct + 1 > Thresh ^
(CurrentVal �GoodVal > SmoothThresh

_GoodVal � CurrentVal > SmoothThresh)

Simplification produces the following conditions for an
exception to be raised by the increment to Ct.

Ct = Thresh ^
((CurrentVal �GoodVal > SmoothThresh) _

(GoodVal � CurrentVal > SmoothThresh))

In summary, the pre/post conditioned slicing method has
been used to examine the constraint 0 � Ct � Thresh.
The method has shown that when execution starts in a state
which satisfies the constraint, then no statement causes it to
fail at the end of the code fragment. However, the method
also identified a situation where the constraint may be bro-
ken during execution and produced a simplified exception
condition under which the constraint could be broken dur-
ing execution.

5 Application to Maintenance and Evolution

This section briefly considers the way in which condi-
tioned slicing with respect to pre- and post- conditions can
be applied to comprehension, reuse and verification.

5.1 Comprehension

Comprehension often starts with questions about pro-
gram behaviour. These questions represent speculative con-
ditions about the execution of a program, and may be incor-
rect. As there may be many questions that may be asked of
an existing system, it would clearly be attractive to automate
the process of answering them.

Questions about a program’s behaviour can typically be
coded as assertions at various points in the program code,
so a pre- and post-condition approach is applicable here.
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Unfortunately there are two problems with any approach
to the automation of pre- and post- condition analysis for
speculative questions:

1. Being merely speculative, the question asked may be
false, but an automated system which simply answers
‘no’ to the question yields little insight into why the
answer is ‘no’.

2. Being generally undecidable, such questions may not
be completely answerable by an automated system.

As stated earlier, the second of these two problems can-
not be avoided, although it is circumvented in the con-
ditioned slicing approach, by approximating the answer
through program simplification; the better the simplification
the closer the approximation.

The first of these two concerns is more important for
program comprehension, where many questions will have
the answer ‘no’. In this situation the conditioned slicing
approach yields valuable insight by returning, not just the
answer ‘no’, but also a reduced program which contains
statements which potentially cause the answer to be ‘no’.
This yields additional insight into why the pre- and post-
conditions failed to adequately capture the behaviour of the
program.

5.2 Reuse

In order to re-use program components it is often nec-
essary to specify the pre- and post- conditions of the code
required. These conditions can be used to search code in
a data base of candidate reuse components. The pre- and
post- condition search approach to reuse was first suggested
by Katz et al. [34], Perry [45] and Rollins and Wing [46].
A survey of the approach is presented by Mili [38].

Systems which automate the search for such components
typically use theorem proving to find possible matches
[39, 44]. Unfortunately, in some cases there may be no
exact match, but there may be several components which
represent near matches. Fischer et al.[17] report retrieval
rates of 0.49, which is low because of the power required of
the theorem proving technology is simply too great.

The approach advocated here can be thought of as a way
of finding approximate component library matches. Instead
of using theorem proving to locate an exact match for the
component sought, the system can search for the smallest
slices produced (to within some chosen tolerance of ‘small-
ness’). If a perfect match could be found by theorem prov-
ing alone, then the slicing approach will locate the same
component by returning an empty slice for it. However,
where theorem proving alone would be unable to locate any
components, the slicing approach will return a set of can-
didates and will indicate the sections of code (in the con-
ditioned slice) which potentially deviate from the required

semantics. The size of the conditioned slice can thus be
used as a measure of component fit.

5.3 Verification

Program verification often consists of examining the ef-
fect of the program in terms of assertions [47]. The ax-
iomatic method, introduced by floyd [18] and developed by
Hoare, Dijkstra and others [28, 29, 3, 16] is centred around
the development of program semantics in terms of asser-
tions. The approach advocated here provides a method for
analysing the effects of these assertions, simplifying the hu-
man effort required to verify the program.

