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Abstract 

The global push towards carbon neutrality by 2050 has intensified the need for 
sustainable, energy-efficient electric vehicle charging infrastructure. Traditional 
charging stations rely heavily on the conventional grid, which presents challenges for 
integrating renewable energy sources and supporting the widespread adoption of 
electric vehicles (EVs). This thesis addresses these challenges by developing innovative 
strategies for energy-efficient electric vehicle charging stations (EVCSs) that 
incorporate renewable energy sources, enhance energy exchange capabilities, and 
improve the infrastructure’s overall contribution to social welfare and carbon emission 
reduction. 
Although prior research has made strides in enhancing EV charging efficiency and 
incorporating renewable energy, significant gaps remain. Many existing studies 
overlook comprehensive models that optimize both energy management and economic 
viability across EVCS networks. There is a need for solutions that facilitate effective 
integration of renewable energy sources, such as solar hydrogen and battery storage 
systems, with minimal reliance on traditional distribution networks. Furthermore, 
limited attention has been given to optimizing energy transfers between stations and 
implementing real-time pricing models to balance supply and demand in variable 
conditions. 
This thesis addresses these gaps by presenting a comprehensive model for integrating 
renewable energy into EVCSs, including solar hydrogen and storage-integrated EVCSs 
(SHS-EVCSs), supported by advanced simulation and optimization techniques such as 
the Particle Swam Optimization (PSO) Algorithm, the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) and the Multi-objective Evolutionary Algorithm Based on 
Decomposition (MOEA/D). These methods facilitate the identification of optimal 
solutions for energy management and cost-effectiveness. Additional contributions 
include a novel peer-to-peer (P2P) energy dispatch strategy based on game theory, a 
hierarchical model to enhance driver welfare and operational efficiency, and a Markov 
decision process with Monte Carlo simulations for accurate demand prediction and real-
time pricing. Together, these innovations provide a robust framework for designing 
future EVCS infrastructure aligned with global carbon neutrality goals, offering 
practical insights into renewable energy integration, network optimization, and 
economic impacts on urban transportation systems.  
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Chapter 1. Introduction 

1.1. Background 

As the global economy continues to grow, humanity faces increasing challenges with 

energy shortages and air pollution. In response, there has been a heightened focus on 

low-carbon and renewable energy (RE) as key solutions to these issues. Numerous 

countries have introduced carbon emission standards designed to cut energy 

consumption, enhance the efficiency of electricity generation, reduce greenhouse gas 

emissions, and support the development of clean energy alternatives. Although 

conventional fossil fuel technologies for energy generation are well-developed, offering 

high capacity and operational stability, they are limited in terms of energy efficiency 

and lack the flexibility to effectively balance supply and demand. Additionally, the 

significant carbon and pollutant emissions from these technologies contribute to global 

warming and environmental degradation, posing a barrier to their further expansion. 

Clean energy can be divided into renewable and non-renewable categories. Renewable 

energy includes sources like wind, water, solar, geothermal, and tidal energy. Non-

renewable clean energy sources encompass nuclear power, biomass, and hydrogen. 

While renewable energy offers the benefits of competitive generation costs and low-

carbon emissions, its unpredictable and intermittent nature can lead to volatility in 

energy supply and demand. Hydrogen, as a low-carbon fuel, provides a stable and 

sustainable energy option, especially when integrated with renewable energy for long-

term use. 

Electric vehicles (EVs) development can be dated back as far as 1830 when Robert 

Anderson developed a prototype electric-powered carriage. However, it was until 1884 

that the first mass-produced EV was created by British inventor, Thomas Parker [1]. 

Later in 1897, a New York based taxi company that operated electric cars was founded. 

However, the EVs at that time were characterized by a range of problems that made it 
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challenge to be rolled out to the larger automotive market. For example, the car batteries 

could not be reliably recharged and hence the frequent used batteries had to be replaced 

with new ones. Even in instances where batteries could be recharged, the range anxiety 

coupled with limited number of charging stations meant that EVs could not be used 

widely [1]. According to [1, 2], the development of electric ignition systems in 1834 

for combustion cars, availability of cheap fuel as well gradual improvement in 

reliability of such cars further inhibited the development of electric cars.  

 
Figure 1-1 EV development history [1] 

During the 1960s and 70s, interest in EVs was regained following a spike in global oil 

prices. However, the interest gradually faded due to persistent drawbacks of EVs such 

as limited performance and range comparing with combustion vehicles (50-60 miles 

before recharging) [3]. In 1990 to 1992, regulatory changes particularly in the United 

States initiated the interest in EV and marked improvements were achieved in aspects 

such as speeds and performance which helped reduce the gap relative to gasoline-

powered vehicles [4]. In 1997, the first major commercial success regarding EVs had 

occurred following the Toyota’s mass production of hybrid car- Prius. Further in 2006, 

Tesla Motors began the production of a fully electric car with a range of 200 miles. 

Coupled with development of nation-wide charging infrastructure in the United States, 

several models of EVs such as General Motor’s Chevy Volt and Nissan’s LEAF were 
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developed and made commercially available. Another key development in recent times 

was the decline in battery costs, by 50% in 2013 leading to greater affordability as the 

battery constitutes the single most expensive part of EVs [4]. 

Since the early 2000s, there has been an increasing awareness of the need to address 

greenhouse gas emissions and environmental pollution resulting from the overuse of 

fossil fuels [5]. This has led to a growing emphasis on RE sources, which are now seen 

as vital alternatives in many countries across the globe. The electricity generation and 

transportation sectors are particularly noteworthy, as they are responsible for nearly 64% 

of global carbon dioxide emissions [5]. This has heightened public concern over the 

potential for permanent environmental damage. Sources [6] suggest that the integration 

of RE is crucial for achieving carbon reduction targets in these areas. EVs are 

considered a promising option for lowering CO2 emissions. Thorough reviews [7][8] of 

research on EVs indicate that their use not only reduces environmental impact but also 

offers cost benefits to owners due to lower operational expenses. However, one of the 

major challenges in increasing EV adoption is the slow development of charging 

infrastructure [9]. The lag in establishing sufficient charging facilities discourages 

potential buyers from making the switch to EVs [10]. Furthermore, high investment 

costs and uncertainty about future EV demand are additional factors that slow the 

progress of infrastructure development. For instance, in London, it is estimated that by 

2040, more than 500,000 charging points will be needed, with almost 50,000 required 

in public spaces [11]. This underscores the urgent need for coordinated efforts to expand 

infrastructure to support the anticipated growth in EV usage. 

1.2. Research Aim and Objectives 

The aim of this  thesis is to explore strategies for constructing new energy-based electric 

vehicle charging stations (EVCSs) to meet the 2050 carbon emission targets. The focus 

of the research is on analysing the management of RE used in EVCSs, exploring the 

mechanisms for energy exchange between multiple charging stations, and how to 
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effectively feed electricity back to the grid to maximize social welfare. Additionally, 

this study aims to elucidate the crucial role of EVCSs in achieving carbon neutrality 

goals. To achieve these objectives, the following specific research goals have been set: 

1. Review renewable energy technologies, EV charging requirements, and 

advancements in renewable-powered EVCSs to identify current technology gaps. 

2. Propose a super-fast, off-grid, carbon-neutral charging station design to promote 

urban EV adoption, reduce carbon emissions, and address range anxiety. 

3. Conduct an economic analysis comparing SHS-EVCSs with traditional EV stations, 

focusing on cost-effectiveness, operational efficiency, and sustainability. 

4. Develop an optimal scheduling and real-time pricing model for an integrated 

energy system that leverages multi-energy complementarity, including demand-

side management and demand response, tailored to SHS-EVCSs and EV drivers, 

which called social welfare maximization. 

1.3. Contribution 

The contributions to this research are: 

1. This study focuses on developing a detailed model for EVCSs. It includes a 

thorough comparative analysis of simulation optimization techniques, specifically 

comparing the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the 

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) to 

identifies and selects the optimal solution according to established criteria and 

performance metrics. 
2. The direct transfer of electric energy between EVCSs without using the distribution 

network. By examining the complexities and outcomes of direct energy exchange, 

to explore the feasibility, advantages, and obstacles of this innovative approach. 

3. Reducing capital costs, O&M expenses, and the costs associated with greenhouse 

gas emissions. By prioritizing environmental sustainability, it aims to investigate 

the complex relationship between economic efficiency and environmental impact. 
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4. The proposal method introduces a peer-to-peer (P2P) optimal dispatch strategy 

based on game theory for SHS-EVCSs.  

5. Examined the synergistic collaborations and operational dynamics among various 

stakeholders to highlight the shared economic benefits, focusing particularly on 

methodologies that use SHS-EVSE for energy sharing and economic dispatch 

optimization, aimed to understand how these interactions enhance collective 

profitability and operational efficiency. 

6. From the perspective of economic market, a model is established based on the 

master-slave hierarchical relationship between SHS-EVCSs and EV drivers. The 

model directly considers the welfare of EV drivers, rather than just reducing the 

operating costs of SHS-EVCSs. 

7. Develop a model for EV charging times using a Markov decision process to 

manage the uncertainties related to charging durations. Furthermore, implement a 

Monte Carlo simulation to evaluate and forecast EV charging demand, considering 

that the demand is likely to vary according to the probabilities linked with different 

charging times. 

8. According to the EV charging demand, considering the benefits of both the driver 

side, the SHS-EVCS side and grid side, improve the social welfare maximization 

real-time pricing model. 

1.4. List of Publications Arising from the PhD  

Journal publications: 
• L. Duan, G. Taylor, C. S. Lai. Solar–Hydrogen-Storage Integrated Electric 

Vehicle Charging Stations with Demand-Side Management and Social Welfare 

Maximization. World Electr. Veh. J. 2024, 15, 337.  

• L. Duan, Y, Yuan, G. Taylor, C. S. Lai. Game Theory-Based Design and Analysis 

of a Peer-to-Peer Energy Exchange System Between Multi-Solar-Hydrogen-

Battery Storage Electric Vehicle Charging Stations. Electronics 2024, 13, 2392. 
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• L. Duan, Z. Guo, G. Taylor, C. S. Lai. Multi-Objective Optimization for Solar-

Hydrogen-Battery-Integrated Electric Vehicle Charging Stations with Energy 

Exchange. Electronics 2023, 12, 4149. 

Conference publications: 

• L. Duan, C. S. Lai, G. Taylor, X. Zhang. Optimal energy exchange of two electric 

vehicle charging stations with solar-hydrogen-battery storage systems. Accepted 

for 2023 58th International Universities Power Engineering Conference (UPEC 

2023), Aug. 29 - Sep. 01, Dublin, Ireland.   

• L. Duan, X. Zhang, N. Ozkan, S. Etminan. Design and operation of solar-

hydrogen-storage integrated electric vehicle charging station in smart city. CIRED 

2021 Conference, Sep. 20-23, Geneva, 2021.   

1.5. Structure of the Thesis 

Chapter 1- Introduction 
This chapter provides a comprehensive introduction to the background of EV, RE, and 

EV charging infrastructure. It outlines the motivation, aims and objectives of the thesis. 

Furthermore, it highlights the contributions of this research and the content that will be 

discussed. 
Chapter 2: Literature Review 
This chapter provides a review of literature on EV charging and the underlying issues 

as the adoption of EV continues to increase rapidly. It begins with a review of EV 

history and the future direction of the sector. Then followed by a review of challenges 

and opportunities relating to EV charging infrastructure. Further, the chapter reviews 

the concept of REs and DSM. Other concepts reviewed include vehicle to grid.  
Chapter 3: Model and Theory Background 
This chapter offers a comprehensive introduction to several key technologies and 

methodologies in modern energy systems and optimization. It introduces photovoltaic 

(PV) systems, hydrogen storage systems, and battery storage systems model. Explore 

optimization algorithms: the non-dominated sorting genetic algorithm-II (NSGA-II) 
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and the multi-objective evolutionary algorithm based on decomposition (MOEA-D), 

which are pivotal in solving complex optimization problems in energy systems. 

Furthermore, this chapter explores the foundational principles of Peer-to-Peer (P2P) 

energy trading working with game theory. Also gives information about social welfare 

models. 
Chapter 4: Design and operate SHS-EV Charging Station 
This chapter presents a pioneering design and operational framework for a SHS-EVCS, 

specifically tailored to meet the demands of future smart cities. The system is designed 

to provide two key functions: firstly, it enables super-fast and off-grid EV charging; 

secondly, it offers a multi-energy charging system that integrates solar power, hydrogen 

fuel, and energy storage technologies. The design and modeling of the SHS-EV 

charging station involve several critical components: a hydrogen fuel cell generator that 

facilitates off-grid, high-density power generation; a local solar power generation 

facility that harnesses renewable energy; a power-to-gas electrolysis unit that produces 

hydrogen using both grid electricity and solar energy; and advanced storage solutions 

for hydrogen and batteries, which are crucial for managing local energy balance. 

Additionally, the framework includes a unique feature where multiple stations are 

interconnected through an energy exchange system, allowing for the transfer of excess 

energy between stations, thereby optimizing energy utilization across the network. This 

innovative approach not only enhances the efficiency and sustainability of EV charging 

but also contributes to the resilience and adaptability of future urban energy systems. 
Chapter 5. Multi SHS-EV charging station power exchange 
This chapter introduces an optimization approach for direct energy exchange between 

geographically dispersed EVCSs in London, UK, and Dali, China.  

Part 1 focuses on London, where the proposed SHS-EVCSs are evaluated and compared 

using two multi-objective optimization algorithms: NSGA-II and MOEA/D. The 

study's results demonstrate that NSGA-II delivers superior-quality solutions compared 

to MOEA/D. 
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Part 2: Dali part introduces a P2P energy trading strategy based on game theory for 

multi-SHS-EVCSs, this approach sets a fuzzy value based on the prediction errors of 

renewable energy within each SHS-EVCS. It introduces a day-ahead P2P interactive 

energy trading model that uses game theory optimization principles to address the 

variability challenges of renewable energy sources. Then, by applying dual theory, the 

model is transformed into a linear convex programming problem that can be solved 

using CPLEX optimization techniques. 
Chapter 6 SHS-EV charging stations demand side management 
This chapter will examine the practical feasibility of EVCSs by introducing two key 

models. The first is a non-cooperative game model for SHS, designed to minimize the 

costs of construction, operation, and maintenance. The second model focuses on 

internal energy transactions within EVCSs, expanding on concepts discussed in Chapter 

5 Part 2. This model integrates operational load and an internal dispatch center for 

demand response, with the goal of maximizing social welfare by balancing the 

economic interests of EV owners and minimizing electricity supply costs, including 

acceptable charging prices. In this broader social welfare model, the capital costs of 

electricity generation, such as those from the grid, renewable energy, and storage 

systems, are also important considerations. Additionally, this chapter will explore two 

distinct scenarios: one scenario addresses day-ahead DSM using fixed load data from 

Chapter 4, while the other focuses on real-time DSM. 
Chapter 7 Conclusion 
This chapter provides a comprehensive summary of the overall findings from the entire 

research project and discusses the key contributions made by this study. Additionally, 

the chapter outlines potential avenues for future research, suggesting directions that 

could further enhance understanding and development within the topic area.  
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Figure 1-2 Flowchart for thesis structure
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Chapter 2. Literature Review 

The introduction of renewable energy at EVCSs plays a very important role in the 

global shift towards sustainable mobility. Due to the rapid development of EVs, the use 

of renewable energy charging infrastructure can improve energy security and reduce 

the carbon footprint associated with transportation. Hydrogen storage, battery storage 

and solar energy comprise the main renewable energy sources. It plays a very important 

role in this integration, providing solutions that are efficient and sustainable [12][13]. 

In the process of using these technologies, greenhouse gas emissions are reduced, and 

the stability of the grid can be achieved by balancing load changes throughout the day 

[14]. The reduced cost and wide availability are the main features of solar energy, which 

enables the battery reserve system of the charging station to be supported, and this 

provides electricity for the charging station. Low-cost grid electricity and excess solar 

energy are stored in these battery reserves. These batteries can be used if there is 

insufficient sunlight or during periods of peak demand [15-17]. On the other hand, it 

enables both high energy density fuels to be supplied and residual renewable energy to 

be stored [18]. In EV charging infrastructure, these national policies have a big impact 

on these technologies. In the United Kingdom, for EVs to be promoted and vehicle 

emissions to be reduced, renewable energy charging infrastructure can be enhanced by 

the government through the "Road to Zero" strategy [19][20]. At the same time, to 

increase the deployment of EVs, positive policies can be used in China, including the 

integration of incentives for renewable energy, so that China can take the lead in the 

application of renewable energy transportation and EVs [21]. In this literature review, 

different renewable energy technologies are explored to explore the role of 

technological advances and integration challenges in the context of EVCSs, as well as 

the impact of Chinese and UK policies. Within these strategies, within these policies, 

the global landscape of renewable energy can be shaped. 
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2.1. EV History and Future 

Over the past few decades, changes driven by policy and technology have significantly 

influenced the development of EVs and their charging infrastructure. The idea of EVs 

dates to the early 20th century, when researchers first introduced the concept. At that 

time, EVs competed with internal combustion engines, but they faced challenges such 

as limited charging options and short driving ranges [23][24]. As a result, EVs did not 

gain widespread popularity. However, by the late 20th century, advancements in battery 

technology and growing environmental concerns renewed interest in electric mobility 

[25]. In recent years, the progress in EV charging infrastructure has been substantial, 

particularly with the integration of online systems. Wind and solar-powered charging 

stations are becoming increasingly common, offering sustainable alternatives to 

traditional electricity sources. Mobile storage units can be enabled through innovations 

such as bidirectional charging, so that the grid can feedback from energy, thereby 

integrating renewable energy and energy stability regulatory frameworks and policies 

[26]. Initiatives such as the Autonomous and Electric Vehicles Act 2018 have been 

made possible by the government's commitment to reducing carbon emissions [27]. In 

this act, charging points will be installed in all new homes, thus putting the number of 

public charging on a rapid growth trend [28]. Figure 1-1 shows the distribution of 

charging devices across different speed categories, highlighting changes between the 

old and new classifications [29]. In the former speed categories, there are 53% 'fast' 

charging devices (7kW to 22kW). In the new categories, the 3kW to 8kW range 

comprises the largest proportion of charging devices at 59% (31,910 devices) [29]. 
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Figure 2-1 public charging devices by charging speed [29]  

These efforts complement investment in renewable energy technologies to power 

stations, as well as subsidies for electric locomotives, such as restrictive policies 

implemented by the Chinese government for gasoline cars, and EV adoption can be 

driven by new energy vehicle policies, which can benefit from local subsidies and 

policy support for construction. In the global EV market, China has gained a leading 

position by combining renewable energy and EV infrastructure [30-32]. In addition, 

smart grid technologies can be implemented and explored in both countries so that grid 

burdens can be managed and charging services can be optimized [33]. These technical 

demand response systems are included in these technologies, and the renewable energy 

charging rate can be adjusted by the availability of renewable energy, thus improving 

the sustainability and efficiency of EV charging stations [34]. In the process of 

continuous development of charging technology and EVs, the technical exchange 

framework and international cooperation also support this development, which enables 

the global standardization of charging systems [35] 
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2.2. Photovoltaic Energy 

Solar charging is used to charge EVs, in the process of promoting sustainable energy 

solutions, the use of solar power generation of photovoltaic technology has laid a 

technical role, especially the current main background is based on EV charging [36-38]. 

Solar energy is used by photovoltaic technology, and electric energy can be directly 

converted from light energy [39][40]. In this process, electric charge can be generated 

in photovoltaic cells, and internal power plants in internal batteries can generate 

electricity [41]. Since fossil fuels are no longer used in the world, the application of EV 

charging can be innovative and play an important role. The photovoltaic panel is mainly 

installed on the awning panel or the roof, and the shade can be provided through the 

solar charging station, which is used by the solar energy. For example, the Solaroad 

developed by the Netherlands can be integrated by the solar panel. Electricity 

generation can be charged by EVs at adjacent stations [42][43]. At the same time, solar 

charging panels are being developed by Vision Solar and Tesla, and battery storage is 

included in them so that the intermittency of solar energy can be managed. Even with 

a low solar output, vehicle charging can be achieved [44]. As EV charging 

infrastructure integrates the sun, various benefits can be brought. From an 

environmental point of view, the carbon dioxide associated with vehicle charging can 

be reduced, and greenhouse gas emissions can be reduced. From an economic point of 

view, the construction provided by utilities can be offset by solar power. Excess power 

can be sold back through net metering, thereby reducing the costs associated with 

charging boards [45][46]. In addition, the energy independence of charging stations can 

be improved by solar loading, and the instability of the grid can be reduced. However, 

some challenges also exist in the process of charging EVs, the variability of solar energy 

is a major problem, and factors such as time and weather conditions play an important 

role [47][48]. To mitigate this problem, the integration of battery storage systems plays 

an important role. However, in such a system, the capital of the charging station 

infrastructure will increase, and its complexity will increase in the process of using such 
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a system [49][50]. In addition, geography can also have an impact on the efficiency of 

solar panels, and if there is less sunlight on this day, then the power station needs to 

face a major challenge in generating electricity. Some limitations are also reflected in 

the space requirements for solar panels, especially in some cities where space is at a 

premium. For these spatial challenges to be overcome, solar panels require innovative 

design and effective planning, for example, building roofs and parking structures can 

be integrated with solar panels [51]. Other than that. There are significant upfront costs 

involved in installing solar panels and managing power management systems, although 

these energy costs are offset by long-term savings [52]. In the process of realizing 

sustainable transportation infrastructure, EV charging stations are integrated with solar 

energy, and the roads provided are very promising. Due to the falling cost and the 

continuous advancement of technology, it can provide greater power in the future of 

electric mobility. 

2.3. Battery Energy Storage 

In the push for sustainable energy solutions, this lays the foundation for the use of 

photovoltaic technology for solar power generation. In building a resilient, efficient and 

sustainable infrastructure, EV charging stations are integrated with a variety of 

renewable energy sources. In these integrations, hydrogen energy systems, battery 

storage, solar energy play a key role, opportunities and challenges are also brought by 

their integration, and its availability has a wide range of characteristics [53]. Different 

types of battery storage technology can be used by EV charging stations, each 

technology has different characteristics, and different operational needs can be required. 

Lithium-ion batteries have conventional characteristics, high efficiency and high 

energy density can be appreciated. Discharge cycles as well as fast charging can be 

included [54][55]. Technologies such as lead-acid batteries, which are known for their 

reliability and cost-effectiveness, are also included. Since capacity can be maintained 
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over a long period of time, energy storage can be expressed over a long period of time 

[56]. Figure 2-2 shows the battery price trend prediction [54]. 

 
Figure 2-2 Evolution of battery prices over the last 10 years and future predictions 

[54] 
An important role can be played in the process of energy load being balanced by EV 

charging stations. Excess energy can be generated by peak renewable energy production, 

and energy can be released during low renewable energy generation periods. For solar 

power stations, this capability plays an important role. At noon, the peak value can be 

reached by the energy of the solar power station, and this balance can be optimized by 

the battery management system, the stability of the grid will be enhanced, the reliability 

of the power supply of EVs can be ensured, and the fluctuation of renewable energy 

generation will not be considered [57]. If EV charging stations can be powered by 

renewable energy, operational efficiency can be ensured by providing energy on 

demand, service availability, and faster charging times can be promoted. The 

dependence of the grid on batteries can be reduced, especially during peak load periods, 

and the carbon footprint of the charging infrastructure can be reduced and operating 

costs reduced [58]. In addition, due to the continuous development of the Internet of 

Things and smart technologies, smart grid systems can be integrated by battery storage 

systems. Remote management as well as data analysis can be allowed through this 
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integration, and predictive maintenance can be optimized so that downtime can be 

prevented. In addition, the power quality management of charging stations can be 

supported by adjusting voltage and frequency to be stored by batteries, so that the power 

quality problems existing in the grid can be checked [59][60]. As the demand for 

renewable energy integration is on the rise, the role of battery storage can be highlighted. 

The life cycle of storage systems and energy density can be improved by innovation in 

battery technology. Higher safety and energy density can be promoted through 

emerging technologies such as solid-state batteries, and the feasibility of renewable 

energy applications can be improved [61][62]. 

2.4. Hydrogen Storage System 

In EV charging stations, hydrogen storage solutions offer sustainability and versatility, 

especially when integrated with renewable energy sources. Electrolysis is the main way 

to produce hydrogen, hydrogen and oxygen can be separated by water. Power can be 

provided by battery cars. [63] With EV charging stations as the main background, 

excess renewable energy can be generated by hydrogen storage through storage, and 

the balance between supply and demand can be achieved. If wind resources are 

insufficient, electricity can be converted by stored hydrogen, and a reliable energy 

supply can be provided by charging EVs. In addition, for fuel cell vehicles, hydrogen, 

a clean energy source, can become a substitute, and the energy diversification 

demonstrated by car charging stations can be realized [64][65]. EV charging 

infrastructure can be integrated with hydrogen systems. High-density energy storage 

can be achieved by hydrogen storage, especially in urban areas, where the resilience 

and flexibility of the grid is evident, and backup power options can be provided during 

outages. In addition, where needed, hydrogen can be transported, and alternatives to 

direct power plants can be achieved through the expansion of renewable energy 

coverage [66]. However, some challenges and technologies can be brought about by 

EV charging stations with integrated hydrogen storage systems. Finiteness is reflected 
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in the efficiency of electrolysis, larger energy can be shown in the storage and 

compression of hydrogen, and the overall efficiency of the system can be reduced [67]. 

Compared with traditional fossil fuels, hydrogen fuel has a relatively backward 

infrastructure, and large upfront investment can be reflected in equipment and new 

technologies [68]. In the process of hydrogen energy system adoption, safety issues 

play a very important role, and highly flammable hydrogen is the main feature, which 

plays an important role in accident prevention and safe storage. As safety standards 

continue to evolve, additional challenges may be provided by station operators, and the 

broadness of adoption can be hampered. [69] In addition, more mature methods of 

energy storage, such as batteries, are less costly than storage technologies. During 

technological progress, these costs have been reduced [70]. Hydrogen has the potential 

to decarbonize the transport sector, and EV charging infrastructure can be integrated 

[71]. Thanks to advances in technology, existing barriers can be overcome by 

continuous research and development, and the feasibility of hydrogen can be realized 

in the development of sustainable mobility solutions. 

2.5. Multi Energy System 

One of the goals of various countries regarding the energy system is to have a smart 

energy grid that can facilitate efficient and cost-effective EV charging among other 

power needs [72]. Smart grids are such that the associated energy supply systems 

comprise of large node networks as well as a variety of energy types at each node. The 

different sources of energy are then integrated [73]. A key aspect of a smart grid is that 

it allows for integration and higher penetration of RE. In this respect, there is a 

consensus that increased use of RE has several benefits. First, RE systems such as wind 

and solar power have been considered as vital in overcoming the high reliance in fossil 

fuels which have been associated with global warming. In other words, RE sources 

contribute towards sustainable energy and reduction in greenhouse gas emissions [74]. 
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Second, RE has the potential to reduces challenges such as transmission and distribution 

losses experienced in conventional power systems [75]. 

Despite the benefits associated with the use of RE systems they are characterized by 

one major disadvantage. Precisely, RE sources such as wind and solar power are 

intermittent in nature which leads to unreliability and may thus be ineffective for EV 

charging at certain times of the day [76]. As further explained by [77], the fluctuation 

in these energy sources possess the challenge of insufficient capacity of transmission 

lines. Specifically, RE systems are mainly decentralized, have low predictability, and 

introduce substantially high degree of volatility into energy grids. Considering such 

challenges, countries and cities relying on RE could thus be inclined to abandon these 

energy sources. One of the suggested solutions to addressing the unreliability issues of 

RE sources is the adoption of multi-energy systems. Such systems integrate hydrogen 

energy, photovoltaic energy and electric storage energy that enhance efficiency through 

the conversion, storage, and reuse of surplus electrical energy [78]. In detail, [79] 

elaborates that multi-energy systems which incorporate multiple energy sectors 

provides additional flexibility which helps in increase system flexibility and stability. 

Through multi-energy systems it becomes possible to achieve high overall energy 

efficiency by enhance the capacity to storage seasonal energy from different energy 

carriers. However, effective functioning of multi-energy systems requires effective 

design and operation of the grid-based system [79]. In this regard, the choice of energy 

storage system is an important consideration. Consequently, this section reviews the 

different energy storage systems that can be applied in a multi-energy system.  

In the process of establishing an efficient, resilient and sustainable infrastructure, EV 

charging stations can integrate renewable energy sources. In integrating hydrogen 

systems, battery storage, and solar energy, an important role will be played, and 

opportunities and major technological challenges will arise [80][81]. This option is 

attractive when it comes to charging EVs, and in conjunction with the battery storage 

system, the power process can be provided by the sun, even under cloudy conditions, 

thus improving the reliability of the charging capacity. Hydrogen tank as an energy 
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carrier, excess renewable energy can be stored by it. High-density energy can be 

provided for backup power and combustion battery vehicles, thus creating energy 

storage solutions with more multi-functional characteristics [82]. However, in the 

process of integrating these different energy sources, some technical challenges will be 

presented in having a cohesive charging infrastructure. Energy management is a major 

concern. The use, conversion and efficient storage of energy can be ensured through 

complex systems. In the process of balancing battery solutions, data monitoring and 

data analysis need to be employed [83]. This battery solution has a high hydrogen 

system cost, limited life cycle and high-capacity characteristics, and some obstacles 

exist in the optimization of the system, which is particularly obvious in terms of 

infrastructure compatibility, and the complex needs of renewable energy can be handled 

by the installation of EV charging stations. The physical space it contains includes large 

battery packs and electrolyzes for clear production, as well as the need for smart grid 

capabilities, energy supply and dynamic management [84]. In addition, some 

challenges exist in the interoperability of these systems. To enable the seamless 

operation of different power generation technologies and different storage. 

Standardized interfaces and protocols are required, and scalability is the main feature 

of these integrations. The increasing demand for charging stations and the growing 

demand for EVs can be accommodated [85]. In looking to the future, the performance 

and integration of renewable energy systems can be developed through the 

enhancement of EV charging stations. Energy management systems can be enhanced 

by advances in machine learning and artificial intelligence, and the integration of supply 

and demand can be achieved through efficient energy use [86]. Fast charging times and 

high energy densities can be provided through innovations in battery technology. Solid-

state batteries are included, and battery storage options at EV charging stations may be 

changed [87][88]. In addition, hydrogen has a high production efficiency, green 

electrolysis is driven by renewable energy, and costs can be reduced. In EV charging 

infrastructure, scalable energy storage solutions can be enhanced by hydrogen [89]. 
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2.6. Peer-to-Peer and Game Theory 

P2P energy trading embodies an innovation shift in the energy sector, allowing 

individuals or businesses to exchange electricity directly, often bypassing traditional 

energy suppliers. This innovative model harnesses cutting-edge technologies like 

blockchain and smart grids to facilitate these transactions. By enabling more efficient 

use of renewable resources, P2P energy trading not only reduces energy costs but also 

diminishes small business or individuals’ reliance on large utility companies. Moreover, 

it transforms consumers into 'prosumers'—both producers and consumers of energy—

fostering a more sustainable energy ecosystem. 

In Zhou's study [90], the dynamics of P2P energy sharing within smart 

communities are explored, particularly focusing on its impact on renewable energy 

adoption. The research categorizes various P2P systems, addresses the challenges they 

encounter, and examines how artificial intelligence and blockchain technologies could 

improve energy trading efficiency, highlighting significant economic and operational 

advantages [90]. The study emphasizes the importance of continued research to enhance 

the effectiveness of P2P systems in renewable energy markets, especially regarding 

their operation within community microgrids. A decentralized trading strategy based 

on game theory is introduced, considering the implications of distributed energy 

resource (DER) ownership [91]. While P2P trading offers economic benefits to 

participants, it can result in financial losses in areas with high photovoltaic system 

penetration, emphasizing the need for strategic DER management to optimize economic 

results in P2P energy markets [92]. Expanding on this, another study [93] uses fuzzy 

optimization to balance economic and environmental goals in energy trading, 

presenting a multi-period P2P model aimed at reducing both electricity costs and carbon 

emissions. Additionally, research utilizing a distributionally robust optimization 

technique incorporates a fuzzy set based on Wasserstein distance to address renewable 

energy prediction errors and proposes a day-ahead microgrid P2P transactive energy 

model using linear and convex programming methods to manage its nonlinear nature 
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[94]. A novel approach for optimizing P2P energy trading across multi-microgrid 

systems employs Nash bargaining theory and data-driven chance constraints, 

effectively managing uncertainties in renewable energy and load forecasting [95]. 

Finally, a comprehensive review in Journal [96] analyses 50 international P2P 

renewable energy trading projects, providing valuable insights into their scope, 

achievements, and future development prospects. 

Game theory, a mathematical method for examining strategic behaviour among rational 

agents, is effectively utilized in renewable energy markets such as P2P energy trading. 

In these markets, diverse participants including consumers, prosumers, and utility 

companies engage in complex interactions [97-99]. Thesis studies show game theory 

provides a powerful framework to analyse decision-making processes at independent 

charging stations, where each entity acts as a rational player aiming to optimize their 

outcomes. This approach models their responses to dynamic shifts in energy supply, 

demand, and pricing, helping to predict behaviours in a competitive environment. 

In the area of P2P energy trading, game theory is instrumental in optimizing energy 

distribution among participants. It aims to ensure that energy distribution is not only 

efficient and cost-effective but also equitable, considering the varied production 

capabilities and demands of different participants. One notable study [97] emphasizes 

the goal of achieving higher economic returns while maintaining balance among 

multiple agents. This research employs the finite improvement property and a variable-

step iterative convergence method to ensure that the model achieves efficient and 

precise convergence. The outcomes of this model's simulation highlight improved 

energy utilization and an increase in economic benefits, illustrating the practical value 

of applying game theory to real-world scenarios. Another innovative contribution to 

this field is presented in a study [98] that proposes a new transactive energy market 

model combining blockchain technology and game theory. This model introduces a 

Proof-of-Reserve consensus mechanism that enhances transaction efficiency and 

privacy between prosumers and consumers. By implementing game-theoretic principles, 

this model strives to maintain a sustainable balance between energy production and 
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consumption while safeguarding the privacy of economic agents [98]. Further 

expanding on the application of game theory in energy markets, another study [99] 

introduces a demand response program that leverages game theory. Targeting 

residential, commercial, and industrial sectors, this program integrates both incentive- 

and price-based demand response strategies. It assesses various pricing models, such as 

fixed pricing, time-of-use pricing, and real-time pricing, along with their combinations 

to optimize outcomes. This strategy aims to maximize utility profits, minimize 

consumer costs, and produce a more balanced load curve, demonstrating the 

multifaceted benefits of game theory in managing energy distribution more effectively. 

Study [100] addresses the issue of the underutilization of renewable energy by creating 

a bi-level energy optimization model utilizing game theory. Initially, a master-slave 

game model is set up between power suppliers and consumers to explore the bidding 

strategies between these two parties. Subsequently, a cooperative game model is 

employed to examine the distribution of energy demands among users interacting 

within the framework of the pricing strategies established in the first stage. The findings 

demonstrate that a game theory-based management model for renewable energy can 

significantly enhance its economic efficiency. In [101], it develops a bi-level 

optimization model using cooperative game theory to focus on ensuring the reliability 

of electricity market consumers. The results of the simulation analysis indicate that the 

cooperative game model effectively leverages bidirectional communication between 

the distribution system and its users. The model presents a dual-layer cooperative game 

approach that considers the reliability needs of electricity market consumers. Through 

this two-way interaction between users and distribution system utilities, the model 

offers various solutions to enhance the distribution system's reliability within the power 

system. 

In summary, the integration of game theory into P2P energy trading and broader energy 

market strategies underscores its potential to foster more sophisticated and beneficial 

interactions among energy market participants, ultimately contributing to more 

sustainable and efficient energy systems. 
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2.7. Demand Side Management 

Demand Side Management (DSM) is a critical component in the operation of smart grid 

systems, allowing end-users to take an active role in optimizing their electricity 

consumption [102][103]. DSM employs a variety of strategies designed to encourage 

consumers to use electricity more rationally and efficiently, thereby significantly 

improving the efficiency of terminal electricity usage. Moreover, DSM is essential for 

effective resource allocation by integrating the demand side into power market 

management. This integration helps prevent large-scale power outages that could arise 

from peak demand or the necessity for additional power generation infrastructure, 

ultimately leading to cost reductions within the smart grid system [104]. 

The inherent characteristics of electricity—its immediate consumption and difficulty in 

storage—necessitate that both supply and demand sides engage in rapid data exchange, 

make quick decisions, and adjust power consumption strategies in real-time. Achieving 

this level of responsiveness is challenging within traditional power grids. However, in 

smart grid systems, the incorporation of advanced technologies such as smart meters, 

smart homes, and cloud computing significantly enhances the capabilities of DSM, 

making it possible to achieve these rapid adjustments more effectively [105][106]. 

As the energy Internet continues to develop and expand, it enables the integration of 

multiple energy sources and more dynamic management practices. This evolution is 

transforming the operation of energy systems, promoting more sustainable and efficient 

energy consumption patterns that align with the broader shift towards comprehensive, 

interconnected energy networks. The emergence of these networks is not only 

enhancing the sustainability of energy systems but also paving the way for more 

resilient and adaptable energy management strategies that can better respond to the 

complexities of modern energy demands. 

Demand response (DR), a key aspect of DSM, involves electricity consumers actively 

adjusting their power usage in response to market signals or incentives provided by 

power suppliers [107]. This approach is a fundamental component of DSM, as it 
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significantly improves the efficiency of end-use electricity consumption, reduces 

resource wastage due to imbalances in power supply, and contributes to the overall 

stability of the electrical grid [108][109]. The rapid advancement of smart grid 

technologies, including the adoption of innovations such as smart homes and EVs, 

provides substantial technical support for the implementation of DR initiatives. These 

technologies facilitate more precise and real-time adjustments to energy usage, which 

are crucial for optimizing grid performance. 

Additionally, DR benefits consumers by reducing their electricity bills through the 

modification of traditional consumption patterns and the strategic shifting of electricity 

usage away from peak periods, thereby helping to prevent large-scale power outages 

[110]. As distributed energy resources continue to develop, the synergy between 

regional energy systems—encompassing various forms of energy generation and 

storage—and power grid systems has enabled DR to evolve from a conventional 

method to a more comprehensive strategy. This strategy now manages a diverse array 

of load types, including wind, solar, electrical, and storage, further enhancing the 

flexibility and resilience of energy systems. This evolution has made the integration of 

DR into power system dispatch strategies a standard practice, reflecting its growing 

importance in achieving a more resilient, sustainable, and efficient energy landscape 

[111][112]. 

Incorporating DR into energy management not only facilitates greater operational 

flexibility but also enhances the economic operation of power systems by optimizing 

the use of available resources. The increasing prevalence of renewable energy sources, 

with their inherent variability, underscores the necessity for sophisticated DR strategies 

to maintain grid stability and efficiency [107][112]. As renewable energy becomes a 

more dominant force in the energy mix, the role of DR in balancing supply and demand 

will become even more critical. This will require ongoing advancements in DR 

technologies and strategies to ensure that power systems can continue to operate 

reliably and economically in an increasingly complex energy environment. The 

integration of DR into smart grids thus represents a pivotal development in the pursuit 
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of a more sustainable and resilient energy future, where the efficient and flexible 

management of energy resources is key to meeting the demands of a modern, 

interconnected world. 

2.8. Integration Challenges 

Integrating renewable energy sources—such as PV systems, hydrogen storage, and 

battery technologies—into EVCSs presents a multifaceted set of technical, economic, 

and regulatory challenges [113]. For this infrastructure to achieve a stable, efficient, 

and sustainable operation, several critical issues require consideration. Solar energy, 

being inherently variable and contingent on weather patterns and diurnal cycles, 

presents reliability issues [114]. This intermittency poses a challenge to maintaining a 

stable power supply for EV charging, which necessitates a consistent energy source to 

ensure dependable operation. While hydrogen serves as a promising energy carrier for 

stabilising energy output, its production—frequently reliant on renewable electricity 

through electrolysis—can be compromised by the same intermittency issues that affect 

solar and wind power [115]. Battery storage can offer a degree of energy security, yet 

these systems face inherent limitations. Not only are large-scale batteries costly, but 

they also degrade over time, necessitating periodic replacement and incurring 

significant lifecycle costs [116]. In practice, the balance between the cost of these 

systems and the level of resilience they provide remains an ongoing dilemma. A high 

proportion of renewables can jeopardise grid stability, given the inherent variability in 

their output. EVCSs, therefore, must collaborate closely with grid operators to mitigate 

stability risks, potentially necessitating costly grid reinforcements to support the 

fluctuating inputs from renewable sources [117]. Establishing EVCSs powered by 

renewable energy necessitates a substantial upfront investment. Costs are incurred not 

only for PV panels and associated equipment but also for battery storage, hydrogen 

storage systems, and the integration of supportive infrastructure. Without governmental 

incentives or subsidies, the economic burden of these initial expenditures may hinder 
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widespread implementation [118]. Maintenance and system degradation also contribute 

to operational costs, particularly with storage solutions such as batteries, which 

experience performance decline over time. Without a financial model that 

accommodates these expenses, renewable-powered charging stations may struggle to 

achieve economic viability [118][119]. Integrating various renewable technologies—

such as PV systems, batteries, and hydrogen storage—into a single, cohesive EVCS 

infrastructure necessitates compatibility across diverse energy management and control 

technologies. This technical coordination is often challenging, requiring advanced 

interoperability and control systems to ensure efficiency and reliability. Efficiently 

managing the multiple energy sources involved demands sophisticated energy 

management systems capable of optimising energy storage, load distribution, and 

charging outputs. Developing or procuring these technologies adds operational 

complexity and, consequently, cost [120][121]. In another hand, consumer behaviour, 

particularly around peak and off-peak charging times, significantly impacts energy 

requirements [122]. High demand during peak times may strain a renewable-based 

system, requiring costly supplemental power or extensive storage to maintain an 

acceptable level of service reliability. 

Addressing these challenges is essential for the successful integration of renewable 

energy sources into EV charging infrastructure. Collaboration between technology 

providers, grid operators, regulatory bodies, and EV infrastructure developers will be 

critical to overcoming these hurdles and advancing the renewable-powered EV 

charging network. 

2.9. Model and Theoretical Background 

Constructing and operating a RE EVCS is a complex issue that requires extensive 

theoretical knowledge. The establishment and operation of a single EVCS can be 

considered a basic modelling problem. Integrating renewable energy sources such as 

solar or hydrogen into EVCS requires understanding the intermittent nature of these 
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energy outputs and managing them with storage solutions like batteries. Additionally, 

designing and constructing the physical infrastructure is critical. This includes selecting 

suitable chargers, energy storage systems, and necessary hardware to manage high 

power demands. Compliance with local and national regulations concerning energy, 

construction, and operation is also crucial, alongside adopting to environmental 

standards and safety regulations. Furthermore, investing in an EVCS requires a 

thorough financial viability assessment, involving cost analysis, pricing models, 

incentives, and an understanding of the economic impacts of fluctuating energy prices 

on operations. It is also important to predict and meet the demand patterns of EV users 

by analysing peak usage times, charging durations, and user behaviour analytics. 

However, when it involves two EVCSs, it is necessary to consider their cost and profit 

when they are having energy exchanges, which requires selecting appropriate 

computational methods to optimize results quickly and effectively. When multiple 

EVCSs operate together, P2P interactions and decision-making issues arise. As 

mentioned in the previous chapter, to ensure the minimization of costs and 

maximization of profits for multiple EVCSs, cooperative game theory is the preferred 

strategy, which can set the internal price that all gamers need to follow. After solving 

the technical or physical issues, the management of the power demand of the EVCSs 

and the charging intentions of EV drivers also need to be considered. Only by 

integrating these factors can multiple EVCSs operate efficiently. This chapter will 

introduce the basic theories and methods applied in the configuration and optimization 

of the model. 

2.9.1. Mathematic Model for Renewable Energy 

This model integrates photovoltaic, battery storage, hydrogen storage. The fundamental 

structure of the model is outlined as follows: 
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2.9.1.1. Photovoltaic model 

A photovoltaic power generation model is adopted [123] as follows: 

𝑃!" = 𝑃#$%𝐺&%
[()*($!,$")]

/#$%
        2.1 

Where: 𝑃!"  is photovoltaic cell output power; 𝐺&%  is light intensity; 𝑃#$%  is the 

maximum test power under standard test conditions (sunlight incident intensity of 

1000W/m2, ambient temperature of 25℃); 𝐺#$%  is the illumination intensity under 

standard test conditions, and its value is 1000W/m. K is the power temperature 

coefficient; 𝑇0 is the operating temperature of the panel; 𝑇1 is the reference temperature. 

2.9.1.2. Hydrogen system model 

Given the unpredictable and often cloudy weather in the UK, it becomes evident that 

relying solely on photovoltaic energy may not suffice to meet the demands of EVCS. 

Although there have been significant advancements in battery technology, the high 

costs associated with batteries remain a major obstacle to widespread adoption and 

scalability. Considering these challenges, hydrogen presents itself as a promising 

alternative within the realm of renewable energy options. Its flexibility and ease of 

transportation make it particularly suitable for urban environments [124]. Hydrogen 

energy storage is especially noteworthy for its high energy density, which not only 

boosts energy resilience but also helps balance the grid by providing a reliable, on-

demand energy source. This innovative approach is crucial for reducing greenhouse gas 

emissions, promoting cleaner transportation solutions, and paving the way for a more 

sustainable energy infrastructure in the future. Additionally, the potential for hydrogen 

to be generated through processes like electrolysis using surplus renewable energy 

further enhances its appeal. As the technology and infrastructure for hydrogen 

production and storage continue to evolve, it could play a pivotal role in addressing the 

limitations of other renewable energy sources and ensuring a consistent energy supply 

for various applications. 

The equivalent electric power of hydrogen produced by the electrolyze during the time 

interval t is: 
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𝑃2&,3
4 = 𝑃5624 𝛼562 					i ∈ N788        2.2 

The power generation of hydrogen fuel cell is as follows: 

𝑃269,34 = 𝑃2,;%4 𝛽569𝜂;% ,				i ∈ N788      2.3 

The equivalent SOC of hydrogen storage capacity of hydrogen storage tank in t interval 

is as follows: 

𝐸2&,3
4 = 𝐸2&,3

4,( − (𝑃2,;%,34 + 𝑃#2,34 + 𝑃2&,3
4 )Δ𝑡,				i ∈ N788     2.4 

Where: 𝑃5624  and 𝑃2,;%4  are the power consumption of electrolysis and fuel cell 

respectively; 𝛼562 and 𝛽569 are the conversion efficiency of electrolyser and fuel cell 

respectively; 𝜂;%  represent the FC efficiency; 𝐸2&,3
4,( , 𝑃#2,34  and Δ𝑡  are the residual 

hydrogen storage equivalent electricity in t-1 interval, and the equivalent power of 

hydrogen load and unit time interval respectively; N788 is the set of hydrogen system 

nodes. 

2.9.1.3. Battery storage system 

This study utilized the battery as the energy storage element. The battery is crucial in 

stabilizing power fluctuations and enhancing power quality in SHS-EV charging 

stations. The available battery capacity 𝑆<=4,=,4 is defined as [125]: 

𝑃<=4,>,4 = 𝑃<=4,>,4(51 − 𝜎<=4,>8 + (𝑃<=4,>,40?= ∗ 𝜂<=4,>0?= + 9()*,+,*
,-.

@()*,+
,-. )Δ𝑡     2.5 

Where 𝑃<=4,>,4 and 𝑃<=4,>,4( are the residual capacity of battery pack e in time t and t1, 

respectively; 𝜎<=4,> is the self discharge rate of battery group e; 𝑃<=4,=,40?= , 𝑃<=4,=,4A3B 	are the 

charging power and discharge power of battery pack e in time 𝑡 respectively, and the 

power during discharge is negative; 𝜂<=4,>0?= , 𝜂<=4,>A3B  are the charging efficiency and 

discharge efficiency of battery pack e in interval t respectively. 

2.9.2. Basic Concepts of Multi-Objective Optimization 

The aim of exploring multi-objective optimization problems is to optimize several 

competing objectives within given constraints to identify the best solution [126]. The 

three critical elements of multi-objective optimization problems include the objective 
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function, constraints, and decision variables. Generally, multi-objective optimization 

problems can be formulated as the following mathematical model: 

:
𝑚𝑖𝑛𝑓(𝑥) = (𝑓((𝑥), 𝑓6(𝑥), … , 𝑓C(𝑥))$

𝑔D(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑝
ℎ*(𝑥) ≤ 0, 𝑘 = 1,2, … , 𝑞

                 2.6 

Where 𝑥 = (𝑥(, 𝑥6, … , 𝑥E) 	∈ 𝑋 ⊂ 𝑅E  is n’s decision variable; m is the number of 

objective functions; 𝑔D(𝑥)  is the j’s inequality constraints; ℎ*(𝑥)  is k’s inequality 

constraints; p and q are the inequality and equality number.  

In multi-objective optimization, enhancing the performance of the target object 

according to one objective often leads to poorer performance according to another. This 

implies that in multi-objective optimization, there typically isn't a single optimal 

solution that excels across all objectives. Moreover, the optimal solution is not singular; 

rather, a set of optimal solutions, often referred to as Pareto optimal solutions or non-

dominated solutions, is usually obtained. 

The approaches to solving multi-objective optimization models are primarily 

categorized into indirect and direct solution methods. Indirect methods convert a multi-

objective problem into a single-objective problem for resolution, including techniques 

such as the constraint method and the linear weighted sum method. Direct methods, on 

the other hand, are based on Pareto optimization, primarily utilizing multi-objective 

heuristic algorithms. These heuristic algorithms are less restrictive in terms of model 

structure and can address large-scale and complex issues. 

2.9.2.1. Non-dominated Sorting Genetic Algorithm (NSGA-II) and 

Multi-objective Evolutionary Algorithm Based on Decomposition 

(MOEA-D) 

NSGA-II employs a ranking-based strategy to identify non-dominated solutions, which 

represent the best solutions in multi-objective optimization. It organizes individuals by 

their dominance relationships into different tiers, where those on the top tier are non-

dominated, meaning no other individual in the population performs better across all 
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objective functions. NSGA-II also utilizes a crowding distance measure to ensure 

diversity within the population [127,128]. Conversely, MOEA/D uses a decomposition 

approach that breaks down the multi-objective optimization problem into several 

single-objective subproblems. It tackles these subproblems concurrently and integrates 

their results to form the Pareto optimal front. Throughout the process, MOEA/D 

continually adjusts the weights given to each objective in the subproblems to enhance 

solution convergence and diversity [129]. 

MOEA/D generally converges faster and uses fewer computational resources than 

NSGA-II, making it ideal for handling large-scale optimization challenges. However, 

NSGA-II excels in maintaining diversity and is more effective in uncovering the global 

Pareto front in intricate scenarios [128]. Moreover, NSGA-II is broadly recognized and 

frequently used as a benchmark in multi-objective optimization across various fields. 

Both NSGA-II and MOEA/D have proven to be robust algorithms in multi-objective 

optimization, particularly in applications involving renewable energy. The choice 

between them should be guided by the specifics of the problem and the desired balance 

between computational efficiency and the quality of solutions [129]. This thesis will 

also determine the best algorithm based on the analysis of the Pareto front and Pareto 

optimal solutions. 