Many specifications are written in state-based languages
such as statecharts or SDL [22]. Such specifications are
effectively extended finite state machines: there is a finite
set of logical states, transitions between these states, and
an internal memory or store. Where the internal store is fi-
nite, there is an overall finite state structure and it is possible
to check properties quasi-exhaustively using model check-
ing [41, 30, 11]. However, even where the internal store
is finite, the number of possible values for this may make
model checking infeasible. It might be possible to use an
approach similar to conditioned slicing to reduce this prob-
lem: given a property being checked, aspects that are not
relevant to this property might be sliced away. This could
improve the efficiency, and thus extend the applicability, of
model checking.

6 Formal Foundations

This section presents a formalisation of generalised con-
ditioning in which statement blocks are eliminated from the
program if there are no execution paths through which the
conditions of interest are true. These conditions are de-
clared using assert statements. There may be any num-
ber of them, and they may appear at any position in the pro-
gram. The program statements that are left are then those
that are on at least one path where all of the required condi-
tions are true (or more precisely, not provably false).

In effect there are three salient cases:

1. If a statement s is inaccessible given a preceding as-
sert statement, then that statement can be eliminated
(as in standard conditioning).

2. If every path through s contains an assertion which is
provably false, then s can be eliminated.

3. If either of the above, then s is left in the program.

This is slightly more general than what is required. In the
present setting, the focus lies in asserting two conditions,
one expressing a precondition, at or near the beginning of
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the program, and a second expressing a postcondition—in
the form of an assertion of the negation of a postcondition—
at the end of the program. This means that the above cases
can be re-expressed as follows:

1. If a statement s is inaccessible given the precondition,
then that statement can be eliminated.

2. If s is accessible given the precondition, and all paths
through s satisfy the postcondition, then s can be elim-
inated.

3. If s is accessible given the precondition, but there is
at least one execution path through the statement that
cannot be shown to satisfy the postcondition, then s is
left in the program.

The formalisation of assert and of conditioning aims
to preserve the symbolic semantics of the program, before
and after conditioning. In case (2) above, simply deleting
statement s is not guaranteed to preserve the semantics. To
satisfy this requirement, “eliminating” a statement s is taken
to include the replacement of s by assert(false); a
statement which has the effect of removing from further
consideration any trouble free paths which lead to the sat-
isfaction of the postcondition when s was in place. In the
program schema:

: : :
if (c) fs1g
: : :
s2
: : :

if case (2) applies to s1, and case (3) applies to s2 then this
will lead to:

: : :
if (c) fassert(false); g
: : :
s2
: : :

preserving the fact that s2 is only troublesome in the origi-
nal program when the condition c is false, by “trapping” all
paths in which c is true. If these paths were not trapped in
this way, and s2 was simply deleted, then the semantics of
the program would have been changed, because there would
then be new paths through s2, namely the previously accept-
able paths that used to be modified by s1.

In case (1) above, elimination can take the form of state-
ment deletion or replacement by assert(false). Ac-
cording to this formalisation, a program satisfies a postcon-
dition, with a given precondition, if all the statements have
either been deleted, or replaced by assert(false).

In the general case that is formalised here, if the salient
condition occurs before a statement that is left in the resul-
tant conditioned program, then this is like saying that the
statement is potentially accessible on paths where the con-
dition is true. If the salient condition follows the statement,
then it can be said that the statement is on a path which
potentially contributes to the satisfaction of the condition.
Although this characterisation might help with intuitions,
in the semantics to be presented below, there is no formal
distinction between these two cases.

6.1 Symbolic Semantics

Before defining the symbolic semantics of the key state-
ments, assignments, conditionals, while loops and input
statements, it is convenient to define notions of an update to
the states in a set of path, symbolic-state expressions4. The
expression ' to stand for partial equality, which is not de-
fined if either argument is ?. In this analysis, ? will be the
state that results on execution paths that do not contribute to
the truth of the required condition(s).

The notation � Æ [x=e] is used to represent the result of
updating the symbolic states in the set of path-states � by
the substitution [x=e], and � " p is used when the paths in
a set of path-states � are augmented by an additional path
constraint p. The expression �.� is used to indicate a path-
state pair; if path condition � holds, then symbolic state �
will arise. The term I�(e) is the symbolic evaluation of
program expression e in symbolic state �.