2.9.2.2. Game Theory 

In the cooperative game model, an alliance is defined as a subset S of the set of 

participants N. For a set of I participants,  2F − 1 distinct alliances can be established. 

Specifically, when S=N, it signifies that all participants are included in a complete 

cooperative game model. When the participants are divided into several non-

overlapping subsets, these groups are termed the alliance structure of the cooperative 

game. Each alliance structure itself represents a cooperative game model, which can be 

denoted as	𝑆% = M𝑆(,	𝑆6,…𝑆FN, these must satisfy the condition: 

⋃ 𝑆3 = 𝑁, 𝑆3 ∩ 𝑆D = ∅, ∀𝑖 ≠ 𝑗F
3G(             2.7 
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A fair and equitable distribution strategy is crucial for forming stable alliances among 

participants. Widely used allocation strategies include the Shapley value method and 

the nucleolus method, etc.  

Basic Shapley: 

𝑥(𝑖) = ∑ (|#|,()!(E,|#|)!
E!

[𝑣(𝑆) − 𝑣(𝑆\𝑖)#⊂K,3∈#     2.8 

Where n is the single participant in game, N is the set of participants; |𝑆|  is the 

participant in coalition S; v is the pay-out function, and 𝑣 ≠ 0. 

To distribute the internal interests of the portfolio, the Shapley value can be improved 

more reasonably to reasonably measure the contribution of each internal unit and ensure 

the fairness of the distribution strategy. The update model as follow: 

𝐷(𝑖) = (
E,(

∑ N(D),"(K\3)/∈{2\-}

N(3),"(3)
      2.9 

When 𝐷(𝑖) ≥ 1, it means that the non-cooperative actions of participant 𝑖	result in 

losses for other participants that are at least as great as those incurred by participant 𝑖 

themselves. Because of that, participant 𝑖  is highly likely to reject the proposed 

allocation strategy. Conversely, when 𝐷(𝑖) < 1, participant 𝑖 is inclined to agree to the 

allocation strategy, and the lower the value of 𝐷(𝑖), the greater participant 𝑖′𝑠 readiness 

to collaborate, leading to increased satisfaction with the allocation strategy. 

2.9.3. Social Welfare 

Welfare has always been a basic concern for society, and the relationship between 

individual needs and social interests constitutes the core concern of modern social 

welfare thought. "Social welfare" is the result of the public’s choice in the distribution 

of social benefits under specific institutional arrangements. It represents a collective or 

group interest [130]. “Utility” refers to the psychological satisfaction consumers obtain 

in the consumption process. Economics uses the two most basic concepts of welfare 

and utility to try to explain and illustrate the possible balance of interests between 

personal motivations and social choices. 
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2.9.3.1. Social welfare maximization model 

Chapter 6 is primarily exploring a model aimed at maximizing social welfare for EV 

drivers.  

In the society, electricity usage is categorized into three user types: household, 

commercial, and industrial. Let's assume there are 𝐷 EV drivers of a particular type 

within a country or region. Each driver 𝑑 ∈ 𝐷 = {1,2, … , 𝐷}, has their consumption 

over 24 hours segmented into K time interval, and each interval is denoted by 𝑘 ∈ 𝐾 =

{1,2, … , 𝐾}, 𝑥A* means driver 𝑑 at t-th interval’s electricity consumption, which range 

from 𝑥A* ∈ [𝑚A
P , 𝑀A

P], where 𝑚A
P ≥ 0 and 𝑀A

P ≥ 0,  and they are the minimum and 

maximum consumptions of driver 𝑔 at interval of k, respectively. 𝐺*  represents the 

production capacity of the SHS-EVCS in the k-th interval; 𝐶*(𝐺*) indicates the cost of 

producing  𝐺*units of electricity in that interval. The utility of the d-th driver consuming 

𝑥A* electricity is given by 𝑉A(𝑥A* , 𝜔A*), where 𝜔3* is the elasticity coefficient of the EV 

driver, varying across different EV drivers and times, allowing for tailored utility 

assessments. 

An innovative price-based real-time electricity pricing model [131, 132, 133] is 

proposed to maximize the difference between the EV driver's total utility and the 

electricity provider's (SHS-EVCS) cost and establish the following optimization 

problem: 

𝑚𝑎𝑥 ∑ (∑ 𝑉(5𝑥A* , 𝜔A*8 − 𝐶*(𝐺*)Q
AG( )P

*G(                       

𝑠. 𝑡. ∑ 𝑥A* ≤ 𝐺*A∈Q , 𝑘 = 1,2, … , 𝐾,        2.10 
𝑥A* ≥ 0, 𝑘 = 1,2, … , 𝐾. 

The objective function of the optimization problem (2.10) aims to maximize the total 

social welfare, with a constraint that the total charging amount for all EV drivers does 

not exceed the overall power generation capacity of the charging station. This 

optimization problem (2.10) explores strategies for maximizing social benefits given 

the existing power generation limits, which is referred to as the social welfare 
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maximization model. In this thesis, the total social welfare means both SHS-EVCSs 

and EV drivers’ welfare. 

2.9.3.2. Utility function model 

In this model, 𝑉(𝑥, 𝜔) is the utility function, 0 < 𝜔 ≤ 1 is the known parameter. 

For each EV driver, the function value of the utility function represents the driver’s 

satisfaction after using the purchased electricity. Each EV driver in the SHS-EVCS 

system is an independent individual, and power demand can be characterized by 

different parameters, such as different times of the day, climate conditions, 

electricity prices and other factors. Power demand also depends on the type of EV 

driver or vehicle type. For the same electricity price, different driver will have 

different reactions. Different utility functions can be used to describe the types of 

EV drivers, and different EV drivers can be distinguished by elastic coefficients 𝜔. 

Under the same conditions, the larger the value of 𝜔, the higher the user’s optimal 

electricity consumption. The elastic coefficient directly reflects the driver’s 

electricity consumption preference.  

This model can write as [134]:  

𝑉(𝑥, 𝜔) = :
𝜔𝑥 − R

6
𝑥6,					0 ≤ 𝑥 ≤ S

R
	

S&

6R
,																			𝑥 ≥ S

R

       2.1 

Where 𝛼  and  𝜔  are both constant numbers, 𝜔  is drivers’ willingness of electricity 

consumption, 𝑥 is the quantity of electricity that drivers’ need. 

2.9.4. Methodology 

This thesis provides detailed theoretical concepts and mathematical models for 

integrating renewable energy sources into EVCS. It discusses the models for solar 

energy, battery storage, and hydrogen storage systems, alongside optimization 

algorithms such as Particle Swarm Optimization (PSO), NSGA-II and MOEA-D. P2P 

energy trading strategy based on game theory and social welfare models are also 
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introduced to frame the interaction and economic aspects between multiple energy 

integrated CS planning and operation. 

Chapter 3 of the thesis presents a comprehensive framework for planning and operating 

a SHS-EVCS.  The SHS-EVCS is designed to serve urban smart city needs with 

capabilities for super-fast and off-grid charging. It integrates multiple energy sources—

solar, hydrogen, and batteries—to create a multi-energy system capable of efficient 

power generation and storage. Hydrogen storage system includes an electrolyser for 

hydrogen production, a fuel cell generator for power generation, and a hydrogen storage 

tank for long-term energy reserves. PV system captures solar energy and converts it 

into electricity, reducing reliance on traditional power grids. Battery storage system 

ensures energy is available for EV charging during peak demands or when solar power 

is insufficient. The SHS-EVCS utilizes PSO algorithm to minimize operational and 

investment costs while maintaining energy storage levels. Implements energy trading 

strategy and selling electricity, which leverages time-of-use pricing to optimize costs 

and enhance economic efficiency. Chapter 4 introduces an optimization framework for 

multiple SHS-EVCSs using NSGA-II and MOEA/D algorithms. The study evaluates 

energy trading between stations using a peer-to-peer model and game theory. 

Simulations for stations in London and Dali demonstrate the strategy's efficacy in 

balancing costs and environmental impact. Chapter 5 create A bi-level optimization 

model incorporating non-cooperative and cooperative game theories is developed to 

manage energy dispatch and maximize social welfare. The chapter includes models for 

real-time pricing and demand response, supported by Markov decision processes and 

Monte Carlo simulations to forecast EV charging patterns. This strategy optimizes 

social welfare while minimizing capital and operational costs. 

2.10. Research gap and questions 

Current discussions around EVCSs tend to focus on aspects like charging status, 

practical applications, and overall development potential. However, a notable research 
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gap exists in exploring EVCS facilities that combine multiple renewable energy sources, 

especially hybrid systems like solar-hydrogen-storage. Most studies so far have 

concentrated on microgrid technology, which integrates renewable energy sources, 

storage systems, and EV charging through advanced internet-based scheduling. While 

these studies are valuable, they largely aim to improve individual EV charging methods, 

manage capacity among various infrastructure components, and enhance control 

systems for operational efficiency. However, the literature often overlooks the 

complexities involved in integrating multiple energy sources—particularly in balancing 

the intermittent nature of renewables, storage demands, and power management in 

hybrid systems like solar-hydrogen-storage. The challenges of multi-source integration, 

such as ensuring grid stability, addressing renewable intermittency, and implementing 

sophisticated energy management systems, remain underexplored. Additionally, 

limited research examines the relationship between system reliability and user 

experience in multi-source EVCSs, particularly regarding how factors like charging 

time and costs affect consumer satisfaction and adoption rates. 

This thesis seeks to address the following three main research questions: 

1. How can an intricate model for EVCSs be established to facilitate direct energy 

exchange between stations, bypassing the traditional distribution network? 

2. What P2P optimal dispatch strategies, grounded in game theory, can be developed 

for SHS-EVCSs systems to enhance economic returns and achieve income balance 

across multiple SHS-EVCSs? 

3. How can a bi-level optimization model, integrating both non-cooperative and 

cooperative game theory, be constructed to minimise capital costs and maximise 

social welfare within a network of SHS-EVCSs? 

2.11. Chapter Summary 

This chapter provides a comprehensive review of the theoretical frameworks and 

modelling approaches about renewable energy sources into EVCS in smart urban 
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environments. It includes various renewable energy models, including photovoltaic, 

hydrogen, and battery energy systems, which for understanding the complexities and 

potential of renewable integration. This chapter also incorporates advanced analytical 

models such as game theory and social welfare models to address the operational and 

economic aspects of energy systems. Game theory models are employed to strategize 

the interactions and energy exchanges between multiple EVCS, ensuring that these 

interactions are optimized for cost efficiency and fairness. The social welfare model 

integrates economic and social considerations into the planning and operation of EVCS. 

This model focuses on maximizing societal benefits for both EV drivers and SHS-

EVCSs side. 
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Chapter 3. SHS-EV Charging Station Planning and 

Operation 

3.1 Introduction 

Currently, the global EV fleet is estimated at 7.5 million, predominantly consisting of 

small/light vehicles, though the number of medium and heavy commercial vehicles is 

rapidly expanding. China holds the largest proportion of EVs at 45%, while Europe is 

one of the fastest-growing markets, having seen a sales increase of 44% in 2019 [135]. 

EVs can be categorized based on their battery type into Battery Electric Vehicles (BEVs) 

and Fuel Cell Electric Vehicles (FCEVs). The primary distinction is that FCEVs operate 

without the need for external charging systems, whereas BEVs rely entirely on external 

power from the grid to charge their batteries [136]. The slow pace of growth in the 

global EV market is often linked to the high production costs. Nonetheless, projections 

suggest that the number of EVs in use worldwide will surpass 100 million by 2035, 

with production anticipated to reach 548 million by 2040 [135]. 

As EVs continue to gain popularity, various initiatives are being launched to expand 

the charging infrastructure. These efforts include developing a broader network of 

charging stations, categorized into residential and non-residential types. Charging 

stations are also differentiated into slow charging (level 1 and level 2) and fast charging 

stations (level 3 and DC). According to Xi et al. [137], level one charging stations utilize 

a standard wall outlet with a 110V/15A connection, typically taking 12 to 18 hours to 

fully charge a battery. Level two stations offer a higher capacity circuit, usually 220V, 

designed for quicker charging. Fast charging stations, which operate at 400 to 500V, 

can charge an EV battery in under an hour. In the UK, the number of fast charging 

stations has seen significant growth over time shows in figure 3-1 and table 3-1[138]. 
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Figure 3-1 Charging stations by type in the UK [138] 

Table 3-1 Power rating of four types of charging stations 
Type Slow Fast Rapid Ultra-rapid 

Power Rating (kW) 3–6 7–22 25–99 100 

 

This chapter introduces a novel design for a SHS-EVCS for future smart cities. The 

simulation of the SHS-EVCS encompasses several components: for hydrogen storage 

system, it has a hydrogen fuel cell generator, an electrolysis unit for hydrogen 

production and storage systems for hydrogen, a solar power facility for on-site energy 

capture and batteries to manage local energy equilibrium. This integrated approach not 

only enhances the efficiency of energy use but also ensures a steady supply of power 

even in fluctuating environmental conditions or grid outages, which means it has ability 

to supply the city when it faces to a power shortage. The main contribution of this 

chapter is to minimize operational costs, which include expenditures for hydrogen fuel 

and electricity.  

This chapter can be seeing as a foundational concept for the subsequent chapters.  A 

simple contribution to this chapter as follows: 
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l A novel SHS-EVCS with two primary features: super-fast and off-grid 

charging; a versatile multi-energy charging system that utilizes solar energy, 

hydrogen, and battery storage. 

l Explores the direct transfer of electric energy between SHS-EVCSs, 

bypassing the traditional distribution network, aiming to illuminate its 

feasibility, advantages, and challenges within this emerging framework. 

3.2 Multi Energy System Planning and Operation 

As showed in Figure 3-2, the SHS-EVCS design aims to address and capitalize on the 

increasing need for sustainable and efficient energy solutions in urban mobility. The 

SHS-EVCS, through its integrated system design and modelling, includes a hydrogen 

fuel cell generator designed for off-grid and high-density power generation. 

Additionally, it features a local solar power generation facility that captures and 

converts sunlight into usable energy, thereby reducing reliance on traditional power 

grids. A power-to-gas electrolysis unit is utilized for hydrogen production, sourcing 

energy from both the power grid and local solar installations, which further supplements 

the station’s energy reserves. The system is rounded out with hydrogen and battery 

storage facilities that are crucial for maintaining local energy balance and ensuring 

continuous operation, regardless of external power fluctuations. 

 
Figure 3-2: Prototype design of SHS-EVCS 
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The operational model of the SHS-EVCS is particularly innovative due to its ability to 

engage in energy trading. The station is equipped to buy and sell electricity from and to 

the power grid, which is incentivized by the daily variations in electricity prices. This 

capability not only enhances the economic viability of the station by tapping into 

arbitrage opportunities but also promotes a more dynamic interaction with the energy 

market. By aligning the charging station’s activity with periods of lower prices, it 

effectively reduces operational costs and contributes to grid stability during peak 

demand times. This strategic interaction with the market ensures that the station 

operates at peak efficiency, leveraging lower-cost energy for charging during off-peak 

hours and selling back energy during high demand periods. 

Moreover, the SHS-EVCS’s design reflects a significant shift towards sustainability in 

urban infrastructure. The dual use of hydrogen and solar energy not only minimizes the 

environmental footprint of the charging station but also serves as a model for future 

developments in RE integration within smart cities. The inclusion of advanced storage 

solutions further enhances the station’s resilience, allowing it to store excess energy 

produced during peak solar hours for use during less optimal conditions or at night. By 

implementing these innovative technologies, the SHS-EVCS not only meets the current 

demands of EV charging but also anticipates the growth and evolution of urban 

transportation networks, setting a precedent for future sustainable development projects. 

3.3 Model for SHS-EV Charging Station 

PV technology is essential for harnessing solar energy, a plentiful renewable resource 

in the world, despite its reputation for cloudy weather. Solar power contributes to 

reducing carbon footprints and aligns with the UK’s goal to achieve net-zero emissions 

by 2050 [19] [20]. The scalability of PV installations allows them to be adapted for 

residential, commercial, and large-scale utility purposes. 

Hydrogen storage systems represent a pivotal technology in the UK’s energy strategy, 

particularly for balancing intermittent energy supplies from renewables like solar and 



 42 

wind. Hydrogen can be produced through electrolysis (often powered by renewables), 

stored, transported, and used when needed without direct emissions, offering a clean 

alternative to fossil fuels.  

Battery storage systems are crucial for managing the variability and intermittency of 

renewable energy sources. By storing excess energy produced during peak production 

times, batteries enable a steady and reliable supply of electricity, even when solar or 

wind generation is low, and it helps to reduce the energy loss during the gas to power 

in hydrogen storage system. This technology enhances grid stability and can reduce the 

need for backup power from carbon-intensive sources.  

Combining these technologies—PV, hydrogen, and battery storage—enhances the 

flexibility and resilience of the UK’s energy system. It allows for higher penetration of 

renewable resources, reduces dependence on imported energy, and mitigates the 

impacts of fluctuating energy prices. Furthermore, the integrated approach supports 

sector coupling, where surplus renewable energy can be utilized across different sectors, 

such as heating and transportation, optimizing energy use and further reducing 

emissions. 

Hydrogen storage presents several risks due to hydrogen’s unique chemical and 

physical properties. These risks primarily revolve around flammability, leakage, 

storage requirements, and safety standards [63-71].  Hydrogen is highly flammable and 

can ignite at a wide range of concentrations (4% to 75% by volume in air). It has a low 

ignition energy, meaning it can be ignited by even small sparks, static electricity, or 

high temperatures [66]. When mixed with air in confined spaces, hydrogen can cause 

explosions if ignited, posing a significant safety risk, especially in populated areas or 

confined environments [64]. Hydrogen molecules are extremely small, allowing them 

to permeate through materials that are typically impermeable to other gases. This 

increases the likelihood of leaks from storage tanks, pipes, and connectors. Hydrogen 

gas is colourless, odourless, and tasteless, making leaks difficult to detect without 

specialized sensors. Hydrogen’s low density means that it disperses quickly, which is 
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beneficial outdoors, but in enclosed or poorly ventilated spaces, leaked hydrogen can 

accumulate and present a flammability risk.  

Overall, this integrated approach provides a viable pathway toward a sustainable, low-

carbon energy future. However, ensuring safety during installation and maintenance is 

essential, particularly for hydrogen and battery storage, which require continuous 

monitoring throughout these processes. 

3.3.1. Charging Station Data Collect and EV Prediction. 

The data utilized for the analysis of EV charging station location selection in this article 

is sourced from GOV.UK. This includes comprehensive datasets on EV usage and the 

existing infrastructure of petrol stations (the EV charging station location selection for 

this thesis), which provide critical insights into the current landscape and potential areas 

for development. By integrating these data sources, the article aims to present a well-

informed discussion on optimizing the placement of new charging stations to best serve 

the growing number of EV drivers in the region. Table 3-2 shows the total petrol 

stations in London [139], where the decided location for SHS-EVCS. The bold and 

Italic is the designed single SHS-EVCS location. 
Table 3-2 Total petrol stations [139] 

Borough 2017 2020 
Barking & Dagenham 16 18 
Barnet 28 22 
Bexley 17 16 
Brent 27 16 
Bromley 31 34 
Camden 7 7 
City of London 0 0 
Croydon 28 28 
Ealing 28 28 
Enfield 31 34 
Greenwich 23 23 
Hackney 8 8 
Hammersmith & Fulham 5 5 
Haringey 18 17 
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Harrow 15 10 
Havering 17 20 
Hillingdon 24 23 
Hounslow 25 24 
Islington 6 6 
Kensington & Chelsea 8 7 
Kingston upon Thames 10 11 
Lambeth 13 13 
Lewisham 19 16 
Merton 12 11 
Newham 13 14 
Redbridge 16 18 
Richmond upon Thames 15 14 
Southwark 18 17 
Sutton 12 11 
Tower Hamlets 11 10 
Waltham Forest 21 21 
Wandsworth 18 18 
Westminster 11 11 
Total Petrol Stations 551 531 

The calculation for the average daily flow is estimated by dividing the annual traffic 

estimate by the road length and the number of days in the year. 
Table 3-3 Motor vehicle flow by road class and region and country in Great Britain, 

2020 [140] 

Thousand vehicles per day Motorway Rural Urban 

North East 43.8 12.4 15.9 
North West 62.5 9.0 13.1 
Yorkshire and the Humber 58.5 9.7 14.1 
East Midlands 74.0 11.9 14.3 
West Midlands 62.5 10.0 15.5 
East of England 84.9 16.4 14.9 
London 89.2 29.7 21.6 
South East 71.6 14.7 14.7 
South West 59.5 9.5 14.4 
England 66.4 11.9 15.7 
Wales 53.0 6.6 13.4 
Scotland 36.2 3.7 10.9 
Great Britain 62.0 9.3 15.0 
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Figure 3-3 shows a traffic flow map of the United Kingdom, categorizing roads based 

on the volume of vehicles per day. Each colour on the map represents a different range 

of daily vehicle traffic: 

- Light Blue: Up to 5,000 vehicles; 

- Blue: 5,000 to 10,000 vehicles; 

- Green: 10,000 to 15,000 vehicles; 

- Light Yellow: 15,000 to 20,000 vehicles; 

- Yellow: 20,000 to 25,000 vehicles; 

- Orange: 25,000 to 30,000 vehicles; 

- Light Red: 30,000 to 35,000 vehicles; 

- Red: 35,000 to 40,000 vehicles; 

- Dark Red: 40,000 to 45,000 vehicles; 

- Maroon: Over 45,000 vehicles. 

From the colour distribution in London that black circle pointed, the major traffic 

volumes are between 20,000-45,000, sometimes over 45,000, compare to table 3-2, 

both give the clue for EV prediction in London. 
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Figure 3-3 Average daily flows on motorways and ‘A’ roads in Great Britain, 2021 

[141] 

3.3.2. SHS-EV Charging Station Model  

3.3.2.1. Objective Function 

Ø Single SHS-EVCS objective function 

The goal of the design is to reduce both the investment and operational costs of SHS-

EVCS. This goal can be broken down into three main parts: the initial construction 
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investment cost𝐶T, the selling and buying cost from grid 𝐶#, and the ongoing SHS-

EVCS operational cost 𝐶(. The initial investment includes the costs of building and 

equipping each distributed unit within the charging system, with the energy storage 

capacity influencing these expenses. 

𝑚𝑖𝑛𝐹 = 𝑚𝑖𝑛	(𝐶T + 𝐶# +∑ ∑ 𝐶(U
EG(

K
CG( [𝑚, 𝑛])     3.1 

Where N is the subsystem, Y is 24 hours. 𝐶# is the SHS-EVCSs is buying and selling 

the electricity to grid. 

As the SHS-EVCSs is buying and selling the electricity to grid, the profit of selling 

electricity model in this chapter is giving as follow: 

𝐶# = ∑ (𝐶V13A4 ∑ 𝑃/,34
KV13A
3G( + 𝐶#2# ∑ 𝑃#2#,D4K#5#

DG( )6W
4G(      3.2 

Where: 𝐶V13A4  and 𝐶#2 are the price of selling or purchasing electricity to the power grid 

and the price of hydrogen generated per unit of electricity consumed in t period 

respectively; 𝑃/,34  and 𝑃#2#,D4  are the electricity generated by the grid and SHS-EVCS in 

𝑡 perid. 

The investment cost model in this chapter is updated to follows:  

𝐶T = 𝐶T,9X + 𝐶T,<# + 𝐶T,2##       3.3 

𝐶T,9X =
𝑃9X(1 + 𝑟9X)Y9X

365	[(1 + 𝑟9X)Y9X − 1]
𝑐T,9X p𝑃9X,%&9,3

K67

3G(

𝐶T,<# =
𝑃<#(1 + 𝑟<#)Y<#

365	[(1 + 𝑟<#)Y<# − 1]
𝑐T,<#p𝑃<#,%&9,*

K(#

*G(

𝐶T,2## =
𝑃2##(1 + 𝑟2##)Y2##

365	[(1 + 𝑟2##)Y2## − 1]
𝑐T,2## p 𝑃2##,%&9,D

K5##

DG(

																																			3.4 

Where: y and r are the design life and discount rate of equipment respectively(y=25, 

r=6%); 𝐶T,9X, 𝐶T,<#, 𝐶T,2## are the unit capacity investment cost of PV, BS and HSS 

respectively; 𝑃9X,%&9,3 , 𝑃<#,%&9,* , 𝑃2##,%&9,D  are the installation capacity of PV and 

energy storage system (both BS and HSS) of the I, k, j node respectively; 𝑐T,9X, 𝑐T,<#, 

𝑐T,2##  are the average daily investment cost of PV, BS and HSS after discount 

respectively. 
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The SHS-EVCS O&M cost is: 

𝐶([𝑚, 𝑛] = 𝐶Z[[𝑚, 𝑛] + 𝐶;\>][𝑚, 𝑛]         3.5 

𝐶Z[[𝑚, 𝑛] and 𝐶;\>][𝑚, 𝑛] are the operating and maintenance cost, fuel cell cost. 

 

Ø Two SHS-EVCS energy exchange objective function 

The energy exchange objective function is similar to the single one, but it includes an 

additional energy exchange component in 𝐶(. 

𝐶([𝑚, 𝑛] = 𝐶Z[[𝑚, 𝑛] + 𝐶;\>][𝑚, 𝑛] + 𝐶V13A[𝑚, 𝑛] + 5𝑀^\Y( −𝑀B>]](8         3.6 

𝑀^\Y( and 𝑀B>]]( indicate the prices for purchasing and selling electricity to another 

EV charging station, with the values potentially being positive or negative. 

3.3.2.2. Photovoltaic Power Output Constraints 

Given the unpredictability and variability of solar energy, the photovoltaic power 

output is adjusted based on the forecasted power levels. 

𝑃9",*,4
_`1 , 0 ≤ 𝑃9",*,4 ≤ 𝑃9",*E        3.7 

where 𝑃9",*,4
_`1  and 𝑃9",*E  are the predicted power and rated power of the k photovoltaic 

cells at time t, respectively. 