Definitions 1–4 give the formal infrastructure required to
define the formal symbolic semantics of the core language
in Definition 5. In particular, Definitions 1 and 2 are re-
quired for clauses 1–4 of Definition 5, and Definitions 3
and 4 are required for clause 5, which covers while loops.

The notion of a set of path-states is then generalised to
include a distinguished value ? that is used in the symbolic
semantics of assert, given in Definition 6. Note that the
intentions is that assert should be considered a first class
citizen of the programming language. It is not included in
Definition 5 merely to aid the clarity of the presentation of
the formal theory.

Finally, Definition 8 formalises generalised condition it-
self.

Definition 1 Composition of a set of path-states � with a
substitution [x=y]:

� Æ[x=e] ' f(� . �0) : (� . �) 2 �; �
0 = �[x=I�(e)]g

4Here the exposition is simplified by not distinguishing between con-
ditional expressions of the programming language and those of the meta-
language in which the notion of a program’s symbolic semantics is for-
malised.
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Definition 2 Update of a set of path-states � with a new
path condition p:

�"p ' f(�0 . �) : (� . �) 2 �; �
0 = � [ I�(p)g

This is sufficient to state the semantics of assignment and
conditional statements. For while loops the notion of a
“touched” variable also needs to be defined.

Definition 3 The touched variables �(s) of a statement s
are those which might be assigned a value within s:

�(s) ' fv : 9(� . �) 2 ((; . ;) � s):9e:(v = e) 2 �g

Touched variables can be safely approximated by the set
of defined variables (those which occur on the left-hand side
of an assignment statement [2]).

A way of “resetting,” or “clearing” a set of variables V
in a set of path-state pairs that might have been touched
within a loop body can be defined. First it can be noted that
resetting of an individual variable v can be defined by the
following expression:

�fvg(�) ' f� . �0 : � . � 2 �; �
0 = �[v=U(�)]g

where U(�) picks out a constant symbolic value that is
unique in �. This can be generalised to give a recursive
definition for the renaming of a set of variables V in a set of
path-states �.

Definition 4 �V (�) is the path condition � except where
variables V are assigned unique constant values. Case (i)
is the base case when the set of variables in the empty set:

�;(�) ' �

Case (ii) is the recursive case:

�V (�) ' f� . �0 : � . � 2 �0;
�0 = �[v=U(�)];�0 = �V�fvg�;
for some some v 2 V g

Now everything is in place to define the symbolic semantics
of the usual statement types:

Definition 5 � �s is used to mean the set of path-states that
arise from the execution of statement s in the context of
path-states �.

1. � �(v=e) ' � Æ[v=e]

2. � �scanf("%d", &v) ' �fvg(�)

3. � �(s;s0) ' (� �s) � s0

4. � �(if c s else s0) ' (�"c) � s [ (�"not c) � s0

5. � �(while c s) ' (�"not c)[((��(s) �)"c�s)"not c

This defines the symbolic execution semantics for a frag-
ment of C [14].

This can be exploited in the definition of backward con-
ditioning. Essentially, for each statement s it must be de-
termined whether all execution paths through s lead to the
negation of the required condition(s). If so, then we can
remove that statement.

First, the symbolic semantics must be extended to
account for the existence of statements of the form
assert(c). The notation �? is used to stand for a value
that is either a set of path-states, or the distinguished value
?, which arises when c can be shown to be false on all rel-
evant paths.

Definition 6 Symbolic execution of assert:

�? �assert(c) =

8<
:

? i� � ` :I�(c)
for all (� . �) 2 �?

�"c otherwise

This is distinct from the previous semantics, in that it en-
compasses an element of evaluation.

For completeness, the relevant behaviours of ? can be
given:

Definition 7 All of �? �s;�? "�;�? Æ�; �V (�?) are ? if
�? = ?, and when a 6= ?, and b 6= ? then a ' b � a = b.

Various choices are available in determining the appro-
priate action on conditioning a program. On determining
that s is irrelevant for the purposes of obtaining the desired
condition, it would be possible, for example, to rewrite con-
ditional statements of the form

1. if c s else s0

2. if c s0else s

as simply:

s0

However, it should be noted that, in general, if this ap-
proach were adopted for the case where a conditional ex-
pression occurs prior to an assert statement, then exe-
cution paths that would have gone through s will now in-
correctly go through s0. This changes the semantics of the
transformed program. To avoid this, all paths that would
have gone through the deleted statement would have to be
trapped, perhaps using an assert statement. In the case
of the above conditionals, if c is always true (false, respec-
tively) the statement can be replaced by

1. assert(!c); s0

2. assert(c); s0
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respectively.
An alternative would be to simply delete the irrele-

vant individual statements and replace them with as-
sert(false);. For the purpose of exposition this lat-
ter version is formalised. Note that it is possible to consider
strengthening this treatment to cover some special cases, for
example when the else part of a conditional is empty.

Definition 8 C�
R
(s) denotes the post-conditioned version of

the program s where all statements have been elided if they
cannot lead to the satisfaction of the required conditions,
as expressed by assert statements.5 The subscript (s ini-
tially) is used to record the program continuation, and the
superscript (f; . ;g initially) is used to record the path-
states of the program so far.

1. C�
R
(v=e) = (v=e)

2. C�
R
(scanff"%d", &vg) = scanff"%d", &vg

3. C�
R
(s;s0) = C�

s0;R(s); C
� �s
R

(s0)

4. C�
R
(if c s else s0)

=

8>>>><
>>>>:

if c C�"c
R

(s) else fassert(false)g
when (�? ":c) � (s0;R) = ?

if c fassert(false)g else C�":c
R

(s0)
when (�? "c) � (s;R) = ?

if c C�"c
R

(s) else C�":c
R

(s0) otherwise

5. C�
R
(while c s)

=

8<
:
while c fassert(false)g

when ((��(s) �
?)"c � s)"not c � R = ?

while c C�"c
R

(s) otherwise

The parts 4 and 5 of this definition can be strengthened
so that when

� ` I�(c) for all (� . �) 2 �

the statement s6 is obtained in place of if c s else s0 and
when

� ` :I�(c) for all (� . �) 2 �

the statement s7 and fg8, respectively, are obtained in place
of if c s0 else s and while c fg. These additional
clauses give us the behaviour of the original conditioning
procedure.

The net result is that:
5In this context, “elided” can mean either a well formed deletion, or

some kind of statement “colouring.”
6Or one of (i) if true s else s0, (ii) if c else fg. The latter

matches the original implementation of conditioning.
7Or one of (i) if false s0 else s, (ii) if c fg else s. The latter

matches the original implementation of conditioning.
8Or one of (i) while false s (ii) while c fg. The latter

matches the original implementation of conditioning.

1. statements that are only on infeasible paths are either
replaced by assert(false), or are removed in the
case of the strengthened analysis (as in the original ver-
sion of conditioning);

2. with the strengthened version, statements following a
point of non-termination are removed, (as in the origi-
nal version of conditioning);

3. statements on feasible paths that reach a condition, and
guarantee that the condition is false are replaced by
assert(false) (this covers the “backward” con-
ditioning case).

7 Conclusion and Future Work

This paper has introduced and formailsed the pre/post
conditioned slicing method, which combines forward and
backward conditioning to provide a unified framework for
conditioned program slicing. It shows that the method can
be used to analyse programs in terms of their pre- and post-
conditions, by formulating conditioned slicing criteria from
the pre-condition and the negation of the post-condition.
Statements not in the slice are those which must behave
correctly with respect to the pre- and post- condition, while
those which remain are ‘suspect’ and form the basis for fur-
ther analysis.

The paper illustrates the application of the pre/post con-
ditioned slicing method with an example of an engine con-
troller and pre- and post- conditions which specify con-
straints on its operation. The paper also considers the appli-
cation of the method to reuse and program comprehension.

More work is required to evaluate the effectiveness of
this approach as a tool for reuse, verification and compre-
hension. The authors plan empirical studies of the efficacy
of the approach in these three areas based on the existing
ConSIT conditioned slicing tool [14].
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