3.3.2.3. Battery Storage Output Constraints 

The battery does not produce electric energy but acts as a backup to the remaining 

energy. There is no difference in coordination time, so there is no capacity increase. 

𝑆<=4,=,$ = 𝑆<=4,=,T         3.8 

Where 𝑆<=4,=,$ and 𝑆<=4,=,T are the ending capacity and initial capacity of the battery 

pack a in the coordination period. 

3.3.2.4. Hydrogen Storage System Output Constraints 

𝐸2&,3
C3E ≤ 𝐸2&,3

4 ≤ 𝐸2&,3,%&9 , 𝑖			 ∈ N788       3.9 
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Where 𝐸2&,3,%&9 , 𝐸2&,3
C3E  are the capacity and lower limit of hydrogen storage tank 

respectively, and the lower limit is 20% 

3.3.3. Minimize the Investment and Operational Costs of SHS-EVCS 

using Particle Swarm Optimization (PSO) Algorithm 

In this chapter, Particle Swarm Optimization (PSO) is chosen as it offers a practical and 

effective approach to tackling complex, multi-objective optimization problems—

particularly relevant for managing the dynamic operations of renewable-powered EV 

charging stations. PSO is well-suited to handle the nonlinear, intricate systems that 

characterize these stations, where variables like energy sources, demand fluctuations, 

and cost factors interact in real time [142]. Unlike some traditional optimization 

methods, PSO is also less computationally demanding, making it suitable for the real-

time applications needed in EV charging systems. Additionally, PSO is relatively 

straightforward to implement, especially when compared to more complex algorithms 

like genetic algorithms or simulated annealing, which makes it a convenient and 

efficient choice for this study. 

The decision matrix below compares PSO with other optimization methods commonly 

used for similar applications, including Genetic Algorithms (GA), Simulated Annealing 

(SA), and Linear Programming (LP). Each method is evaluated on criteria relevant to 

the thesis objectives, using a scoring scale from 1 to 5 (where 5 is the best). 
Criterion PSO GA SA LP 

Handling Nonlinear Complexity 5 4 3 2 

Convergence Speed 4 3 3 5 

Multi-Objective Capability 5 5 3 2 

Scalability and Flexibility 5 4 3 2 

Ease of Implementation 5 3 3 4 

Suitability for Real-Time Applications 4 3 2 2 

Computational Efficiency 4 3 3 5 

Total Score 32 25 20 22 
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With a total score of 32, PSO stands out, excelling across multiple important criteria. 

Its strengths include managing non-linear complexities and adapting well to real-time 

applications, making it an ideal choice for this thesis. While GA also support the 

optimization and offer flexibility, it tends to converge more slowly. SA and LP, 

meanwhile, are less suited for the complex, dynamic demands of renewable-powered 

EV charging systems. 

In the PSO algorithm, each particle’s state is characterized by its position and velocity 

vectors. These vectors indicate the particle’s current solution to the problem and its 

direction through the search space [142]. As the particle moves, it consistently updates 

its direction based on the best global solution found by any particle and the best solution 

it has personally achieved, aiming to locate the global optimum [143] [144]. The 

formulas to update the particle’s velocity and position are as follows: 

 𝑣3D4)( = 𝜔𝑣3D4 + 𝑐(𝑟(5𝑃 >B4	3D
4 − 𝑥3D4 8 + 𝑐6𝑟65𝑔^>B4	3D4 − 𝑥3D4 8       3.10 

𝑥3D4)( = 𝑥3D4 + 𝑣3D4)(            3.11 

Where: t is the number of iterations; ω is the inertia weight factor; 𝑐( and 𝑐6 are the 

accelerator factors, which have ability to adjust the proportion of individual cognitive 

and social components in the speed of particle swarm; r is random number in [0, 1]; 

𝑃 >B4	3D
4  is the best position of individual optimal value of particles; 𝑔^>B4	3D4  is the best 

position of global optimal value; v is the velocity of the particles, in general, the speed 

is control in [−𝑣C=N , 	𝑣C=N]; 𝑥3D4  is the position of particles in t iterations, and the 

searching zone is limit in [−𝑥C=N , 𝑥C=N]. 

The traditional PSO algorithm operates on the principle of adjusting individual 

behaviours based on the shared information within the group and personal experiences 

to ultimately arrive at the best solution [145,146]. To enhance the diversity of the initial 

population and the convergence rate of the algorithm, this chapter initially implements 

a competitive learning approach to boost the fitness of the initial population. 



 51 

Subsequently, it integrates an elite retention strategy to accelerate the convergence of 

the algorithm in its later phases. 

In the optimization process, the direction of optimization in traditional PSO is often 

influenced by the globally optimal state, which can restrict the diversity of the 

algorithm’s initial population and lead to premature convergence. To overcome these 

issues, the traditional PSO algorithm has been enhanced by integrating a competitive 

learning strategy, which improves the overall fitness of the algorithm’s particles 

compared to the conventional method. This competitive learning strategy operates 

differently from standard PSO algorithms, as it is not confined by the population’s 

optimal state. Instead, it uses competition among the populations to eliminate particles, 

thereby mitigating the influence of the global optimum on the optimization process 

[147]. However, competition among particles with significant performance disparities 

might be harmful for the transmission of optimal particles to subsequent generations. 

Therefore, the variance and standard deviation of the fitness levels in the initial 

population are computed to assess this risk. The formulas for calculating the mean and 

standard deviation are as follows: 

𝑓′ = ∑ _-8
-9:
[

         3.12 

𝜎 = r(
[
∑ ([
3G( 𝑓3 − 𝑓′)       3.13 

The fitness value of the i-th particle is represented by 𝑓3 , with 𝑀 denoting the total 

number of particles. The average fitness of the particles is denoted by 𝑓′ , and 𝜎 

represents the standard deviation of the particle fitness values. Subsequently, the 

particles are categorized into three distinct groups: the “optimal area”, “reasonable area” 

and “distance area” based on their characteristics. The competitive learning strategy is 

specifically applied to particles within the “reasonable area ” and “distance area” 

fostering competition within these groups. Particles that do not perform well in the 

“distance area” learn from those in the “reasonable area” updating their velocity and 

position data, which are then carried forward to the next generation. The formula for 

updating is as follows: 
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𝑥3D
(4)() = 𝑐(𝑥3D4 + 𝑐6(𝑥3D4 − 𝑥*D4 ) + 𝑐b𝛼(𝑓c − 𝑥3D4 )    3.14 

In this configuration: 𝑐(, 𝑐6, and 𝑐b are acceleration coefficients. From equation (3.13), 

𝑥3D
(4)() contains three components. The first component 𝑥3D4  is same as the standard PSO 

update formula. The second component, 𝑥*D4  indicates that particles in ‘distant area’ 

update their states by learning from those particles in “optimal area”. The third 

component introduces a new parameter, 𝛼  (where 𝛼  is a smaller positive number), 

indicate that the update process is also influenced by the central position of the particle, 

which helps to control the update extent and enhance the convergence of the algorithm. 

For particles in the “reasonable area”, an adaptive balance between global exploration 

and local exploitation is necessary, a new designed learning is made for these particles. 

The particle update formula in the “reasonable area” varies based on the situation: 

1) When the population is not caught in a local optimum, particles in the reasonable 

zone employ the traditional particle update methods (formulas 3.10 and 3.11) to evolve. 

This approach aims to gradually steer the population towards the global optimum and 

ensure the algorithm’s convergence. 

2) When the population is fall into a local optimum, and the fitness value of a particle’s 

current position is the same as the fitness value from the previous generation, indicating 

no improvement, which means 𝑓5𝑥3D4 8 − 𝑓5𝑥3D4,(8 = 0, the particles in the reasonable 

zone use formula (3.13) for updates, aiming to improve the search capabilities of the 

population, thereby increasing the chances of escaping the local optimum. 

In the PSO algorithm, “population diversity” and “selection pressure” are two 

significant factors to lead high selection pressure, which can often lead to slow 

convergence in the later stages of the algorithm [147]. This chapter rank the fitness of 

particles using the algorithm described above and compare it to the fitness function, 

retaining those particles with superior performance for the next generation. This 

strategy not only prevents the loss of the best individuals during the genetic operations 

but also directs the search trajectory of the algorithm, thus hastening convergence. 
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At the beginning of the algorithm, an optimal point 𝑥3E3 , 𝑦3E3 , 𝑧3E3 is first identified, and 

the fitness function is defined as𝑓(𝑥3E3 , 𝑦3E3 , 𝑧3E3): 

𝑓(𝑥3E3 , 𝑦3E3 , 𝑧3E3) =
(

;(N-;-,Y-;-,d-;-)
       3.15 

Where 𝐹(𝑥3E3 , 𝑦3E3 , 𝑧3E3) is the distance of particle to the optimal area. 

 
Figure 3-4 Flowchart of PSO algorithm 

3.4 Results and Analysis 

This thesis is using the assumption EV number to verify the total load for the SHS-

EVCS based on table 3-2, 3-3, and figure 3-3. 

This EV is taking place in London (Hammersmith & Fulham), and its complementary 

clean energy: hydrogen, photovoltaic and battery storage, as an example to analyse the 

above optimal model. The main characteristic parameters of the station are shown in 

Table 3-4. Taking 24 hours as the scheduling cycle, every 1 hour as a scheduling period, 

summer as the reference day. For the case study, a 24-hour scheduling period was 
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employed, with an hourly energy dispatch solution used on a summer reference day. 

The common parameters of the charging stations include: 

• Charging capacity (kW): 360. 

• PV capital cost (£/kW): 1112.  

• PV maintenance cost (£/kW): 0.01. 

• Battery capital cost (£/kW): 331.55. 

• Battery maintenance cost ((£/kW): 0.01. 

• Battery initial state of charge (%): 40. 

• Rated charge and discharge power of battery (kW): 500. 

• Minimum battery state of charge (%): 25. 

• Maximum battery state of charge (%): 100. 

• Battery charge and discharge efficiency (%): 85. 

• Initial capacity of gas tank (%): 30. 

• Hydrogen tank cost (£/kW): 27.63. 

• Hydrogen tank maintenance cost (£/kW): 0.01. 

• Tank storage efficiency (%): 95. 

• Fuel cell generator capacity (kW): 600. 

• Fuel cell generator capital cost (£/kW): 705.9. 

• Fuel cell generator maintenance cost ((£/kW): 0.15. 

• Electric to gas efficiency (%): 75. 

• Electricity-to-gas coefficient (kWh/m3): 0.2. 

• Gas-to-electric efficiency (%): 65. 

• Gas-to-electricity coefficient (m3/kWh): 0.295. 

Renewable energy feed-in tariff (£/kW): 0.019. 

Table 3-4 The parameters of SHS-EV charging stations. 
Parameter Hammersmith & 

Fulham 
Richmond upon Thames 

Number of chargers per 
station 

3 8 
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PV installed capacity 
(kW) 

500 1000 

Battery capacity (kW) 1000 800 
Hydrogen tank capacity 

(m3) 
1000 1000 

Fuel cell generator 
capacity (kW) 

800 1500 

 
The Feed-in Tariff (FIT) policy serves as the primary incentive for small-scale 

renewable energy generation projects in the UK [148]. Under this policy, power 

suppliers are required to compensate for electricity produced by small renewable energy 

installations and fed into the grid. The policy is applicable to solar photovoltaic, wind, 

hydropower, and anaerobic digestion power generation projects with an installed 

capacity of up to 5MW, as well as combined heat and power units with a capacity of no 

more than 2kW. The compensation for generated power is calculated based on the cost 

of solar photovoltaic generation, while the compensation for power sold is based on the 

grid-connected solar electricity price. 

3.4.1 Single SHS-EV Charging Station Simulation Results. 

A case study on the SHS-EV charging station was performed using EV charging data 

from Hammersmith & Fulham. The energy systems, including hydrogen, photovoltaic, 

and battery storage, were modelled according to the methodology described earlier. 

Table 3-4 details the primary technical and economic parameters of the SHS-EV 

charging station. The study covers a 24-hour period, utilizing hourly energy dispatch 

solutions, based on a representative summer day. 
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Figure 3-5 Case studies in London boroughs for SHS-EVCS 

Figure 3-5 shows the estimated EV charging demand profile (load curve) in the London 

boroughs in the SHBS-EVCS. Firstly, the SHS-EV charging load curve belongs to one 

SHBS-EVCS. It is assumed that there will be 5 SHBS-EVCS in Hammersmith & 

Fulham, based on the existing number of petrol stations in this London boroughs. For 

SHS-EVCS, Hammersmith & Fulham received the EV charging load with peak value 

of 1.0 MW. This requires 3 chargers in the charging stations to meet such peak charging 

load. This is calculated as 360kW charger is required to charge an EV with 60kWh 

batteries, therefore 3 chargers can charge 3 x 360kW to meet the peak charging load in 

Hammersmith & Fulham. 

 
Figure 3-6 Daily electricity price 
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Figure 3-7 Optimal energy dispatch solution 

When electricity prices drop to their lowest during the night, the cost of producing 

hydrogen from electricity is more economical than at other times. As illustrated in 

Figures 3-6 and 3-7, from 1 a.m. to 6 a.m., there is no photovoltaic energy production. 

During this window, 1000 kW of hydrogen is stored for future use in power generation. 

This hydrogen is then utilized between 9 a.m. and 1 p.m., and from 6 p.m. to 10 p.m., 

when electricity prices from the grid are at their peak. The integration of the hydrogen 

system allows the power grid to manage peak loads more cost-effectively, at a lower 

compensation rate than other energy sources. The charging station also produces and 

stores hydrogen to support peak load regulation, ensuring that the fuel cell generator 

can handle high EV charging demands when photovoltaic output is insufficient. 

Additionally, the SHS-EV charging station is programmed to sell electricity back to the 

grid during high-price periods, making it more cost-effective for the grid to purchase 

electricity from the station. This is reflected as negative grid output in Figure 3-7, 

corresponding to the high-price periods shown in Figure 3-6. 

During the hours from 6 a.m. to 6 p.m., photovoltaic energy is the primary source of 

power for the charging station. Outside of peak charging times, the hydrogen fuel cell 

generator, battery storage, and photovoltaic systems work in tandem to supply 

electricity for EV charging. During off-peak periods, hydrogen and battery storage are 
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being replenished, as indicated by their negative energy states. Between 6 p.m. and 11 

p.m., when photovoltaic energy is no longer available, energy is supplied from 

hydrogen storage, battery storage, and the grid. 

 
Figure 3-8 EV equivalent charging load curve 

Figure 3-8 shows the EV equivalent charging load for the SHS-EV charging station. 

This load is calculated by modifying a standard EV charging load to incorporate a fast-

charging model, which assumes that an EV can be fully charged within just 10 minutes. 

The resulting charging load curve reveals two distinct peaks: one occurring during the 

daytime from 9 a.m. to 1 p.m., and another in the evening between 6 p.m. and 10 p.m. 

These peaks reflect the periods when EVs are most charged, indicating concentrated 

charging activities during these hours. 

These two charging peaks are particularly significant as they coincide with the periods 

of highest electricity prices in UK. By comparing Figures 3-6 and 3-8, it becomes clear 

that the times of increased charging activity align closely with the peak electricity 

pricing periods. This alignment suggests a strong correlation between the charging 

behaviour of EV users and the fluctuations in electricity prices. 
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Figure 3-9 Optimal energy dispatch solution 

Figure 3-9 shows the behaviour of energy reserves in battery and hydrogen storage 

systems during periods of varying electricity prices. Notably, during times of high 

electricity prices, such as between 8 p.m. and 10 p.m., the reserve levels in both systems 

drop significantly. Specifically, battery storage capacity falls below 30%, while 

hydrogen storage dips to less than 20%. This reduction indicates that during peak 

pricing periods, these stored energy reserves are heavily utilized to meet the demand, 

likely as a strategy to avoid purchasing expensive grid electricity. Conversely, during 

the period from 11 a.m. to 1 p.m., electricity is predominantly supplied by photovoltaic 

energy. This reliance on solar power reduces the consumption of stored hydrogen and 

battery energy, allowing these reserves to remain relatively stable. Additionally, during 

periods of low electricity prices, such as from 1 a.m. to 8 a.m., coupled with reduced 

EV charging demand at night, both hydrogen and battery storage systems are recharged, 

approaching their maximum capacity. 

On economic side, operating the SHS-EV charging station for a single day would 

typically cost £4195.88 if all the electricity were sourced directly from the power grid. 

However, by incorporating SHS energy sources, the operational cost is significantly 

reduced to £1313.32, resulting in a substantial daily savings of £1882.56. This reduction 
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highlights the financial benefits of integrating sustainable energy solutions into the 

charging station’s operations. For instance, charging an EV like a Tesla Model 3 for a 

10-minute session costs £6.39, making it an affordable option for users while still 

ensuring the station remains profitable. 

To meet the peak charging demand, the station requires up to three chargers operating 

simultaneously. During the four-hour peak period each day, the station can charge up 

to 120 vehicles, demonstrating its capacity to handle high demand efficiently. Outside 

of these peak hours, the station can still service an average of 8 cars per hour, ensuring 

continuous operation and revenue generation throughout the day. This steady flow of 

customers enables the station to generate a daily revenue of £1789.2, which, after 

accounting for operational costs, translates to a net profit of £475.88 per day. 

The initial capital investment for setting up the SHS-EV charging station is calculated 

at £534,835. Given the daily profit margins, it is projected that the station will be able 

to recoup its total investment within three years. After this break-even point, the station 

will start generating a consistent profit, making it a financially viable and sustainable 

in the long term. 

3.4.2 2 SHS-EV Charging Stations Simulation Results. 

Figure 3-10 depicts the design of energy systems for two SHS-EVCSs.  The SHS-

EVCSs can both purchase and sell electricity from the grid, with these transactions 

influenced by fluctuations in daily electricity prices. The concept of energy exchange 

between EVCSs improves energy resource utilization. By sharing and distributing 

power among stations, it helps to lower the overall demand for grid electricity during 

peak periods. This system not only reduces electricity costs for station operators and 

users by allowing access to more affordable energy from neighboring stations or 

renewable sources, but it also supports the adoption of renewable energy by facilitating 

the sharing of excess energy. Furthermore, energy exchange enhances the resilience 
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and reliability of the energy grid, ensuring that charging stations can continue operating 

even during outages or disruptions. 

 

Figure 3-10 Energy system design for SHS-EVCSs with power exchange using EVs 
Figure 3-11 illustrates the anticipated EV charging demand profiles (load curves) for 

the SHS EVCSs in two London boroughs. Each load curve represents the demand at a 

specific SHS-EVCS within these areas. Based on current infrastructure, it is estimated 

that Hammersmith & Fulham will host 5 SHS-EVCSs, while Richmond upon Thames 

will have 14, reflecting the existing number of petrol stations in these regions. 

Richmond shows the highest EV charging demand among the two boroughs, with peak 

loads reaching up to 2.8 MW. To effectively handle this peak demand, 8 chargers are 

required at these stations. This calculation assumes each charger has a capacity of 360 

kW, which is sufficient to charge an EV equipped with a 60 kWh battery in a reasonable 

time frame. 

 
Figure 3-11Case studies in two London boroughs for SHS-EVCSs 
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In contrast, the SHS-EVCSs in Hammersmith & Fulham experience a significantly 

lower peak charging load, which remains under 1000 kW. Due to this lower demand, 

only 3 chargers with a capacity of 360 kW each are necessary to meet the charging 

needs at these stations. This difference in infrastructure requirements between the two 

boroughs highlights the variability in charging demand based on regional factors such 

as population density, vehicle ownership rates, and existing energy infrastructure. 

 
Figure 3-12 Hammersmith &Fulham optimal energy dispatch 

Figure 3-12 shows that solar energy is the primary source of power for the charging 

station between the crucial daylight hours of 7 a.m. and 7 p.m., with the station's solar 

panels capable of generating a maximum output capacity reaching up to 500 kW. This 

substantial reliance on solar energy during these hours is essential for meeting the 

charging demands of EVs, particularly as the demand for clean energy continues to rise. 

The availability of solar power during these peak sunlight hours not only ensures a 

renewable and environmentally friendly energy supply but also reduces the station's 

dependency on fossil fuels, thereby contributing to lower carbon emissions. The solar 

energy harnessed during this period plays a vital role in ensuring that EVs can be 

charged efficiently, meeting the increasing demands as more vehicles transition from 

traditional fuels to electric power. To further enhance energy reliability, the station 
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employs both hydrogen and electric energy storage systems, which operate in tandem. 

These systems are designed to store excess energy during periods of high solar output 

and release it during periods of low solar generation, ensuring that the station can 

consistently meet energy needs throughout the day and avoid interruptions in service. 

Moreover, during periods when electricity prices peak, particularly from 10:00 a.m. to 

3:00 p.m., the charging station strategically engages with the power grid to supplement 

its energy supply. This approach ensures that the station can meet high demand even 

when solar power generation may not be sufficient. However, the reliance on the grid 

during these peak times can be financially burdensome due to the higher cost of 

electricity during these hours. To mitigate these expenses, the charging station adopts 

a time-of-use pricing strategy, which is an effective cost management technique. By 

purchasing electricity during off-peak hours—typically in the evening or at night when 

prices are significantly lower—the station can store this cheaper energy in its advanced 

storage systems for later use during peak demand periods. This management of energy 

sources not only helps in reducing operational costs but also stabilizes the energy supply, 

ensuring that the station can deliver a reliable and uninterrupted charging service. 

Overall, by carefully managing and integrating diverse energy sources, leveraging 

advanced storage solutions, and utilizing dynamic pricing strategies, the charging 

station can ensure a sustainable, reliable, and cost-effective energy supply, positioning 

itself as a key player in the transition to a greener transportation infrastructure. 
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Figure 3-13 Energy exchange between two SHS-EVCSs 

Figure 3-13 offers a detailed depiction of the power transfer between two charging 

stations over specific time periods, with a maximum transfer capacity of 50 kW. This 

energy exchange, though seemingly straightforward, plays a crucial role in the efficient 

operation of these charging stations. To thoroughly understand and optimize this 

exchange, a PSO algorithm is employed. This algorithm is a powerful tool for analyzing 

complex systems, and in this context, it helps in achieving the lowest possible 

operational costs by determining the most efficient patterns of energy transfer between 

the stations. The results, as shown in Figure 3-6, provide an intriguing insight. When 

an autonomous energy generation system is integrated into the charging stations and 

these stations are connected to the grid, the power exchange between them becomes 

nearly insignificant. This finding is particularly interesting because it suggests that, 

under these conditions, the energy generated and stored by each station is largely 

sufficient to meet its own needs, thereby reducing the need for inter-station energy 

transfers. This minimal power exchange indicates that such exchanges have a negligible 

effect on reducing the overall costs of operating the stations. In other words, the stations 

can operate more independently, relying on their own generated energy rather than 

needing to balance energy levels between each other. 
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Table 3-5 SHS-EVCSs minimum investment and operation cost 
Cost Hammersmith & 

Fulham 

Richmond 

upon Thames 

Capital cost for initial years (£) 𝐶CT  1,338,720 1,828,410 

Discounted capital cost (£) C0 181,889.15 248,422.33 

Grid electricity purchase per day (£) 575.09 1994.36 

Power exchange per day (£) 77.12 30.25 

Maintenance and operating cost per day (£) 205.65 232.79 

Minimum daily cost (£) minF 1273.32 2887.81 

 
Table 3-6 SHS-EVCS cost only buy electricity from grid 

Cost Hammersmith & Fulham Richmond upon Thames 

Daily cost (£) 4,195.88 11,225.81 

Table 3-5 presents a detailed analysis of the economic dimensions associated with two 

SHS-EVCSs, focusing on both their initial investment and ongoing operational costs. 

One of the most striking aspects highlighted in Table 3-5 is the cost efficiency of SHS-

EVCSs over their operational lifespan. Assuming a lifespan of 10 years, and accounting 

for daily maintenance and the periodic replacement of components every decade, the 

daily cost of operating an SHS-EVCS is remarkably low—only £4,163.13.  Table 3-6, 

the contrast becomes even more pronounced. The daily operational costs for the two 

charging stations listed there are three times higher than those of the SHS-EVCS. This 

significant difference underscores the financial advantages of SHS-EVCSs, particularly 

in terms of ongoing expenses. From an economic perspective, the lower daily costs 

associated with SHS-EVCSs suggest that they offer a more financially sustainable 

model for long-term operation, especially in scenarios where cost minimization is a 

priority. 

Moreover, the ability to optimize energy utilization through the energy exchange 

between SHS-EVCSs further enhances their cost-effectiveness. This energy conversion 

process not only improves efficiency but also reduces the operational costs associated 

with running these stations. By facilitating a more balanced distribution of energy, these 

systems can operate more efficiently, thereby lowering the overall cost burden on 
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operators. However, it is important to recognize that the integration of SHS-EVCSs 

with the larger power grid requires certain adjustments. These adjustments could 

involve additional infrastructure investments, regulatory considerations, and potential 

changes to grid management practices. While these modifications may introduce 

additional costs, they also offer the potential for greater energy efficiency and reliability, 

particularly in areas with fluctuating energy demands. 

From an economic standpoint, the decision to invest in and maintain SHS-EVCSs must 

be informed by a careful analysis of both the costs and benefits. On one hand, the lower 

operational costs and improved energy efficiency of SHS-EVCSs make them an 

attractive option for supporting the transition to sustainable transportation. On the other 

hand, the costs associated with integrating these systems into the broader power grid 

must be weighed against the potential long-term savings and environmental benefits. 

In conclusion, Tables 3-5 and 3-6 offers valuable insights into the financial dynamics 

at play, and these insights should guide both policymakers and investors in their efforts 

to create a more sustainable and economically viable energy infrastructure. 

3.5 Chapter Summary 

In this chapter, the isolated microgrid SHS-EVCS with photovoltaic power, battery 

storage, and a hydrogen storage system including a fuel cell generator, an electrolyze, 

and a hydrogen storage tank has been investigated in this chapter, proposing the method 

based on the isolated microgrid energy management with a minimum cost and stable 

energy storage state. While learning cost reduction of the energy storage system, they 

use a minimum algorithm of the energy storage system to maintain the energy storage 

state.  Achieve an optimal control of the system cost, and energy storage level. The 

proposed energy management verified in terms of cost and other indicators is put into 

operation by MATLAB in this chapter. The results prove that compared to the 

traditional one, this SHS-EVCS greatly reduces the cost. Energy storage always 
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guarantees itself at the expected level so that its utilization is high, thus increasing the 

system reliability. 

This chapter also focuses on the economic assessment of power exchange between two 

SHS-EVCSs, with each charging station's power distribution involving a variety of 

energy production, conversion, and storage equipment. A thorough economic analysis 

is conducted, factoring in the electrical load demands of charging stations in 

Hammersmith & Fulham and Richmond upon Thames during different time frames, as 

well as the energy interactions between the two stations. Additionally, the study 

examines how to optimize the system's operation when connected to the grid for 

electricity sales. In the coordinated planning process, accounting for the interactions 

among charging stations and power lines can improve the efficiency of distributed 

generation use while reducing the necessity for additional grid investments. Within 

SHS-EVCS coordinated planning, the charging stations can interact flexibly with other 

smart devices, leading to more efficient equipment use and increased economic benefits 

overall.  
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Chapter 4. Multi SHS-EV Charging Station Energy 

Exchange 

4.1. Introduction. 

Energy exchange, often called point-to-point power transmission, offers several 

advantages compared to conventional distribution network approaches. There are two 

main approaches to direct energy exchange: the first involves transmitting electricity 

via high-voltage lines from one location to another, and the second uses EVs as part of 

a Vehicular Energy Network for energy transfer [149]. The high-voltage transmission 

method is particularly effective for long-distance energy transfer, reducing losses and 

improving efficiency. On the other hand, utilizing EVs for energy exchange not only 

supports grid stability but also promotes the integration of renewable energy sources by 

enabling flexible energy storage and distribution across different regions. The first 

method leverages high-voltage transmission lines that incur lower resistive losses than 

distribution networks, allowing for efficient power transmission over greater distances 

with fewer losses [150][151]. In contrast, traditional distribution networks involve 

multiple transformers and lines that lead to higher energy losses. The second method, 

using EVs for direct energy exchange, offers enhanced routing flexibility [152]. It 

permits direct electricity transfer from specific sources to destinations without 

dependence on intermediary distribution systems, which is vital for large-scale power 

transactions across distant locations. However, relying on distribution networks 

exposes energy transfers to potential network faults, outages, and capacity constraints. 

Although establishing a direct energy exchange infrastructure demands initial 

investment, it often proves more cost-effective over time by minimizing transmission 

losses and enhancing overall efficiency. This can lead to significant cost savings as 

opposed to relying on distribution networks, which may require continuous 

maintenance and upgrades. 
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This chapter for London part is focuses on the use of EVs for direct energy exchange, 

given its relevance to the research's multi-objective functions. For Dali part, it uses high 

voltage transmission line. It is important to note that both direct energy exchange and 

traditional methods have their respective advantages and can be utilized under different 

circumstances. The selection of the most appropriate method depends on various factors 

including geographical limitations, the scale of the energy transactions, existing 

infrastructure, and specific power system needs. These considerations are crucial in 

determining the most efficient and reliable method for power transmission. 

The ongoing discussion of the EVCS is mainly held with various aspects, ranging from 

the present status of charging applications and future development prospects. Less 

discussion is available regarding the exploration of facility CS that integrate several 

types of multi-energy, including solar-hydrogen storage systems. The current research 

[153-155] in this field is based on microgrid technology comprising renewable energy 

sources, energy storage systems, and EV charging through scheduling over the internet. 

These studies centre on the objective for improving individual EV charging techniques 

that provide an optimum allocation of capacity among the various constituents of the 

charging system and optimization of the control systems. The focus is on the 

improvement in the economic operation of the system. This will include focusing 

research efforts on raising the utilization rate of renewable energy (particularly 

photovoltaics), and the design of the EV charging modes, based on the charging system 

scheduling within individual EVCS. This chapter conducts a detailed investigation into 

EVCSs with a focus on several key areas, making notable contributions as follows: 

London section: 

• This section introduced a comprehensive model for EVCSs and conducted a 

comparative analysis of simulation optimization methods. It thoroughly examines 

and compares two distinct algorithms: the Non-dominated Sorting Genetic 

Algorithm (NSGA-II) and the Multi-objective Evolutionary Algorithm Based on 

Decomposition (MOEA-D). 
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• A further critical aspect of the research focuses on minimizing capital and 

operational & maintenance (O&M) costs, along with costs associated with 

greenhouse gas emissions. Aim to achieve an optimal balance between cost 

reduction and environmental preservation by employing a holistic optimization 

strategy. 

Dali (China) section: 

• This section introduces a P2P optimal dispatch strategy based on game theory for 

SHS-EVCSs, designed to maximize economic returns by ensuring income balance 

across multiple SHS-EVCSs. 

• Designed and addresses linear-based simulation queries using a CPLEX solver, 

primarily used for locational analysis. This solver has been integrated with an SHS-

EVCHs model to enhance its practical application. 

• Analyse the synergistic interactions and operational dynamics among various 

stakeholders, focusing on understanding the collective economic advantages. Also 

analyse the methods that rely on SHS-EVSC to facilitate energy sharing and 

optimize economic dispatch. 

This chapter is organized as follows: Section 4.2 focuses on the London area, which 

includes an analysis of two SHS-EVCS topologies, the NSGA-II and MOEA-D 

algorithms, and the corresponding simulation results. Section 4.3 covers the Dali (China) 

area, featuring four SHS-EVCS simulations, a game theory-based P2P energy trading 

model, and an economic analysis. 

4.2. Two SHS-EV Charging Station Power Exchange in London 

4.2.1. 2 SHS-EV Charging Station Location Chosen and Topology. 

Figure 4-1 shows two SHS-EVCSs that harness solar energy, hydrogen storage, and 

battery storage as their primary power sources. These stations are engineered to reduce 

carbon emissions while lowering both capital and operational expenses. The solar 

component features photovoltaic panels that convert sunlight into electricity, which can 
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be used immediately to charge EVs or stored in batteries for later use. The hydrogen 

storage system includes an electrolyze that splits water into hydrogen and oxygen, with 

the hydrogen stored in high-pressure tanks until required. This stored hydrogen is then 

used in a fuel cell, where it combines with oxygen to generate electricity for vehicle 

charging. Additionally, the station is equipped with a lithium-ion battery storage system 

to store surplus electricity produced by the solar panels or fuel cells. This stored energy 

is especially useful for charging vehicles when solar or hydrogen energy is unavailable. 

The SHS-EVCS is designed to maximize the utilization of renewable energy, 

significantly reducing dependence on fossil fuels and contributing to the reduction of 

carbon footprints and the fight against climate change. The inclusion of battery storage 

ensures reliable EV charging, even when renewable energy sources are intermittent. 

This hybrid approach also enhances the SHS-EVCSs' overall resilience, enabling it to 

better manage fluctuations in energy supply and demand. Consequently, these SHS-

EVCSs represent a significant advancement in sustainable transportation infrastructure, 

offering a scalable solution for future urban development. 

 
Figure 4-1 Energy exchange between two SHS-EVCSs 
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Figure 4-2 Hammersmith & Fulham and Richmond upon Thames Geographic 

location [156] 
The placement and capacity of EVCSs are pivotal decisions that require a thorough 

understanding of local EV adoption trends, the existing infrastructure's capabilities, and 

EV drivers’ preferences. These factors are essential to ensure the network balances 

accessibility, convenience, and scalability effectively, supporting the rapidly expanding 

EV market [157]. Figure 4-1 illustrates that when two SHS-EVCSs are linked to the 

grid, they possess the capability to exchange power between them. This functionality is 

particularly beneficial when one station has surplus energy while another faces high 

demand; the station with excess power can transfer energy to the other, optimizing the 

use of renewable resources and reducing reliance on fossil fuels. 

Moreover, this power-sharing capability reflects a grid-interactive approach that 

enhances the overall energy efficiency of the network. Figure 4-2 provides a visual 

representation of the geographic layout of these two stations, offering crucial insights 

into their spatial relationship. This visual tool aids in understanding how these stations 

are positioned relative to one another and the broader grid. 

To further enhance the accessibility and convenience of the charging infrastructure, 

strategic planning has led to the establishment of a direct connection between the two 

nearest charging stations. This connection not only facilitates efficient energy transfer 

but also improves the resilience and reliability of the charging network. By linking these 

stations, the aim is to boost the overall effectiveness and EV drivers’ experience of the 
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charging infrastructure, making it more adaptable to the needs of EV drivers and 

contributing positively to the sustainability of urban transportation systems. 

4.2.2. Problem Formulation. 

Although the SHS-EVCS is connected to the grid, it prioritizes maintaining self-

sufficiency in its power supply. The primary aim is to rely on the energy generated 

internally by the EVCS to meet its daily load requirements. If the internal energy 

production falls short, the system may consider purchasing electricity from the grid or 

another EVCS to cover the deficit. The main objective of the SHS-EVCS design is to 

minimize both capital and operational costs. This optimization objective includes two 

key components: the initial capital cost 𝐶T which covers the construction and 

procurement of each distributed unit within the system, including the size of the 

energy storage device, and the subsequent O&M costs 𝐶(, which relate to the 

operation and maintenance of each system component, such as fuel cell expenses and 

transaction costs between the system and the grid or between two charging stations. 

The system aims to find the optimal size for the energy storage device through this 

optimization process. O&M costs are managed by allowing energy storage and other 

distributed units to function as controllable loads during scheduling, while adhering to 

operational constraints. Additionally, the second objective function addresses 

environmental protection by analysing the greenhouse gas emission costs associated 

with each unit. A comprehensive benefit optimization model is developed to balance 

environmental impacts with overall benefits [158][159]. This model seeks to optimize 

both capital and O&M costs while effectively managing emission reduction targets for 

the SHS-EVCS. Even though the SHS-EVCS is grid-connected, the emphasis remains 

on ensuring that the EVCS can independently meet its energy demands. Should the 

internal energy generation prove insufficient, the system will consider drawing power 

from the grid or other EVCSs to maintain operations. 

In summary, the problem formulation emphasizes minimizing costs and emissions 

while maintaining self-sufficiency in energy generation for EVCS. The optimization 
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model addresses economic and environmental objectives, ensuring an efficient and 

sustainable energy management system. 

4.2.3.1. Objective Function 

𝑚𝑖𝑛𝐹 = 𝑚𝑖𝑛	(𝐶T + ∑ ∑ 𝐶($
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$
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4G(

K
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where N is the number of subsystems, which is 2; T is the time period, which is 24 

hours; 𝐶CT  is the initial capital cost in the m subsystem; 𝑗 is the greenhouse gases in class 

𝑗 (including CO6, SO6, and	NOg); J is the number of greenhouse gases, which is 3; 𝜁D is 

the disposal cost for class 𝑗 greenhouse gases (GBP/kW); 𝛿D and 𝛾D are the coefficients 

for class 𝑗 greenhouse gases for the SHS system and grid (GBP/kW); 𝑃C4 and 𝑄C4 are 

the power outputs (kW) of the SHS system and grid at time t; 𝐶Z[[𝑚, 𝑛], 𝐶;\>][𝑚, 𝑛], 

and 𝐶V13A[𝑚, 𝑛] are the operating and maintenance costs, fuel cell costs, and costs 

associated with buying and selling electricity from the grid, respectively; r is the 

discount rate, which is 6%; and 𝑀^\Y( and 𝑀B>]]( are the costs and revenues associated 

with buying and selling electricity to another EV charging station, respectively. 

𝐶Z[[𝑚, 𝑡] = 𝐶Z[(!"E)[𝑚, 𝑡] + 𝐶Z[(?BE)[𝑚, 𝑡] + 𝐶Z[(^=4E)[𝑚, 𝑡]    4.6 

𝐶Z[(!")[𝑚, 𝑡] = 𝐾Z[!"𝑃!"[𝑚, 𝑡]        4.7 

𝐶Z[(?B)[𝑚, 𝑡] = 𝐾Z[?B𝑃2&,3
4 [𝑚, 𝑡]        4.8 

𝐶Z[(>B)[𝑚, 𝑡] = 𝐾Z[^=4𝑃<=4,=,4[𝑚, 𝑡]       4.9 

𝐶;\>][𝑚, 𝑡] = 𝑎C𝑓C        4.10 

𝐶V13A[𝑚, 𝑡] = 𝑏𝑃V,^\Y − 𝑐𝑃V,B>]]       4.11 
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where 𝐶Z[(!"E)[𝑚, 𝑡] , 𝐶Z[(?BE)[𝑚, 𝑡] , and 𝐶Z[(^=4E)[𝑚, 𝑡]  are the O&M cost for 

photovoltaic, hydrogen, and battery storage, respectively; 𝐾Z[!", 𝐾Z[?B, and 𝐾Z[^=4 

are the O&M cost, which is 28.70 GBP/kW, 14.18 GBP/kW, and 4.75 GBP/kW, 

respectively; 𝑃!"[𝑚, 𝑡] , 𝑃2&,3
4 [𝑚, 𝑡] , and 𝑃<=4,>,4[𝑚, 𝑡]  are the output power for PV, 

hydrogen, and battery storage, respectively; 𝑎C	and	𝑓C are the price and capacity for 

the fuel cell, respectively; b and c are the buying and selling prices for the grid (these 

prices are changeable depending on the time period, but in this paper, the selling price 

c is 0.33 GBP/kWh), respectively; 𝑃V,^\Y and 𝑃V,B>]] are the buying and selling power 

for the grid, respectively; and d and e are the buying and selling prices from another 

SHS-EVCS, which are also variable depending on the time period, but in this paper, the 

buying price  d is 0.24 GBP/kWh and selling prices e are 0.31 GBP/kWh. 𝑃5X%#,^\Y( 

and 𝑃5X%#,B>]]( are the buying and selling power from the EVCS, respectively. 

4.2.3.2. Constraints 

i. Photovoltaic Power Output Constraints 

𝑃9",*,4
_`1 , 0 ≤ 𝑃9",*,4 ≤ 𝑃9",*E        4.14 

where 𝑃9",*,4
_`1  and 𝑃9",*E  are the predicted power and rated power of the k photovoltaic 

cells at time t, respectively. 

ii. Battery Storage Output Constraints 

𝑆<=4,>,$ = 𝑆<=4,>,T       4.15 

where 𝑆<=4,>,$  and 𝑆<=4,>,T are the ending capacity and initial capacity of the battery 

pack e in the coordination period, respectively. 

iii. Hydrogen Storage Output Constraints 

𝐸2&,3
C3E ≤ 𝐸2&,3

4 ≤ 𝐸2&,3,%&9 , 𝑖			 ∈ N788     4.16 

where 𝐸2&,3,%&9 and 𝐸2&,3
C3E are the capacity and lower limit of the hydrogen storage tank, 

respectively, and the lower limit is 20%. 
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iv. The Power Output of each Energy Source 

:
𝑃C3E
3E,>]>041`]YB>1 ≤ 𝑃4

3E,>]>041`]YB>1 ≤ 𝑃C=N
3E,>]>041`]YB>1

𝑃C3E;% ≤ 𝑃4;% ≤ 𝑃C=N;%

𝑆𝑂𝐶C3E ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶C=N

    4.17 

where 𝑃4
!"  is the power consumed of PV at time slot t; 𝑃C3E

3E,>]>041`]YB>1  and 

𝑃C=N
3E,>]>041`]YB>1 are the upper and lower limits of 𝑃4

3E,>]>041`]Yd>1, respectively; and 𝑃C3E;%  

and 𝑃C=N;%  are the upper and lower limits of fuel cell generation, respectively. 

v. Power Balance Constraint 

∑ 𝑃!"(𝑡) + 𝑃2&,3
4 (𝑡) + 𝑃<=4,>,4(𝑡) + 𝑃V(𝑡) + 𝑃5X%#(𝑡) = 𝑃]`=A(𝑡)$

4G(   4.18 

𝑃V  and 𝑃5X%#  are the grid and another EV charging station are involved in energy 

exchange at time t, where a positive value indicates electricity is being purchased, and 

a negative value indicates it is being sold.  𝑃]`=A represents the load power at time t. 

4.2.3. NSGA-II and MOEA/D Algorithm Analysis.  

This chapter addresses multiple algorithms to solve optimization problems, such as 

Multi-Objective Particle Swarm Optimization (MO-PSO), Non-dominated Sorting 

Genetic Algorithm III (NSGA-III), MOEA-D, and NSGA-II. In this part, MOEA-D and 

NSGA-II are more adapted to solve the problems, employing distinct methods for 

tackling multi-objective optimization problems. MOEA-D divides the problem into 

multiple subproblems and optimizes each individually, whereas NSGA-II utilizes a 

non-dominated sorting technique to evolve a population of solutions. Comparing these 

two approaches can provide insights into how their differing methodologies influence 

performance on specific problems. The primary configurations of the two algorithms 

are detailed in Table 4-1. 
Table 4-1 Key Setting in the Algorithms 

NSGA-II 

Population Size 100 

Stopping Criteria 200 
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Crossover Percentage 0.8 

Number of Parents 80 

Mutation Percentage 0.4 

Number of Mutants 40 

Mutation Rate 0.01 

MOEA-D 

Population Size 100 

Stopping Criteria 200 

Number of Neighbours 10 

Crossover Percentage 0.5 

 

4.2.3.3. NSGA-II 

This section introduces the use of NSGA-II to solve the optimization problems of SHS-

EVCS, ensuring that the constraints of SHS-EVCS are met in each iterative step 

between layers. A challenge that arises when integrating this method with SHS-EVCSs 

needs to manually set some parameters. However, in this chapter, both algorithms use 

the same manual parameter settings method as a solution, so the impact is considered 

negligible. Figure 4-3 presents the flowcharts for two SHS-EVCS systems optimized 

using the NSGA-II algorithm. The algorithm for using NSGA-II in the SHS-EVCS 

optimization process can be described as follows [155]: 
Data input: Topological matrix. n: generation number; 𝑚𝑖𝑛𝐹; 𝑚𝑖𝑛𝐹/5. 

Algorithm 1: Non-dominated Sorting Genetic Algorithm (NSGA-II) 
1. Problem definition. 

a. Define the objective function. 
b. Define the constraints. 

2. Initialization. 
a. Generate an initial set of solutions. 
b. Evaluate these solutions based on the objective function and constraints. 

3. Fast Non-dominated Sorting. 
4. Create the offspring population. 

a. Perform crossover and mutation operations. 
b. Evaluate the offspring solutions using the objective function and 
constraints. 
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Figure 4-3 The flowchart of SHS-EV charging station using NSGA-II optimization 

5. Merge the parent and offspring populations. 
6. Environmental selection. 

a. Choose the solutions for the next generation. 
b. Prioritize solutions with the lowest non-domination level and highest 
crowding distance. 

7. Repeat from Step 3. 
8. Output the best solution. 
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4.2.3.4. MOEA-D 

This section explains how MOEA/D works in MATLAB. MOEA/D is in search of a 

solution set that is well known as the Pareto front. This algorithm incorporates the 

concept of mathematical programming, which not only accelerates the convergence 

speed of the algorithm but also ensures a more uniform distribution of solutions. Figure 

4-4 shows the flowcharts of two SHS-EVCS optimized using MOEA/D. MOEA/D can 

summarized as follow:  

Algorithm 2: Multi-objective Evolutionary Algorithm Based on 
Decomposition (MOEA/D) 

1. Input: Maximum number of iterations (200); population size (N); decision-
making criteria; preference information.  
2. Set the iteration counter ItrCounter = 1. 
3. Generate the initial population using a uniform sampling method. 
4. Evaluate the objective values of the population. 
5. Determine the Pareto-based non-dominated rank using a fast-sorting 
operator. 
6. Compute the decision-making preference degree. 
7. Calculate the weighted distance for each individual.  
8. Rank individuals based on the weighted distance. 
9. Choose the top N individuals to form the new parent population. 
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Figure 4-4 The flowchart of SHS-EVCSs using MOEA/D optimization 

4.2.4. Simulation Results and Analysis Compare with Single SHS-EV Charging 

Station Results. 

In the methodology section of the study, two SHS-EVCSs were modelled. Key 

technical and economic parameters for each station are detailed in Tables 4-2 and 4-3, 

providing insights into the functionality and financial aspects of these systems. Table 

4-4 presents data on the greenhouse gas emission coefficients and disposal costs, which 

were key factors included in the objective function designed to optimize environmental 

protection operations. Table 4-5 shows the design variables using for SHS-EVCSs.  
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Table 4-2 Technical parameters of SHS-EVCS in two London boroughs [158][159] 

 Parameters Hammersmith & 
Fulham 

Richmond upon 
Thames  

Charger capacity (kW) 360 360 
Number of chargers per 
station 3 8 

PV installed capacity(kW) 500 1000 
Battery capacity (kWh) 500 800 
Hydrogen tank capacity (m3) 1000 1500 
Fuel cell generator capacity 
(kW) 800 1000 

Battery initial state of charge 
(%) 40 40 

Minimum battery state of 
charge (%) 25 25 

Maximum battery state of 
charge (%) 100 100 

Battery charge and discharge 
efficiency (%) 85 85 

Initial capacity of gas tank
（%） 30 30 

Tank storage efficiency (%) 95 95 
Electric to gas efficiency (%) 75 75 
Electricity-to-gas coefficient 
(kWh/m3) 0.2 0.2 

Gas-to-electric efficiency 
(%) 65 65 

Gas-to-electricity coefficient 
(m3/kWh) 0.295 0.295 

 
Table 4-3 Economic parameters of SHS-EVCS in two London boroughs 

 Parameters Hammersmith & 
Fulham 

Richmond upon 
Thames  

PV capital cost (£/kW) 1112 1112 
Battery capital cost (£/kWh) 331.55 331.55 
Hydrogen tank cost (£/m3) 27.63 27.63 

 
Table 4-4 Greenhouse gases emission costs [123][162] 

Type Fuel cell generator eco-
efficiency (kg/kWh) 

Grid eco-efficiency 
(kg/kWh) Disposal cost (£/kg) 

CO2 1.596 1.432 0.088 
SO2 0.008 0.454 6.237 
NOx 0.014 21.8 26.46 
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Table 4-5 Design variables for SHS-EVCS 
Input Technical Specification 
Replace time (y) [year] 10 
PV O&M cost (𝐾Z[!")[£/kW] 28.70 [159] 
Hydrogen O&M cost (𝐾Z[?B)[£/kW] 14.18 [159] 
Battery O&M cost (𝐾Z[^=4)[£/kW] 4.75 [31] 
PV output power (𝑃!"[𝑚, 𝑡]) [kW] 𝑃#$%𝐺&%

[()*($!,$")]
/#$%

 [124] 
Hydrogen output power ( 𝑃2&,3

4 [𝑚, 𝑡] ) 
[kW] 

𝐸2&,3
4,( − (𝑃2,;%,34 + 𝑃#2,34 + 𝑃2&,3

4 )Δ𝑡 [124] 

Battery output power ( 𝑃<=4,=,4[𝑚, 𝑡] ) 
[kW] 

𝑃<=4,>,4(51 − 𝜎<=4,>8 + (𝑃<=4,>,40?= ∗

𝜂<=4,>0?= + 9()*,+,*
,-.

@()*,+
,-. )Δ𝑡 [33] 

Discount rate [%] 6 
Buying and selling prices from grid (b, 
c) [£/kW] 0.33 
Buying prices from another charging 
station (d) [£/kW] 0.24 
Selling prices from another charging 
station (e) [£/kW] 0.31 

Figure 4-5 illustrates the projected EV charging demand profile, or load curve, for the 

SHS-EVCS across two London boroughs. Each load curve represents a different SHS-

EVCS. The analysis assumes Hammersmith and Fulham will host 5 SHS-EVCSs, while 

Richmond upon Thames will have 14, based on their current petrol station numbers 

[46]. Richmond displays the highest charging load, peaking at 2.8 MW, requiring eight 

360 kW chargers to handle this demand. This is based on the need to charge an EV with 

a 60 kWh battery. In contrast, Hammersmith & Fulham's SHS-EVCS experiences the 

lowest load, staying under 1000 kW, where three 360 kW chargers are considered 

sufficient. These variations highlight the importance of location-specific infrastructure 

planning to meet varying demands. Properly addressing these differences is crucial for 

ensuring efficient and reliable EV charging across different areas. 
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Figure 4-5 EV load curve in two London boroughs for SHS-EV charging station 

 

Figure 4-6 Hammersmith & Fulham optimal energy dispatch solution (with energy 
exchange, 4-12) 
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Figure 4-7 Hammersmith & Fulham optimal energy dispatch solution (without energy 
exchange) 

Figure 4-6 shows that solar energy serves as the main power source from 7 a.m. to 7 

p.m., reaching a peak capacity of 500 kW. This significant reliance on solar power 

underscores the critical importance of leveraging renewable energy to meet the 

charging demands of EVs at SHS-EVCSs during daylight hours. To ensure a stable and 

continuous energy supply throughout this period, the charging station incorporates 

hydrogen and electric storage systems, which operate in tandem to effectively manage 

the fluctuating daily energy requirements. 

Moreover, during the hours of 10:00 a.m. to 3:00 p.m., when electricity prices are at 

their highest, the SHS-EVCS engages with the power grid to secure an adequate 

electricity supply. While tapping into the grid during these peak hours can result in 

increased costs, it becomes necessary to satisfy the heightened energy demands for EV 

charging. To mitigate these expenses, the station implements a time-of-use pricing 

strategy, purchasing electricity at lower rates during off-peak hours and storing it for 

use during peak times. This strategic approach not only helps in minimizing the 

financial impact of high electricity prices but also improves the overall cost efficiency 

of the station’s operations. 

Figure 4-7 offers an energy dispatch analysis for a single SHS-EVCS in Hammersmith 

and Fulham, which operates without energy exchange. A comparison of the two figures 

reveals only minor differences in the procurement of electricity from the grid. Despite 
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the absence of detailed price information, a thorough examination of the graphs 

provides valuable insights into capital expenditures, operational and maintenance costs, 

and the financial benefits associated with reduced greenhouse gas emissions. These 

findings align with the two main objectives of optimizing costs and minimizing 

environmental impact. 

 

Figure 4-8 Energy exchange between two SHBS-EV charging stations 
Figure 4-8 shows the energy exchange dynamics between two SHS-EVCSs over 

specific time intervals, showing power transfers within a 50 kW range. The analysis in 

Figure 4-8 indicates that when EVCSs are equipped with independent energy 

generation systems and connected to the grid, the energy exchange between them 

becomes minimal. This suggests that energy exchange has a negligible effect on the 

cost reduction objectives of the SHS-EVCSs. Through a thorough analysis and 

optimization of these energy exchange dynamics, it is possible to minimize overall 

operating costs while still ensuring an adequate energy supply. 
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Figure 4- 9 Hydrogen and battery energy storage for 24 hours (with energy exchange) 

 
Figure 4-10 Hydrogen and battery energy storage for 24 hours (without energy 

exchange) 
Figures 4-9 and 4-10 reveal that hydrogen and battery energy storage are primarily 

utilized during specific times of energy exchange, particularly from 8:00 a.m. to 10:00 

a.m., 4:00 p.m. to 5:00 p.m., and 9:00 p.m. to 10:00 p.m. Additionally, these energy 

sources are most active during the midnight hours when no energy exchange occurs, 

highlighting their role in maintaining energy stability during off-peak periods. 

Figure 11 highlights that point A represents the Utopia point, while area B denotes the 

Pareto front, containing valid Pareto optimal solutions. The research clearly shows that 

NSGA-II performs better than MOEA/D, especially in optimizing cost objectives. 
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NSGA-II demonstrates superior efficiency and practicality in achieving the desired 

outcomes, making it the more advantageous method for optimization in this context. 

This superiority is particularly evident in scenarios requiring complex multi-objective 

optimization, where NSGA-II consistently delivers more balanced and cost-effective 

solutions. As a result, the study suggests that NSGA-II is the preferred approach for 

achieving optimal performance across multiple criteria. The presence of outliers in this 

Pareto front can be attributed to a combination of algorithmic limitations, the inherent 

complexity of multi-objective trade-offs, and potential issues with parameter settings 

and model constraints. Specifically, MOEA/D, while effective in decomposing 

complex optimization problems, may face challenges in maintaining a balanced 

distribution across objectives, particularly in non-linear and non-convex problem 

spaces. This can result in solutions that optimize either capital and operational costs or 

greenhouse gas emissions but fail to achieve an efficient trade-off between the two, 

leading to outliers with disproportionately high emissions costs. Additionally, the 

complexity of multi-energy systems—where diverse energy sources interact 

dynamically—compounds the difficulty of finding well-balanced solutions, as the 

trade-offs between capital costs, operational expenses, and environmental impacts 

become highly sensitive to the configuration of each component. 

 
Figure 4-11 NSGA-II and MOEA/D comparison 
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Table 4-6 SHS-EVCS minimum cost. 

Cost (£) Hammersmith & Fulham Richmond upon Thames 

Capital cost for initial years   1,478,720 2,128,410 

Discounted capital cost  201,889.15 268,422.33 

Grid electricity purchase per day  575.09 1994.36 

Energy exchange per day  77.12 30.25 

O&M cost per day  205.65 232.79 

Minimum daily cost 1673.32 3087.81 

Daily cost without hydrogen storage 2152.26 3552.24 

 
Table 4-7 EVCS cost only buy electricity from grid. 

Cost (£) Hammersmith & Fulham Richmond upon Thames 

Daily cost  4,695.88 12,225.81 

Table 4-6 outlines the key economic factors for two SHS-EVCS, focusing on both 

capital and operating costs. The SHS-EVCS has an expected service life of ten years, 

with a daily maintenance cost of £4761.13, which includes regular upkeep, and the 

replacement of components as needed over this period. In contrast, Table 4-7 shows 

that the daily operating cost for two traditional charging stations is three times higher 

than that of the SHS-EVCS. This significant difference highlights the cost-effectiveness 

of the SHS-EVCS, which optimizes energy use and reduces operating expenses 

compared to traditional charging stations. 

Given the safety concerns associated with hydrogen, an alternative design approach 

could involve eliminating hydrogen energy use in SHS-EVCSs. Opting out of hydrogen 

energy would increase the minimum daily expenditure by at least £500. Although this 

is still more economical than relying solely on grid electricity, it does not meet the 

minimum cost threshold. Other factors, such as supply chain costs, labor expenses, 

energy prices, and taxes, also influence installation and O&M costs, though this paper 

primarily addresses the technical aspects, with these additional factors to be explored 

in future work. 

Nevertheless, integrating these stations with the broader power grid requires careful 

consideration of necessary adjustments, which will inevitably incur extra costs. 

Balancing these costs with the associated benefits is crucial, especially when aiming to 
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promote sustainable transportation solutions. Furthermore, as the industry evolves, 

future advancements in technology and energy management strategies may further 

reduce costs, making SHS-EVCSs even more competitive. Continued research and 

development in this area will be essential for maximizing both economic and 

environmental benefits. 

4.3. Multi-SHS-EV Charging Station Energy Exchange in Dali 

As global subsidies for renewable energy gradually decline, EVCS powered by 

renewable sources need to adopt market-based strategies to remain competitive. The 

unpredictable nature of renewable energy generation creates significant challenges for 

strategic planning. To address the uncertainties caused by forecasting inaccuracies, this 

study proposes a game theory-based P2P energy trading strategy specifically designed 

for SHS-EVCS. Firstly, by accounting for the prediction errors of renewable energy 

within each SHS-EVCS, set a fuzzy value. Secondly, this section applies the 

optimization principles of game theory to develop a day-ahead P2P interactive energy 

trading model designed to address the volatility challenges associated with renewable 

energy. Thirdly, the model is reformulated as a linear convex programming problem 

using duality theory, making it solvable with CPLEX optimization techniques. The 

results of the case study show that this approach not only increases SHS-EVCS revenue 

to £6,187.71 through P2P trading but also helps manage operation and maintenance 

expenses, thereby fostering the growth of the renewable energy industry. 

Key infrastructure for sustainable transportation: By integrating various renewable 

energy sources such as solar, wind, hydrogen, and battery storage, these charging 

stations offer a versatile solution that helps balance grid load and optimize energy use. 

The multi-energy EV charging system features an intelligent management system 

capable of adjusting charging power and technology in real time according to 

fluctuations in energy supply and demand. This enhances energy efficiency, reduces 

operating costs, and supports the green transformation of the power grid [161]. As a 

crucial component of urban green infrastructure, the multi-energy EV charging system 
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addresses the evolving needs of EV owners and plays a significant role in achieving 

carbon neutrality goals. 

4.3.1. 4 SHS-EV Charging Station Planning and Operation. 

The traditional energy transition towards sustainable energy systems is accelerating, 

and in this context, EVCSs that incorporate various energy storage methods, including 

solar, hydrogen, and batteries, are playing a significant role. Integrating these diverse 

energy sources demands creative management techniques to ensure the efficiency, 

affordability, and dependability of the power supply. Against this backdrop, utilizing 

game theory and linear programming stands out as an effective method for designing 

and analysing P2P energy exchange systems. 

 
Figure 4-12 single SHS-EVCS topology 

Figure 4-12 shows the SHS-EVCS, which utilizes photovoltaic panels, hydrogen 

storage, and batteries to charge EVs. The EVCS features a solar array equipped with 

photovoltaic panels that capture sunlight and convert it into electrical energy. This 

energy can be used directly to charge EVs, sent to the grid, or stored in battery and 

hydrogen systems for later use. For hydrogen storage, the system employs an 

electrolyze to split water into hydrogen and oxygen. The hydrogen is then compressed 

and stored for future use. During peak demand periods, this stored hydrogen is 

converted back into electricity via a fuel cell to charge EVs. Additionally, a battery 
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storage system collects surplus energy from either the solar array or the fuel cell, 

ensuring a steady energy supply to charge EVs, even when solar and hydrogen sources 

are not active. 

4.3.2. P2P Energy Trading Model. 

The internal P2P transaction contains each SHS-EVCSs, battery system and grid. 

Therefore, the P2P model can be written as follow equations: 

P2P internal trading revenue [94]. 

𝐶E,4B>]] = 𝜌E,43E4>1𝑃E,4]`=A          4.18 

𝜌E,43E4>1 is the price of number n SHS-EVCS selling electricity to other SHS-EVCS using 

internal load. 

4.5.2.1. P2G Trading with Grid. 

𝐶E,4
V13A = 𝜌E,4< 𝑃E,4< − 𝜌E,4

V 𝑃E,4
V        4.19 

	𝜌E,4< 𝑎𝑛𝑑	𝑃E,4<  are the price and electricity purchased by SHS-EVCS n from shared 

battery energy storage at time t. 𝜌E,4
V 	𝑎𝑛𝑑	𝑃E,4

V  are the price and power selling to grid. 

Usually, 𝜌E,4
V is much lower than 𝜌E,4< , which can increase the profits or reduce costs 

through P2P trading. 

4.3.2.2. P2P Transaction Energy Trading Cost. 

𝐶E,4
!6! = ∑ 𝜌E,4K(

K 𝑃E,4K           4.20 

Where N is the set of charging stations in P2P trading. 𝜌E,4K  is the transaction price 

between SHS-EVCS n and SHS-EVCS N at time t. 𝑃E,4K  is the transaction power 

between them at time t. 

4.3.2.3.  P2P Transactive Energy Trading Constraints. 

For any time, the electricity sold and purchased should be balance.  

𝑃E,4K = −𝑃E,4K               4.21 
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4.3.3. Game Theory Model. 

Typically, purchasing electricity from the grid is costly, while buying and selling 

electricity within SHS-EVCSs can be achieved at lower prices. As a result, EVCSs 

often engage in internal transactions with other EVCSs that have excess electricity. 

During periods when multiple EVCSs have surplus energy or face electricity shortages, 

competition arises. Surplus EVCSs aims to sell as much excess electricity as possible 

to those EVCSs that are energy deficient. 

In such situation, if EVCSs acting competitively adjust their electricity prices out of 

self-interest—to maximize their sales revenue or minimize their purchase costs—they 

will not hesitate to do so, even though it may impact other EVCSs. Without a binding 

agreement in place, these competitive EVCSs may continually alter prices to benefit 

themselves, which will lead to unfair and unstable energy scheduling among EVCSs. 

To address this, the involved EVCSs engage in discussions to set an appropriate 

electricity price, which then becomes the standardized rate for energy transactions. This 

approach treats energy exchange price as the basis for the game strategy. The game 

model considers the difference between energy sales revenue and purchase costs as the 

benefit for each participant, constructing the following game model: 

Cooperative game theory: 

Gamer: N(SHS-EVCS1(1), SHS-EVCS2, SHS-EVCS3… SHS-EVCSN) 

Strategy: electricity prices (𝜌); power transaction value set (P) 

 Matrix: 

  𝜌 = �𝜌(,(0B …𝜌K,40B …𝜌E,40B …𝜌K,40B …𝜌K,$0B �	All gamers’ pricing in different time.  

  𝑃 = �𝑃(,(0B …𝑃K,40B …𝑃E,40B …𝑃K,40B …𝑃K,$0B � All gamers’ transaction value. 

Benefits: 𝑈 = [𝑈(,(0B …𝑈K,(0B …𝑈E,40B …𝑈K,40B …𝑈K,$0B ] Benefit set matrix consisting of the 

benefits of purchasing and selling electricity at different times for all players in the 

game. 
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Buyer: if energy exchange between charging stations, the upper limit is 𝑃E,4
V  (electricity 

buying from grid), then �𝑃E,40B � ≤ 𝑃E,4
V , the SHS-EVCS is called buyer at time t. 

Seller: if energy exchange between charging stations, the upper limit is 𝑃E,4
V∗ (electricity 

selling to grid), then 𝑃E,40B ≤ 𝑃E,4
V∗, the SHS-EVCS is called seller at time t. 

When 𝑆𝐻𝑆 − 𝐸𝑉𝐶𝑆E ∈ 𝑆𝑒𝑙𝑙𝑒𝑟𝑠, the benefits at time t are:  

𝑈E,40B = 𝜌E,40B 𝑃E,40B∆𝑡 + 𝜌E,4
V 5𝑃E,4

V∗ − 𝑃E,40B 8∆𝑡 = ∑ 𝜌E,40B 𝑃ED,40B ∆𝑡 + 𝜌E,4
V (𝑃E,4

V∗ −D∈^\Y>1B

∑ 𝑃ED,40B
D∈^\Y>1B )∆𝑡         4.22 

When 𝑆𝐻𝑆 − 𝐸𝑉𝐶𝑆E ∈ 𝐵𝑢𝑦𝑒𝑟𝑠, the benefits at time t are:  

𝑈D,40B = ∑ 𝜌E,40B 𝑃DE,40B ∆𝑡 + 𝜌E,4
V∗(𝑃E,4

V − ∑ �𝑃DE,40B �E∈B>]]>1B )∆𝑡E∈B>]]>1B           4.23 

Where 𝑃DE,40B  means SHS-EVCS j follow the SHS-EVCS n pricing rule 𝜌E,40B  to buy the 

power at time t, 𝑃DE,40B < 0 

For game theory constraint, it should be followed by this rule: All players will not 

change the electricity price strategy and believe that this electricity price strategy is the 

optimal electricity price strategy that does not harmful for all players. 

Under the cooperative game model, within the SHS-EVCSs P2P trading model, each 

EVCS serves as producer and consumer, means this is multiple entities reach an 

agreement. Therefore, the game theory follows as figure 4-13: 

a) Start trading. 

b) All SHS-EVCSs request the energy exchange.  

c) With the goal of maximizing the profits of the coalition, according to the 

energy trading needs of each EVCS, analyse whether each EVCS meets the 

constraints of the model running time (if the energy trading meets the best 

profit for the coalition in time t), and the energy trading plan is calculated. 

d) Confirm the energy trading flow and profit calculate. 

e) If the profit follows the coalition maximization, go to step f); if not, go back 

to the step c), recalculate the energy exchange quantity. 
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f) Profit allocates depends on the constraints. 

g) Energy trading end. 

 

 
Figure 4-13 Game theory flowchart 

4.3.4. Main model 

4.3.4.1. Objective function 

To reduce anticipated costs, the objective function F of SHS-EVCS includes the cost 

of hydrogen energy storage, gas turbine costs, solar energy costs, grid costs, battery 

storage costs, and P2P costs, minus the revenue from selling electricity (1). 
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𝐹 = 𝑚𝑖𝑛∑ 𝐹E = 𝑚𝑖𝑛∑ ∑ (𝐶E,4
55 + 𝐶E,4;% + 𝐶E,4

V13A + 𝐶E,49" + 𝐶E,4
!6! + 𝐶4<>B −$

4
K
E

(
E∈K

𝐶E,4B>]])            4.24 

Where: 𝐶E,4
55 is hydrogen cost 

𝐶E,4;%  is fuel cell generator cost 
𝐶E,4
V13A grid cost 

𝐶E,49"  solar cost 
𝐶E,4
!6! p2p trading cost 
𝐶4<>B battery energy storage 
𝐶E,4B>]] sale revenue 

4.3.4.2. Hydrogen constraints. 

• Electrolyser Constraint: 

𝑢?B(𝑡)𝐸?B,C3E` ≤ 𝐸=>` (𝑡) ≤ 𝑢?B(𝑡)𝐸?B,C=N`        4.25 

Where 𝐸?B,C3E` is the lower output limit of the electrolyser, 𝐸?B,C=N`  is the upper output 

limit of the electrolyser, 𝑢?B(𝑡) is the state variable of the electrolyser. 
• Hydrogen Tank Constraints: 

⎩
⎪
⎨

⎪
⎧ 𝑢?B3E(𝑡)𝐸?B,C3E3E ≤ 𝐸?B3E(𝑡) ≤ 𝑢?B3E(𝑡)𝐸?B,C=N3E

𝑢?B`\4(𝑡)𝐸?B,C3E`\4 ≤ 𝐸?B`\4(𝑡) ≤ 𝑢?B`\4(𝑡)𝐸?B,C=N`\4

𝐸?B,C3E ≤ 𝐸?B(𝑡) ≤ 𝐸?B,C=N
𝑢?B3E(𝑡) + 𝑢?B`\4(𝑡) ≤ 1

             4.26 

Where 𝐸?B,C3E3E  is the lower input limit of the electrolyser, 𝐸?B,C=N3E  is the upper input 

limit of the electrolyser, 𝑢?B3E  is the hydrogen tank storage state variable，  𝑢?B`\4 

hydrogen tank release state variable. 

• Fuel Cell Generator Constraint: 

0 ≤ 𝑃;%`\4(𝑡) ≤ 𝑃;%,C=N`\4                   4.27 

Where 𝑃;%,C=N`\4  is the maximum power output for fuel cell generator. 

4.3.4.3. Photovoltaic Constraint. 

𝑃!",C3E < 𝑃9X(𝑡) < 𝑃!",C=N                   4.28 

Where 𝑃!",C3E and 𝑃!",C=N are the minimum and maximum PV power output. 
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4.3.4.4. Battery Storage Constraint. 

𝐸<##C3E ≤ 𝐸<##,D(𝑘) ≤ 𝐸<##C=N         4.29 

�𝐸<##
C3E = (1 − 𝐷𝑂𝐷)𝐸<##C=N

𝐸<##C=N = 𝑁<##𝐸1=4>_<##
           4.30 

Where 𝐸1=4>_<## is the self-discharge rate of the battery, DOD is the depth of discharge, 

valued at 90%. 

4.3.5. Case Study 

Figure 4-14 shows the energy exchange between the four SHS-EVCS. The yellow line 

represents the charging of EVs, while the grey double-headed arrows indicate the 

buying and selling of electricity between the charging stations and either shared storage 

or the grid. The green dashed line connected to the hydrogen storage system shows the 

conversion of electricity into hydrogen gas through electrolysis, and the dark yellow 

dashed line depicts the conversion of hydrogen gas back into electricity using a fuel cell 

generator. The green dashed line associated with solar energy represents photovoltaic 

power generation. The blue double-headed arrows show the energy exchange occurring 

between the four SHS-EVCS. 

 
Figure 4-14 Topology of multi-SHS-EVCSs 
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In the simulation method, Tables 4-8 and 4-9 provide a comprehensive summary of the 

technical and economic parameters for the four SHS-EVCS. These tables offer a 

detailed overview of each station's operational capabilities and financial aspects, 

including energy production capacity, operational efficiency, maintenance costs, 

operating expenses, and potential revenue sources. Table 4-10 introduces a set of design 

variables essential for the simulation process. These variables play a critical role in 

modelling the stations' performance and economic feasibility under various scenarios, 

such as energy demand fluctuations, market price changes, and shifts in operational 

conditions. By incorporating these variables, the simulation provides valuable insights 

into optimizing the design and operation of SHS-EVCSs to maximize efficiency and 

profitability. 

Dali, located in Yunnan Province, China, was selected for this case study primarily 

because of its unique geographic features and the booming tourism sector. Located 

between Cangshan mountain and Erhai lake, Dali's transport infrastructure heavily 

relies on two major north-south highways, as depicted in figure 4-15. The consistent 

influx of tourists throughout the year intensifies the demand for effective transportation 

solutions. Consequently, the construction of charging stations has become a crucial 

initiative to enhance the transportation infrastructure and promote sustainable 

development. This strategy not only eases traffic congestion but also promotes the 

adoption of eco-friendly transportation methods like EVs, thus improving Dali’s 

tourism experience and its environmental stewardship. Although there are several 

charging points available in the parking areas, most of them charge fees for both parking 

and charging, posing an inconvenience for users. In response, SHS-EVCS provides a 

more cost-effective and user-friendly option for EV owners. Furthermore, SHS-EVCS 

places a high priority on creating a safer and more secure charging environment, 

offering peace of mind to all EV drivers. 
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Figure 4-15 Topology of 2 main roads in Dali. 

 

Table 4-8 Technical parameters of SHS-EVCS in four Dali boroughs 

 Parameters 
Longzu 

1(EVCS1) 

Longzu 

2(EVCS2) 

Qiliqiao 

(EVCS3) 

Fuyuan 

(EVCS4) 

Charger capacity (kW) 360 360 360 360 

Number of chargers per station 10 10 12 8 

PV installed capacity(kW) 1500 1500 2000 1000 

Shared Battery capacity (kWh) 10000 10000 10000 10000 

Hydrogen tank capacity (m3) 2000 2000 3000 1500 

Fuel cell generator capacity (kW) 800 800 1000 600 

Battery initial state of charge (%) 40 40 40 40 

Minimum battery state of charge (%) 25 25 25 25 

Maximum battery state of charge (%) 100 100 100 100 

Battery charge and discharge 

efficiency (%) 
80 80 80 80 

Initial capacity of gas tank（%） 30 30 30 30 

Tank storage efficiency (%) 98 98 98 98 
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Energy to gas efficiency (%) 70 70 70 70 

Electricity-to-gas coefficient 

(kWh/m3) 
0.2 0.2 0.2 0.2 

Hydrogen conversion efficiency (%) 75 75 75 75 

Gas-to-electricity coefficient 

(m3/kWh) 
0.295 0.295 0.295 0.295 

 
Table 4-9 Economic parameters of SHS-EVCS in four Dali boroughs [162-164]. 
 Parameters Longzu 1 Longzu 2 Qiliqiao Fuyuan 

PV capital cost (£/kW) 286 286 286 286 

Battery capital cost (£/kWh) 39.6 39.6 39.6 39.6 

Hydrogen tank cost (£/m3) 7.5 7.5 7.5 7.5 

 
Table 4-10 Design variables for SHS-EVCS 

Input Technical Specification 

PV output power [kW] 𝑃#$%𝐺&%
[()*($!,$")]

/#$%
  

Hydrogen output power 

[kW] 
𝐸2&,3
4,( − (𝑃2,;%,34 + 𝑃#2,34 + 𝑃2&,3

4 )Δ𝑡  

Battery output power 

[kW] 
𝑃<=4,>,4(51 − 𝜎<=4,>8 + (𝑃<=4,>,40?= ∗ 𝜂<=4,>0?= +

𝑃<=4,>,4A3B

𝜂<=4,>A3B ) 

 

4.3.6. Results and Discussion 

Figure 4-16 illustrates the changes in grid electricity prices and internal electricity 

trading prices over time. The grid electricity price remained relatively stable at 

£0.018/kWh until shortly after 8 a.m., when it increased slightly to £0.05/kWh, likely 

reflecting a base price adjustment. The internal electricity purchase price briefly rose to 

£0.048/kWh around 7 a.m., followed by another increase to approximately £0.075/kWh 

at 11 a.m., where it remained until 1 p.m. After 6 p.m., the purchase price climbed again 

to £0.075/kWh, holding steady until it began to decline after 8 p.m. 



 100 

In contrast, the internal electricity sales price increased to around £0.47/kWh at 7 a.m., 

peaked again at 11 a.m., and then decreased after 2 p.m., showing an inverse 

relationship with the purchase price trend. After 6 p.m., the selling price surged to 

£0.75/kWh, maintaining this level until it began to decline after 8 p.m. These price 

variations reflect shifts in internal market supply and demand or strategic adjustments 

in electricity trading. A rise in price typically indicates increased demand or reduced 

supply, while a decrease suggests lower demand or increased supply. The difference 

between internal purchase and sales prices not only highlights potential trading margins 

but also underscores opportunities for cost management and revenue optimization. 

 
Figure 4-16 Electricity price optimization 
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Figure 4-17 presents the number of EVs at each charging station after optimization. 

SHS-EVCS 1 shows a slight decrease in vehicle numbers after 2 a.m., followed by 

another small drop after 6 a.m., and a significant reduction after 1 p.m., where the 

number of vehicles charging declines sharply. At SHS-EVCS 2, 25 vehicles begin 

charging at 1 p.m., with the same number observed at 8 p.m., 11 p.m., and 12 a.m. For 

SHS-EVCS 3, only 26 vehicles charge at 6 p.m. SHS-EVCS 4 maintains a relatively 

consistent number of vehicles throughout the day, with a slight increase in charging 

activity at 11 p.m. 

The figure illustrates the results of traffic flow optimization for the four SHS-EVCSs. 

In designing this simulation model, factors such as geographical constraints, traffic 

control measures, and energy exchange were considered. The analysis of these factors 

allowed the simulation to generate an optimal traffic flow management strategy. The 

increases and decreases shown in the figure correspond to adjustments in traffic flow at 

each charging station under specific conditions, based on the optimal solutions 

produced by the simulation. By fine-tuning traffic flows, the distribution and use of 

charging resources can be optimized, helping to prevent congestion during peak 

charging times. This comprehensive plan offers guidance on effectively managing and 

scheduling vehicle access to charging stations, ensuring efficient charging and 

enhancing the overall experience for EV drivers. The insights gained from this analysis 

could be valuable for future research focused on optimizing operations, such as 

reducing power supply or staffing during periods of low demand. 
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Figure 4-18 SHS-EVCS1 renewable energy usage and electricity load curve 

 
Figure 4-19 SHS-EVCS2 renewable energy usage and electricity load curve 
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Figure 4-20 SHS-EVCS3 renewable energy usage and electricity load curve 

 
Figure 4-21 SHS-EVCS4 renewable energy usage and electricity load curve 
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highlights the flexibility of the integrated energy systems within the SHS-EVCS 

framework. 

Furthermore, these stations participate in inter-station power trading, demonstrating the 

advantages of a decentralized energy network. Optimizing the energy management 

strategies depicted in these figures can maximize economic benefits and reduce 

infrastructure costs. This approach enhances the operational efficiency of each SHS-

EVCS and contributes to a more sustainable power grid by utilizing diverse energy 

storage and generation methods. Strategic energy management is crucial for developing 

resilient, intelligent power grids and advancing toward energy self-sufficiency. This 

optimization strategy not only improves the cost-effectiveness of energy use but also 

supports the integration of renewable energy sources on a larger scale. By leveraging 

such strategies, SHS-EVCSs can play a pivotal role in the transition to a greener, more 

resilient energy infrastructure, ultimately aiding in the reduction of carbon footprints 

and the promotion of sustainable urban development. 

  
Figure 4-22 Battery storage power flow and electricity consumption 

Figure 4-22 displays a composite graph featuring both a bar chart and a line graph to 

illustrate the operational dynamics of an energy storage system over a 24-hour period. 

In the bar chart, positive values indicate charging power, representing periods when the 

energy storage system is actively accumulating energy. Negative values signify 

discharging power, indicating times when the system is supplying energy to the four 
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SHS-EVCSs. The bars fluctuate throughout the day, with significant charging activity 

observed around hours 1, 6, 9, 10, 13, 14, 20, 21, and 22, likely corresponding to off-

peak hours or times of surplus energy production. Discharging occurs intermittently, 

with the highest power output during hours 7, 8, 11, 12, 15, 16, 17, and 24, possibly 

aligning with peak demand periods or when grid support is needed. 

The state of charge decreases during positive bar periods and increases during negative 

bar periods, illustrating the charging and discharging cycles of the energy storage 

system. This cyclical pattern continues, with the state of charge peaking at various 

points throughout the day, reflecting a strategy of charging during low-demand times 

and discharging during high-demand periods or when energy generation is insufficient, 

or electricity prices from the shared battery system are high. The graph highlights a 

well-managed energy storage system that actively adjusts its charge and discharge 

cycles to take advantage of fluctuating energy prices, maximize the use of renewable 

energy, and enhance the stability of the SHS-EVCSs. This operational strategy is key 

to ensuring efficient energy use and maintaining grid stability. 

 
Figure 4-23 4 SHS-EVCSs hydrogen usage 

Figure 4-23 shows the daily hydrogen consumption patterns across four SHS-EVCSs, 

revealing distinct variations in usage over the course of the day. During the early 
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use, while EVCS 2 shows a slight increase. In contrast, EVCS 3 and EVCS 4 experience 

a decrease in usage, with EVCS 3 showing a particularly sharp decline. After 10 a.m., 

there is a notable rise in hydrogen consumption at EVCS 3, indicating increased 

operational activity or demand. The other stations—EVCS 1, EVCS 2, and EVCS 4—

also exhibit minor increases in usage. All SHS-EVCSs see a marked increase in 

hydrogen consumption until 5 p.m., reflecting higher demand or intensified charging 

activities. EVCS 1 records the most significant rise, followed by EVCS 2, EVCS 4, and 

EVCS 3. In the late evening, from 10 p.m. to midnight, hydrogen consumption 

stabilizes across all stations, reaching a steady level of demand. This pattern of usage 

aligns with typical daily trends, showing a dip in the early morning and a peak in the 

evening, likely reflecting standard consumer charging habits or the operational cycles 

of the SHS-EVCS network. 

 
Figure 4-24 4 SHS-EVCSs EV charging optimization over 24 hours 

Figure 4-24 shows the optimization of charging over a 24-hour period, providing a 

detailed electricity consumption patterns across four different SHS-EVCSs throughout 

the day. The bar graph uses differentiated colour to clearly indicate the electricity usage 

for each SHS-EVCS, with the height of each segment within the hourly bars 
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likely shows EV charging quantities at corresponding times, a clear correlation emerges. 

The electricity consumption profile in this figure mirrors the fluctuations in charging 

activities shown in Figure 4-18, indicating a direct relationship between the electricity 

used by the SHS-EVCSs and the volume of charging operations. This parallelism 

suggests that electricity consumption is closely aligned with the demand for charging 

services, allowing for better predictive modelling of energy needs based on anticipated 

charging loads. Understanding this relationship is crucial for optimizing energy 

allocation and improving the overall efficiency of SHS-EVCS operations, ensuring that 

energy resources are used most effectively throughout the day. 

 

Figure 4-25 P2P trading strategy between 4 SHS-EVCSs 
Each figure in figure 4-25 indicates the buyer and seller (for example, "EVCS1 

purchases from EVCS2" suggests that source EVCS1 is buying from source EVCS2) 

with time represented in 24 hours. The data points are connected by lines to indicate 

the change in purchasing activity over time. 
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a) EVCS1 purchases from EVCS2: This figure shows the variation in purchases made 

by source EVCS1 from source EVCS2 over time. There are several distinct peaks 

in purchasing activity, especially around the 3am and 6am. 

b) EVCS1 purchases from EVCS3: In this figure, purchasing activity by source 

EVCS1 from source EVCS3 also shows several peaks, particularly at 2am, 4am, 

6am and 9am. 

c) EVCS1 purchases from EVCS4: This figure shows peaks in purchases by source 

EVCS1 from source EVCS4 at 1am, 5am, 8am and 12pm. 

d) EVCS2 purchases from EVCS1’ EVCS2's purchases from source EVCS1 show 

peaks from 2am to 12pm. 

e) EVCS2 purchases from EVCS3: This figure displays several peaks in purchases 

by source EVCS2 from source EVCS3, especially at 6am. 

f) EVCS2 purchases from EVCS4: In this figure, source EVCS2's purchases from 

source EVCS4 peak at 5am. 

g) EVCS3 purchases from EVCS1: Purchases by source EVCS3 from source EVCS1 

are higher between 2am and 12pm. 

h) EVCS3 purchases from EVCS2: In this figure, source EVCS3's purchases from 

source EVCS2 show notable peaks at am and 5am. 

i) EVCS3 purchases from EVCS4: This figure indicates that source EVCS3's 

purchases from source EVCS4 peak before 12pm. 

j) EVCS4 purchases from EVCS1: Source EVCS4's purchases from source EVCS1 

show peaks at 12pm. 

k) EVCS4 purchases from EVCS2: In this figure, source EVCS4's purchases from 

source EVCS2 peak at 10am and 12am. 

l) EVCS4 purchases from EVCS3: Source EVCS4's purchases from source EVCS3 

have peaks at 4am, 10am and 11am. 

These figures represent the fluctuation of transaction volumes between different 

suppliers or products over time. Peaks can indicate high demand or bulk transactions at 

specific points in time. Analyzing these figures could provide insights into the patterns 



 109 

and trends of trade activity between different sources, which may be valuable for 

optimizing inventory management, forecasting future demands, or adjusting supply 

chain strategies. 

 
Figure 4-26 Comparison of internal electricity purchasing versus grid procurement for 

SHS-EVCSs 
Figure 4-26 compares the internal power procurement costs of SHS-EVCS with those 

of grid power. The figure clearly demonstrates that internal energy trading is more cost-

effective than relying entirely on grid power. This comparison emphasizes the 

economic benefits of optimizing power trading within SHS-EVCS, showcasing the 

potential for significant cost savings. It effectively illustrates the cost-efficiency of 

utilizing internal energy resources, promoting the adoption of such strategies to 

improve the economic performance of SHS-EVCS operations. 

This economic analysis is crucial not only for evaluating the feasibility of SHS-EVCS 

configurations but also for informing decisions on scaling and expanding these systems. 

The significant difference between total daily costs and potential revenue highlights 

considerable profit opportunities, which could play a key role in encouraging 

investment in EV charging infrastructure and supporting the wider adoption of 

renewable energy technologies. 
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4.4. Chapter Summary 

Part 1 of this chapter introduces an innovative multi-objective optimization design 

approach that integrates both economic and environmental considerations. Utilizing 

NSGA-II and MOEA/D algorithms, this approach optimizes the distributed generation 

power rating and energy storage system capacity of SHS-EVCS. By comparing the 

optimization results from these two algorithms, the proposed method in this study 

reveals significant advantages, offering a comprehensive analysis that incorporates a 

wide range of influencing factors to derive the most effective trade-off solutions. The 

energy flows from various sources, including solar energy, hydrogen storage, battery 

storage, and the grid, are meticulously managed to ensure that the EVCS delivers an 

economical and efficient energy supply. This thorough energy optimization strategy not 

only enables charging stations to adapt to the variable energy demands of EV charging 

but also minimizes operational costs and maximizes environmental sustainability. 

Furthermore, this approach contributes to reducing the carbon footprint of 

transportation infrastructure, supporting broader efforts to combat climate change. 

Part 2 introduces a game theory-based P2P energy trading strategy, specifically tailored 

for multiple SHS-EVCSs, which addresses the challenges posed by the intermittency 

and volatility of renewable energy generation. This strategy is designed to mitigate the 

uncertainties that arise from inaccurate renewable energy forecasts, which can severely 

impact the operational efficiency and economic viability of SHS-EVCS. A key 

innovation in this study is the introduction of a cooperative game theory approach 

grounded in P2P trading, which functions as a mechanism to resolve conflicts of interest 

and ensure mutually beneficial cooperation among participating SHS-EVCSs. Such 

cooperation is essential for maintaining system stability, preventing any single SHS-

EVCS from destabilizing the network through strategies like aggressive electricity price 

adjustments. The proposed energy trading strategy not only enhances the operational 

efficiency of SHS-EVCS but also fosters a collaborative environment, ensuring the 

long-term sustainability and economic efficiency of renewable energy use within EV 

charging infrastructure. This cooperation can also lead to more resilient energy 

networks, capable of adapting to fluctuations in both supply and demand, ultimately 

contributing to a more reliable and sustainable energy future. 
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However, this chapter is not without limitations, which highlight areas for future 

research. It does not currently incorporate demand-side management strategies, 

particularly demand response, into its framework, which could further optimize energy 

use and enhance the system’s responsiveness to fluctuating demand. Additionally, the 

study does not fully explore the distinctions between cooperative and non-cooperative 

game theory approaches, which may lead to different outcomes and strategies in energy 

trading scenarios. Moreover, the social welfare aspects, such as the impact on EV 

drivers and broader community benefits, have not been comprehensively addressed. 

These aspects are crucial for ensuring that the proposed solutions are not only 

economically viable but also socially equitable. Future research should aim to address 

these gaps, exploring more sophisticated models that integrate demand-side 

management, a deeper analysis of game theory approaches, and a thorough 

consideration of social welfare impacts. By doing so, the robustness and applicability 

of the findings can be enhanced, making the proposed strategies more effective in a 

wider context and contributing to the broader adoption of sustainable energy practices 

in urban infrastructure. 
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Chapter 5 SHS-EV charging stations demand side 

management considering social welfare maximization 

5.1. Introduction 

To ensure the stable operation of a power system, it's crucial to maintain a real-time 

balance between supply and demand. However, achieving this balance solely through 

supply-side adjustments is challenging. Consequently, effective DSM becomes 

essential [167]. Among DSM methods, real-time pricing stands out as the most 

straightforward and effective. It uses electricity price signals to motivate consumers to 

shift their usage to off-peak periods, thereby reducing peak demand and smoothing out 

consumption fluctuations [134][167]. The study in [131] was the first to apply a social 

welfare maximization model to real-time pricing in smart grids, aiming to optimize user 

utility and minimize costs for power providers. The objective function combines the 

user's utility function and the power provider's cost, using the balance between supply 

and consumption as a constraint. This dual optimization approach determines supply, 

demand, and real-time prices. 

Chapter 3 confirms the feasibility of SHS-EVCS, while Chapter 4 explores the potential 

for multiple SHS-EVCSs to complement each other, especially in energy trading. This 

chapter will evaluate the practical feasibility of EVCSs, focusing on two main models. 

The first model is a non-cooperative game model for a single charging station, aimed 

at minimizing costs related to construction, operation, and maintenance. The second 

model extends the internal EVCS energy transaction cooperation model discussed in 

Chapter 4 Part 2, incorporating operational load management and an internal dispatch 

centre for demand response. This model also focuses on maximizing social welfare by 

considering the economic interests of EV owners, particularly in terms of acceptable 

charging prices, which effectively minimizes the cost of electricity supply. In the 

general social welfare model, capital costs of electricity generation (including grid, 
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renewable energy, and storage systems) are significant. However, in the SHS-EVCS 

model, these capital costs are already accounted for in the non-cooperative game model 

for a single charging station, so they are excluded from the social welfare maximization 

model. 

The chapter makes three key contributions: 

• Develop an EV charging time model, which employs a Markov decision process 

to manage the uncertainty of charging times, combined with Monte Carlo 

simulation to predict EV charging demand based on the probability of various 

charging durations. 

• Create a bi-level optimization model that integrates both non-cooperative and 

cooperative game theory to tackle the dual challenges of minimizing capital costs 

and maximizing social welfare. 

• Enhance a duality theory-based real-time pricing model aimed at maximizing 

social welfare, which accounts for EV charging demand while considering the 

interests of drivers, SHS-EVCS, and the grid. 

This chapter is structured as follows: Section 5.2 describes the bi-level model of multi-

SHS-EVCSs, covering three layers—information, economic, and energy. Section 5.3 

presents the EV charging time and demand model. Section 5.4 develops the social 

welfare model. The case study is discussed in Section 5.5, and the chapter concludes in 

Section 5.6. 

5.2. Bi-level Model 

This chapter divides the multi-SHS-EVCSs system into two levels. The first level 

addresses the single SHS-EVCS level, which utilizes a non-cooperative game theory 

model to reschedule energy dispatch in order to meet the Level 1 objective function-

minimize the capital cost. The second level similar as part 2 of Chapter 4 but an Internal 

Management System (IMS), which is also called demand response centre, will be 

acceded to the SHS-EVCSs coalition to manage the ordering of charging and 
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discharging. In this stage, there will be two scenarios, the first scenario will calculate 

the uncertainty of EV charging time to predict the EV charging demand; the second 

scenario will using the fixed load data from chapter 4. The objective function at this 

level aims to maximize the coalition’s profit. The final objective for this bi-level model 

is to maximize social welfare. 

5.2.1 First Level SHS Model 

This section integrates solar energy, hydrogen storage system, battery storage (SHS), 

and the grid as player in a non-cooperative game theory for CS, which hydrogen storage 

provides long-term energy buffering, batteries offer rapid response to demand 

fluctuations, solar energy contributes renewable generation, and the grid ensures stable 

supply. The objective is to minimize construction, operation, and maintenance costs 

while optimizing energy allocation. The specific interaction model is illustrated in 

Figure 5-1. 

 
Figure 5-1 Electricity dispatch depends on non-cooperative game theory within SHS 

system 
The objective function for this part is similar as 4.1-4.11, but 5.1-5.9 are not considering 

energy exchange inside the SHS system. The formular is shown as: 

𝑚𝑖𝑛𝐹 = 𝑚𝑖𝑛	(𝐶T + ∑ ∑ 𝐶($
4G(

K
CG( [𝑚, 𝑡])      5.1 
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𝐶T = ∑ 𝐶CTK
CG( × 1×(1)()<

(1)()<,(
        5.2 

𝐶([𝑚, 𝑡] = 𝐶Z[[𝑚, 𝑡] + 𝐶;\>][𝑚, 𝑡] + 𝐶V13A[𝑚, 𝑡]    5.3 
𝐶Z[[𝑚, 𝑡] = 𝐶Z[(!"E)[𝑚, 𝑡] + 𝐶Z[(?BE)[𝑚, 𝑡] + 𝐶Z[(>BE)[𝑚, 𝑡]    5.4 

𝐶Z[(!")[𝑚, 𝑡] = 𝐾Z[!"𝑃!"[𝑚, 𝑡]        5.5 

𝐶Z[(?B)[𝑚, 𝑡] = 𝐾Z[?B𝑃2&,3
4 [𝑚, 𝑡]        5.6 

𝐶Z[(>B)[𝑚, 𝑡] = 𝐾Z[>B𝑃>B,=,4[𝑚, 𝑡]       5.7 

𝐶;\>][𝑚, 𝑡] = 𝑎C𝑓C        5.8 

𝐶V13A[𝑚, 𝑡] = 𝑏𝑃V,^\Y − 𝑐𝑃V,B>]]        5.9 

where N is the subsystem, which is 2; T is 24 h; 𝐶CT  is the initial capital cost in the m 

subsystem; 𝐶Z[[𝑚, 𝑛], 𝐶;\>][𝑚, 𝑛], and 𝐶V13A[𝑚, 𝑛] are the operating and maintained 

cost, fuel cell cost, and selling and buying electricity price from grid cost, respectively; 

r is the discount rate, which is 6%;  𝐶Z[(!"E)[𝑚, 𝑡] , 𝐶Z[(?BE)[𝑚, 𝑡] , and 

𝐶Z[(^=4E)[𝑚, 𝑡] are the photovoltaic, hydrogen, and battery storage O&M cost; 𝐾Z[!", 

𝐾Z[?B, and 𝐾Z[^=4 are the operation and maintenance cost, which is 28.70 GBP/kW, 

14.18 GBP/kW, and 4.75 GBP/kW, respectively; 𝑃!"[𝑚, 𝑡] , 𝑃2&,3
4 [𝑚, 𝑡] , and 

𝑃>B,>,4[𝑚, 𝑡] are the output power for PV, hydrogen, and battery storage, respectively; 

𝑎C	and	𝑓C are the price for the fuel cell and capacity for the fuel cell, respectively; b 

and c are the buying and selling prices for the grid (these prices are changeable 

depending on the time period, but in this paper, the selling price c is 0.33 GBP/kWh), 

respectively; 𝑃V,^\Y  and 𝑃V,B>]]  are the buying and selling power from the grid, 

respectively. 

This chapter is also using the PSO to solve the first level problem, using the equation 

3.9-3.14, and energy constrains are same as equation 4.14-4.17. 

5.2.1.1. Non-Cooperative Game Theory 

The model presented in this section is a multi-agent framework where each participating 

piece of equipment focuses on cost minimization. The strategic decisions of each 
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participant are independent of others, establishing a scenario of mutual interaction and 

fair competition. This setup characterizes a typical non-cooperative game model. The 

non-cooperative interactions among all energy sources can be described as follows: 

𝐺 = {𝑃;𝑁; 𝐸}        5.10 

Where 𝑃 is the game player; 𝑁 is the strategy set; 𝐸 is the payoff function. 

l Game player: in the context of this game, each entity with decision-making 

authority is referred to as a game player. The game participants in this study 

include solar energy (S), hydrogen energy storage (H), battery energy storage 

(B), and the power grid (G). The collective set of these participants is 

represented as follows: 

𝑃 = {𝑆, 𝐻, 𝐵, 𝐺}        5.11 

l Strategy Set: during the game, each participant selects a set of strategies to 

maximize their own benefits. In this context, the strategies correspond to 

minimizing costs for each energy source: solar energy (𝑁#), hydrogen energy 

storage (𝑁2 ), battery energy storage (𝑁< ), and the power grid (𝑁/ ). The 

strategy set is represented as follows: 

𝑁 = {𝑁#; 	𝑁2; 	𝑁<; 	𝑁/}        5.12 

l Payoff: the payoff function evaluates the cost of each participant in the game 

and serves as crucial feedback for adjusting strategies in subsequent rounds. 

The payoff function for each participant depends not only on their own 

strategy but also on the strategies of other participants. It is represented as a 

function of the strategy combination, as shown in Equation (5.13), 𝐸#2# is the 

minimum cost for the SHS system: 

𝐸#2#(𝑁#; 	𝑁2; 	𝑁<; 	𝑁/)       5.13 

In general, non-cooperative games will expect to find a Nash equilibrium and obtain 

the optimal objective function. 

To satisfy the condition for Nash equilibrium minimize the cost for grid, which can be 

tell as less power buying from grid. Therefore, the optimal solution for grid 𝑃V4 needs to 

fix the power of 𝑃!"4 , 𝑃?B4 , and 𝑃>B4 . For solar power optimal solution 𝑃!"4 , fix the power 
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of 𝑃V4, 𝑃?B4 , and 𝑃>B4 ; For battery storage optimal solution 𝑃>B4 , fix the power of 𝑃V4, 𝑃?B4 , 

and 𝑃!"4 ; For hydrogen storage system optimal solution 𝑃?B4 , fix the power of 𝑃V4, 𝑃>B4 , 

and 𝑃!"4 . Decision variables are the power generated or purchased from 𝑃V4, 𝑃?B4 , 𝑃>B4 , and 

𝑃!"4  at time 𝑡. 

To solve Nash Equilibrium 

1) Initialization: set initial strategies 𝑁#, 𝑁2 , 𝑁< , 𝑁/ , replace by 𝑃V4, 𝑃!"4 , 𝑃?B4 , and 

𝑃>B4 . 

2) Iterative optimization: 

l Grid: 

• Fix 𝑃!"4 , 𝑃?B4 , and 𝑃>B4 . 

• Solve the optimal 𝑃V4.  

l Solar power: 

• Fix 𝑃V4, 𝑃?B4 , and 𝑃>B4 . 

• Solve the optimal 𝑃!"4 . 

l Battery storage: 

• Fix 𝑃V4, 𝑃?B4 , and 𝑃!"4  

• Solve the optimal 𝑃>B4 . 

l Hydrogen storage system: 

• Fix 𝑃V4, 𝑃>B4 , and 𝑃!"4  

• Solve the optimal 𝑃?B4 . 

3) Check convergence: 

l Verify if all participants' strategies converge to a fixed point. 

l If not converged, return to step 2 for further iteration. 

4) Verify Nash Equilibrium: 
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l Confirm that all strategy combinations satisfy the Nash equilibrium 

condition, meaning each participant cannot further reduce its cost by 

changing its strategy while others' strategies remain unchanged. 

5.2.1.2. EV Uncertainty Model 

To capture the randomness of EV charging times, this chapter adopts the Markov chain 

probability model, which is particularly well-suited for describing random processes 

with discrete time and states. A key feature of this model is that the next state depends 

solely on the current state, independent of previous states. The transition probabilities 

between these states help simplify the complexity of the random process. Each power 

level of the EV battery can be considered a discrete state, making the random 

fluctuations in battery power a non-stationary Markov chain. This approach effectively 

represents the probability of future events based only on the current state [168]. 

𝑃M𝑥_A3B�𝑥(A3B = 𝑠(A3B, 𝑥6A3B = 𝑠6A3B, … , 𝑥_,(A3B = 𝑠_,(A3B N = 𝑃M𝑥_A3B�𝑥_,(A3B = 𝑠_,(A3B N          5.14 

𝑠_A3B ∈ 𝑆A3B, 1 ≤ 𝑓 ≤ 𝑓C=N 

Where 𝑥_A3B  is the 𝑓′𝑡ℎ  discrete variables; 𝑠_A3B  is the 𝑓′𝑡ℎ  discrete state; 𝑆A3B  is the 

discrete state space; 𝑓C=N is the maximum number of discrete variables. 

Based on 5.14, it is also needs to satisfy: 

𝑃M𝑥_A3B�𝑥_,(A3B = 𝑠_,(A3B N = 𝑃M𝑥_)(A3B �𝑥_A3B = 𝑠_A3BN    5.15 

To describe the randomness and reversibility of the EV charging and driving power 

consumption process, the detailed balance condition is incorporated into the Markov 

sampling process. This ensures reversibility between any two states: 

𝑝3D𝑃M𝑥_)(A3B = 𝑠DA3B�𝑥_A3B = 𝑠3A3BN = 𝑝D3𝑃M𝑥_)(A3B = 𝑠3A3B�𝑥_A3B = 𝑠DA3BN  5.16 

Where 𝑝3D is the transition probability of state 𝑖 to j; 𝑝D3 is the transition probability of 

state j to 𝑖. 

EVs can be categorized into two operating states: charging and non-charging (waiting). 

These correspond to two distinct modes: charging mode and waiting mode [168-171]. 
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In charging mode, the vehicle is connected to the SHS-EVCS and actively charging. In 

waiting mode, the vehicle is at the SHS-EVCS but not connected for charging, 

essentially in a parked state. The variable 𝑐_ represents the probability that the vehicle 

is in the charging state, highlighting the randomness of the charging process, while 

𝑑_	represents the probability of charging interruption, capturing the uncertainty in the 

charging process. 

The state transition probabilities show in figure 5-2. Here, 𝐸𝑉𝐶_ and 𝐸𝑉𝐷_ denote the 

states of the charging mode and waiting mode, respectively. The probabilities of 

transition between these states are represented by 𝑑_  and 𝑐_ , while 𝑎_  indicates the 

waiting probability.  ∆𝑇(  and ∆𝑇6  represent the charging time and waiting time, 

respectively. 

 
Figure 5-2 State transition diagram 

If the EV drivers are anxiety of battery level, in this paper, the level is 𝐵C3E=113"> ≤ 35%, 

the drivers will charge their EV. When charging the car, if 𝐵C3E]>="> ≥ 95%, the EV 

drivers will choose to discharge their cars. N is the full battery level which is 100. 

Suppose that battery capacity consumption is no more than 50%, the probability for 𝑐_ 

and 𝑑_ can be demonstrate as [168,169,170]: 

𝑐_ = �

(

()>(>?@.BC(D-;
)""-E+F2G)@.:I

												𝑓 ≥ 𝐵C3E=113">

1																																															𝑓 < 𝐵C3E=113">

	

      5.17 

𝑑_ = �

(

()>(@.BC(D-;
J+)E+F2G?>)@.K&

													𝑓 ≥ 𝐵C3E]>=">

0																																																𝑓 < 𝐵C3E]>=">

									

            5.18 

The state probability 𝐸𝑉𝐶_ and 𝐸𝑉𝐷_ of EV can be denoting as [168, 169, 170]: 
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𝑃B5𝐸𝑉𝐶_8 =

⎩
⎨

⎧																								51 − 𝑑_,(8𝑃B5𝐸𝑉𝐶_,(8 + 𝑐_𝑃B5𝐸𝑉𝐷_8
1 ≤ 𝑓 ≤ 𝑁
𝑐T𝑃B(𝐸𝑉𝐷T)
𝑓 = 0

        5.19 

𝑃B5𝐸𝑉𝐷_8 =

⎩
⎨

⎧𝑑_𝑃B5𝐸𝑉𝐶_8 + 𝑎_𝑃B5𝐸𝑉𝐷_8 + 51 − 𝑐_)( − 𝑎_)(8𝑃B5𝐸𝑉𝐷_)(8
0 ≤ 𝑓 ≤ 𝑁 − 1

𝑑K𝑃B(𝐸𝑉𝐶K) + 𝑎K𝑃B(𝐸𝑉𝐷K)
𝑓 = 𝑁

      5.20 

Where 𝑃B5𝐸𝑉𝐶_8 is the state probability of 𝐸𝑉𝐶_, and 𝑃B5𝐸𝑉𝐷_8 is the state probability 

of 𝐸𝑉𝐷_. 

These variables subject to: 

∑ M𝑃B5𝐸𝑉𝐶_8 + 𝑃B5𝐸𝑉𝐷_8N = 1(TT
_GT       5.21 

𝑑T = 0, 𝑐T = 1, 𝑑(TT = 1, 𝑐(TT = 0      5.22 

Equation (5.21) states that at any given time, the sum of all state probabilities for the 

EV must equal 1. Equation (5.22) specifies that when the battery power is at 0, the EV 

must be in the 𝐸𝑉𝐶_ mode, and when the battery is fully charged, it must be in the 𝐸𝑉𝐷_ 

mode. 

∆𝑇( and ∆𝑇6 are [168]: 

∆𝑇( = 𝑚𝑖𝑛 �<!)L∆()_)
K@!9!

, 𝑇]>="> − 𝑇=113">      5.23 

� ∆𝑇6 =
<!)L∆(,_)

K5MD"

1 ≤ ∆(−𝑓) ≤ 𝑁
        5.24 

Where: 

𝜂0 is the EV battery efficiency, which is 95% 

𝑃0 	is the fixed charging power, which is 7kW 

𝐵0=! is the battery capacity, which is 60kWh (Tesla model 6 battery capacity) 

∆(−𝑓) is the electricity loss when driving the EV 

𝐸*C is power consumption, which is 16.25kWh/100km 

𝑣 is the average driving speed, which is 32km/h 

To forecast electricity demand across all SHS-EVCSs for numerous EV drivers, it's 

crucial to start by creating a model to predict the charging demand of a single EV. This 
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model serves as the foundation for understanding broader consumption patterns. Then, 

by summing the individual charging demands using the Monte Carlo random simulation 

method, the total electricity demand for all EVs can be calculated. The total charging 

power demand at any given moment can be expressed as follows: 

𝑃0?=,B\C = ∑ 𝑃0?=,3
K+E
3        5.25 

Where 𝑃0?=,B\C is the total charging power; 𝑃0?=,3 is the 𝑖′𝑡ℎ EV charging power; 𝑁>" 

is the total EV number. 

For each EV’s SOC, it should follow: 

𝑆𝑂𝐶B4=14 =
(

#Z%.*)"*,D)N,#Z%.*)"*,D-;
     5.26 

Where 𝑆𝑂𝐶B4=14  is the initial SoC of EV, 𝑆𝑂𝐶B4=14,C=N  and 𝑆𝑂𝐶B4=14,C3E  are the 

maximum and minimum SoC for EV. 

For EV’s battery 𝑆𝑂𝐶=113"> when arriving at SHS-EVCS, it denotes as: 

𝑆𝑂𝐶=113"> = 𝑆𝑂𝐶B4=14 −
QO75MD
<!)L

     5.27 

Where 𝐷5X is the EV driving distance and subject to:  

0 ≤ 𝐷5X <
<!)L
5MD

        5.28 

Meanwhile, for all the EV drivers, they have 𝑧 times charging opportunity: 

1 ≤ 𝑧 ≤ 3	                       5.29 

Although the Monte Carlo method offers high prediction accuracy, it requires prior 

knowledge of the probability distribution of input samples. Predicting EV charging 

demand involves many uncertainties that typically do not follow standard probability 

distributions, making it challenging to determine the corresponding probability density 

functions [168]. For example, the probability that an EV owner opts for a simple trip 

chain for commuting and the probability that an EV charges from the grid often belong 

to discrete probability distributions [168–170]. Therefore, it is essential to first define 

the probability distribution of the relevant uncertainties before applying the Monte 

Carlo method to predict EV charging demand. 

The EV charging forecast algorithm is follow as (Algorithm 5.1): 
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Algorithm 5.1: EV Charging Demand Forecast Algorithm 

Input: the EV data: 𝐵0=!, 𝜂0, 𝑃0, 𝐸*C, 𝑣, 𝑁>"… 

a) Repeat 1: calculate the EVs charging demand 

b) Get initial EV data 𝑆𝑂𝐶B4=14 , 𝑃0?=,B\C  through Monte Carlo random 

simulation method 

c) Repeat 2: calculate single EV charging demand 

d) Update the current battery level 

e) Calculate the charging and discharging probability 𝑐_ , 𝑑_ 

f) Calculate the charging duration ∆𝑇( 

g) Calculate the waiting duration ∆𝑇6 

h) Get the charging frequency 1 ≤ 𝑧 ≤ 3 

i) Repeat 2 to calculate the single EV charging demand 

j) End repeat 2 

k) Repeat 1 based (5.25) to get the total EV charging demand 

l) End repeat 1 

m) End: Output the total EV charging demand to get the SHS-EVCS charging 

load 

5.2.2 Second Level for SHS-EVCSs 

The second level, similar to Chapter 4.3, incorporates information transfer and load 

demand considerations. Figure 5-3 shows how the second level operates: the blue line 

represents internal P2P energy trading, showing how energy is exchanged within the 

SHS-EVCSs. The pink line shows the flow of information, detailing the communication 

between each EVCS and the information centre, as well as the interactions between 

each EVCS and individual EVs. The yellow line represents EV charging flow, each 

EVCS will receive the EVs’ information when they are charging or waiting for charging. 

This information will use into the Markov decision process to estimate EV charging 

demand in real time scenario. 
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Figure 5-3 topology for SHS-EVCSs coalition information and energy flow 

In the SHS-EVCSs coalition, which consists of four EVCSs, D users, and an IMS, each 

SHS-EVCS generates electricity to meet the demand of EV drivers in its area. EV 

drivers, SHS-EVCS, and IMS are connected via a communication network to exchange 

real-time information on electricity prices and power requirement. A power 

consumption cycle is divided into k time periods. At the start of each period, the IMS 

sets an electricity price based on the power market. EV drivers and SHS-EVCS then 

determine their optimal power consumption and supply based on this price and relay 

this information back to the IMS. The IMS updates the electricity price based on the 

received consumption and supply data. This iterative process continues with drivers and 

SHS-EVCS adjusting their consumption and supply according to the new price 

information and reporting back to the IMS until supply and demand are balanced, 

establishing the electricity price for that time. This price becomes the real-time 

electricity price for the period.  

The social welfare maximization model 2.10 can be defined in this problem as:  

𝑚𝑎𝑥 ∑ (∑ 𝑉A5𝑥A* , 𝜔A*8 − 𝐶*(𝐺*)Q
AG( )P

*G(                5.30 

𝑠. 𝑡. ∑ 𝑥A* ≤ 𝐺*A∈Q , 𝑘 = 1,2, … , 𝐾           
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𝑚A
* ≤ 𝑥A* ≤ 𝑀A

* , 𝑑 = 1,2, … , 𝐷; 𝑘 = 1,2, … , 𝐾 

𝐺*C3E ≤ 𝐺* ≤ 𝐺*C=N , 𝑘 = 1,2, … , 𝐾 

Where 𝑥A* is the electricity consumption of EV driver 𝑑 at time 𝑘; 𝑚A
* 	and	𝑀A

* are the 

minimum and maximum electricity consumption of EV driver 𝑑  at time 𝑘 , and it 

satisified 𝑚A
* ≤ 𝑥A* ≤ 𝑀A

* ; 𝐺*  is SHS-EVCS’s electricity supply at time 𝑘 , 

𝐺*C3E	and	𝐺*C=N are the minimum and maximum electricity supply of SHS-EVCS, and 

𝐺*C3E ≤ 𝐺* ≤ 𝐺*C=N ; generally, 𝐺*C3E ≥ ∑ 𝑚A
*Q

AG(  and  𝐺*C=N ≥ ∑ 𝑀A
*Q

AG( ; 𝐶*(𝐺*) 

means the cost of SHS-EVCS to provide electricity for 𝐺* at time 𝑘, and it is the convex 

function of	𝐺*;	𝐶* is the capital cost for SHS-EVCS from first level output; 𝑉A5𝑥A* , 𝜔A*8 

is the utility that EV driver	𝑑	using	𝑥A* 	at	time	𝑘,	and	it	is	the	concave	function	of	𝑥A*;	

𝜔A* 	is	the	driver	𝑑′s	elastic	of	charging	his	EV	at	time	𝑘,	for	𝜔A* ∈ [1, 3.5].	

The objective function for maximizing social welfare is a concave function, and the 

constraint set is a convex set, making this a convex programming problem that can be 

effectively addressed using traditional convex programming techniques. However, the 

decision variables in equation (5.30) are the driver's electricity consumption 𝑥A* and the 

power supply of SHS-EVCS 	𝐺* . The real-time electricity price, which is the core 

variable of the problem, does not appear in the model and making it invalid to solve 

(5.30) directly. For convex optimization problems, the original problem is equivalent 

to the dual problem, where the decision variable of the dual problem, the Lagrange 

multiplier in the original problem's Lagrange function, corresponds to the shadow price 

in economics. Shadow prices are considered theoretically optimal and are often used to 

guide pricing. Therefore, this chapter will employ dual theory to determine the real-

time electricity price [131, 134,172-174]. 

Each interval in (5.30) is independent of each other, so a distributed algorithm can be 

used to solve each interval separately. The optimization problem corresponding to the 

k-th interval is: 

𝑚𝑎𝑥∑ 𝑉A5𝑥A* , 𝜔A*8 − 𝐶*(𝐺*)Q
AG(                   5.31 

𝑠. 𝑡. ∑ 𝑥A* ≤ 𝐺*Q
AG(              
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𝑚A
* ≤ 𝑥A* ≤ 𝑀A

* , 𝑑 = 1,2, … , 𝐷 

𝐺*C3E ≤ 𝐺* ≤ 𝐺*C=N 

The Lagrange function for (5.31) denotes as: 

𝐿(𝑥A* , 𝐺* , 𝜆*) = ∑ 𝑉A5𝑥A* , 𝜔A*8 − 𝐶*(𝐺*) + 𝜆*5𝐺* − ∑ 𝑥A*Q
AG( 8Q

AG(          5.32 

= p(𝑉A5𝑥A* , 𝜔A*8 − 𝜆*𝑥A*) + (𝜆*𝐺* − 𝐶*(𝐺*))
Q

AG(

 

Where 𝜆* > 0 is the Lagrangian	multiplier,	according	to	the	dual	theory,	(5.32)	can	

be	transform	to:	

min 	max 		𝐿5𝑥A* , 𝐺* , 𝜆*8	 	 	 	 	 	 	 5.33	

Where	𝜆* > 0,	𝑥A* ∈ [𝑚A
* , 𝑀A

*],	𝐺* ∈ [𝐺*C3E, 𝐺*C=N].	

Remark:	

𝑥A*∗ = 𝑎𝑟𝑔𝑚𝑎𝑥((𝑉A5𝑥A* , 𝜔A*8 − 𝜆*𝑥A*)			 	 	 	 5.34	

𝑥A* ∈ [𝑚A
* , 𝑀A

*]	

𝐺*∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜆*𝐺* − 𝐶*(𝐺*))	 	 	 	 	 5.35	

𝐺* ∈ [𝐺*C3E, 𝐺*C=N]	

𝐴(𝜆*) = max 		𝐿(𝑥A* , 𝐺* , 𝜆*)	

𝑥A* ∈ [𝑚A
* , 𝑀A

*]	

𝐺* ∈ [𝐺*C3E, 𝐺*C=N]	

= ∑ (𝑉A5𝑥A*∗, 𝜔A*8 − 𝜆*𝑥A*∗) + (𝜆*𝐺*∗ − 𝐶*(𝐺*∗))Q
AG( 		 	 5.36	

If	𝜆* 	is	the	time	of	use	(TOU)	or	real	time	electricity	price	for	k-th	 interval,	then	

(5.34)	 is	 the	 driver’s	 optimal	 charging	 electricity	 consumption	 for	 personal	

welfare	maximization	(the	difference	between	utility	and	electricity	purchase	fee).	

(5.35)	is	the	SHS-EVCS	maximizes	its	welfare	(the	difference	between	electricity	

sales	revenue	and	power	supply	cost)	to	obtain	the	optimal	charging	electricity	

supply.	Thus,	using	Lagrangian	multiplier	𝜆* 	as	real	time	electricity	is	reasonable.	

To	solve	the	dual	problem	min𝐴(𝜆*), 𝜆* > 0,	can	use	the	following	method	[175,	

176]:	
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𝜆*?)( = 𝜆*? + 𝛾*?𝑎*?	 	 	 	 	 	 	 5.37	

Where	ℎ	is	the	iteration	time;	𝛾*?	is	the	distance	and	≥ 0;	𝑎*?	is	the	down	direction	

of	function	𝐴(𝜆*);	let	𝑎*? = ∑ 𝑥A*∗Q
AG( − 𝐺*∗;	(5.37)	prove	that	when	∑ 𝑥A*∗Q

AG( > 𝐺*∗ ,	

𝑎*? > 0,	while	𝜆*?)( > 𝜆*? 	due	to	the	demand	and	supply	theory,	the	electricity	price	

increase;	 when	 ∑ 𝑥A*∗Q
AG( < 𝐺*∗ ,	 𝑎*? < 0 ,	 then	 𝜆*?)( < 𝜆*? ,	 the	 electricity	 price	

decrease;	when	∑ 𝑥A*∗Q
AG( = 𝐺*∗ ,	while	𝜆*?)( = 𝜆*? ,	the	electricity	price	keep	balance.	

In	paper	[131,	134,	174],	𝛾	is	a	fixed	positive	number,	which	is	0.8.	

	
Figure 5-4 power and information interaction between SHS-EVCS, EV drivers, and 

IMS 
Algorithm 5.2: Real-time electricity price distributed algorithm 

Initialization parameters: 𝛾, D, k, 𝑚A
* , 𝑀A

* and stop error 𝜀 (𝜀 is a positive number 

0.1), for h=0. IMS randomly release electricity price 𝜆*? to SHS-EVCS and EV driver. 

1. According to the random electricity price, using (5.34) to calculate the optimal 

electricity consumption 𝑥A*∗(𝜆*?) by EV driver, and report the optimal electricity 

consumption to ISM 

2. Using 𝐺*∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜆*𝐺* − 𝐶*(𝐺*))  to calculate the optimal electricity 

supply 𝐺*∗(𝜆*?) by SHS-EVCS, and report it to ISM 

3. Accept the optimal 𝑥A*∗(𝜆*?) and 𝐺*∗(𝜆*?), using 𝜆*?)( = 𝜆*? + 𝛾*?𝑎*?  to calculate 

the optimal electricity price 
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4. If 0 < 𝐺*∗5𝜆*?8 − ∑ 𝑥A*∗Q
AG( (𝜆*?) ≤ 𝜀, let 𝜆* =

(
6
(𝜆*? + 𝜆*?)(); if not, input 𝜆*?)( 

to 1 

End: output the optimal solution for 𝑥A*∗ and 𝐺*∗ 

5.2.2.1. Game Theory Model 

It is same as game theory model in chapter 5. 

Under the cooperative game model, within the SHS-EVCSs P2P trading model, each 

EVCS serves as producer and consumer, means this is multiple entities reach an 

agreement. Therefore, the game theory follows as figure 5-15: 

a) Start trading. 

b) All SHS-EVCSs request the energy exchange.  

c) With the goal of maximizing the profits of the coalition, according to the 

energy trading needs of each EVCS, analyse whether each EVCS meets the 

constraints of the model running time (if the energy trading meets the best 

profit for the coalition in time t), and the energy trading plan is calculated. 

d) Confirm the energy trading flow and profit calculate. 

e) If the profit follows the coalition maximization, go to step f); if not, go back 

to the step c), recalculate the energy exchange quantity. 

f) Profit allocates depends on the constraints. 

g) Energy trading end. 

5.2.3 Economic Analyse  

Integrating renewable energy sources into EVCSs brings substantial economic benefits, 

as highlighted by various studies. Adding solar power to EVCSs, for example, can 

greatly reduce operating costs. One study published in 'Renewable and Sustainable 

Energy Reviews' found that solar-powered charging stations help cut down on grid 

reliance, resulting in lower energy expenses and boosting financial viability for 

operators [177]. Another study [178] showed that incorporating a 100 kW PV system 
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could decrease net present costs by around 122%, saving about $61,492 annually 

compared to stations reliant solely on the grid. 

Demand response strategies further enhance savings by allowing EVCSs to adjust 

charging operations based on real-time electricity prices, which means charging can be 

timed for off-peak periods when rates are lower. Research [179] found that these 

strategies not only reduce operating costs but also improve profitability by aligning 

energy consumption with cheaper electricity rates. Similarly, battery storage integration 

enables stations to store excess renewable energy for use during peak times. A study 

[180] reported that combining battery storage with EVCSs led to a 29.4% drop in CO₂ 

emissions and a 96.16% reduction in unburned hydrocarbons, offering clear economic 

and environmental advantages. This setup also reduces the need for energy purchases 

during peak price periods and opens up additional revenue through energy arbitrage 

[181]. 

The bi-level optimization model explored in this article is designed to maximize social 

welfare by balancing the financial interests of both EVCS operators and EV users. This 

approach ensures that the cost savings and benefits of renewable integration are shared 

equitably, strengthening the long-term economic sustainability of EV charging 

networks [182]. By incorporating renewable energy and demand response strategies, 

the model strikes an optimal balance between cost-efficiency and user convenience, 

further enhancing the economic sustainability of EV infrastructure [183]. Techno-

economic assessments back this up, showing that renewable-powered EVCSs are more 

economically viable, with significantly lower levelized energy costs than traditional 

grid-reliant stations. For instance, combining solar PV and battery storage brought the 

LCOE down to $0.0549/kWh, compared to $0.409/kWh for grid-only systems [180]. 

5.3. Results and Analysis   

There will be three scenarios for analysis: one is day-ahead without TOU strategy (EV 

uncertainties), another involving day-ahead and real-time without TOU strategy , and 
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the last one is day-ahead and real-time prediction with TOU. In the day-ahead TOU 

scenario, load management decisions are made based on predicted demand and supply 

conditions from the department for transportation. This allows for strategic planning 

and optimization of energy resources in advance. The real-time TOU scenario, on the 

other hand, utilizes a Markov decision process to dynamically adjust and optimize load 

in real-time. This involves comparing the differences between fixed loads, which are 

inflexible and must be met regardless of conditions, and flexible loads, which can be 

adjusted based on real-time data. The goal of this comparison is to assess two ways' 

impact on social welfare, aiming to enhance overall efficiency, reduce costs, and 

improve the balance between energy supply and demand.  

Table 5-1 and Figure 5-5 present the initial scenario featuring fixed loads, where the 

parameters for the SHS-EVCSs are derived from forecasting and scheduling 

approaches that utilize transport statistics obtained from gov.uk, as detailed in paper 

[184]. These statistics play a crucial role in shaping the parameters, ensuring that they 

accurately reflect real-world conditions. In Figure 5-6, the fixed load values for 

Hammersmith & Fulham and Hounslow are based on weekday averages, which 

accounts for the observed charging peaks that occur before and after standard working 

hours. This pattern is consistent with typical weekday commuting behaviour, where 

EVs are charged primarily outside of office hours. 

For the other two EVCSs, the fixed load values are based on weekend averages, 

reflecting different usage patterns when people tend to have more flexibility in their 

schedules, leading to varied charging times. Figure 5-6 provides a detailed visualization 

of the SHS-EVCSs load curves for both day-ahead and real-time forecasts within a non-

TOU system. This figure demonstrates that critical factors, such as EV charging times, 

battery capacities upon arrival and departure, and charging rates, remain consistent 

regardless of the forecasting method used. This consistency suggests that the system is 

robust under various conditions, although it also highlights areas where future 

optimization could further enhance efficiency. 
Table 5-1 London four area SHS-EVCS parameters 
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 Parameters Hammersmith 
& Fulham 

Richmond 
upon 
Thames  

Hounslow Ealing 

Charger capacity (kW) 360kW 360kW 360kW 360kW 
Number of chargers per 
station 3 8 14 21 

PV installed capacity(kW) 500 1000 1000 1000 
PV installed cost (£/kW) 1112 1112 1112 1112 
Battery capacity (kW) 1000 800 800 800 
Battery installed cost (£/kW) 331.55 331.55 331.55 331.55 
Battery initial state of charge 
(%) 40 40 40 40 

Rated charge and discharge 
power of battery (kW) 500 500 500 500 

Minimum battery state of 
charge (%) 25 25 25 25 

Maximum battery state of 
charge (%) 100 100 100 100 

Battery charge and discharge 
efficiency (%) 85 85 85 85 

hydrogen tank capacity 
(m^3) 1000 1000 1000 1000 

Initial capacity of gas tank
（%） 30 30 30 30 

Hydrogen tank cost (£/m^3) 27.63 27.63 27.63 27.63 
Tank storage efficiency (%) 95 95 95 95 
Electric to gas efficiency (%) 75 75 75 75 
 Electricity-to-gas coefficient 
(kWh/m^3) 0.2 0.2 0.2 0.2 

Fuel cell generator capacity 
(kW) 800 1500 1000 1200 

Gas-to-electric efficiency (%) 65 65 65 65 
Gas-to-electricity coefficient 
(m^3/kWh) 0.295 0.295 0.295 0.295 

RE feed-in tariff (£/kWh) 0.03 0.03 0.03 0.03 
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Figure 5-5 SHS-EVCSs prediction load using chapter 4’s method 

 
Figure 5-6 SHS-EVCSs day ahead and real time load curve without TOU strategy 

Figure 5-7 shows the EV prediction load and load after TOU strategy. The blue curve 

shows typical EV charging patterns without any TOU interventions. Notable peaks for 

0 5 10 15 20 25
Time/h

0

200

400

600

800

1000

1200

po
w

er
/k

W

EVCS 1 load curve
Day ahead
Real time

0 5 10 15 20 25
Time/h

0

500

1000

1500

2000

2500

3000

3500

po
w

er
/k

W

EVCS 2 load curve
Day ahead
Real time

0 5 10 15 20 25
Time/h

0

500

1000

1500

2000

2500

po
w

er
/k

W

EVCS 3 load curve
Day ahead
Real time

0 5 10 15 20 25
Time/h

0

500

1000

1500

2000

po
w

er
/k

W

EVCS 4 load curve
Day ahead
Real time



 132 

SHS-EVCS 1 and 3 are around the 9 am and 7 pm, likely corresponding to typical EV 

charging times. Lower power demand during early morning hours (0 to 5am). For SHS-

EVCS 2 and 4, the peak load at noon, the lower power demands similar to 1 and 3. The 

orange curve shows the load after TOU strategies have been applied. The TOU appears 

to effectively reduce the peaks for all SHS-EVCSs, indicating successful peak shaving. 

For SHS-EVCS 2 and 4, there is only one peak load at noon, demonstrating the 

effectiveness of the TOU strategy.  

For the implications of TOU strategy , the significant reduction in peak load (as seen in 

the reduction from the blue to the orange line) helps in alleviating stress on the power 

grid, potentially reducing the need for grid reinforcement and lowering electricity costs. 

By distributing the load more evenly, TOU strategy can enhance the efficiency of power 

generation and distribution systems, contributing to more stable grid operations. TOU 

strategy can lead to cost savings for both utilities and consumers by minimizing the 

need for peak power generation, which is often more expensive and environmentally 

detrimental. 

 
Figure 5-7 EV prediction load and load after demand side management 
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Figure 5-8 Prediction scenarios and reduced scenarios 

Figure 5-8 compares the predicted scenarios with the reduced versions for SHS-EVCSs 

forecasting. Initially, 50 scenarios were generated for each SHS-EVCS. The scenario 

reduction process involves selecting a subset of these scenarios and adjusting their 

probabilities to closely match the overall probability distribution of the original set. 

This process minimizes the difference between the probability distribution of the 

selected subset and the initial group of scenarios. To systematically reduce the number 

of scenarios, the one with the lowest probability is removed in each iteration. By the 

end of the iterations, at least the five most probable scenarios remain. This approach 

effectively reduces the total number of scenarios while preserving those that best 

represent the key probabilistic features of the original set. This method not only 

simplifies the computational process but also maintains the accuracy of the statistical 

representation. Over the course of the day, the original prediction scenarios show 

significant variation and complexity, with multiple intersecting lines and extraneous 

data points. In contrast, the reduced scenarios offer a more concise and focused view, 

clearly highlighting the main trends in electricity demand. Peak demand times at 9 a.m. 

and 6 p.m. are prominent in both sets of scenarios, but the reduced versions eliminate 

minor fluctuations and outliers, making the data easier to interpret and more useful for 

strategic planning. 
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Figure 5-9 EV number optimization  

The figure 5-9 provides each SHS-EVCS's EV traffic flow over a 24-hour period, 

showcasing distinct peaks and valleys in demand. The primary peak occurs at 

approximately the 10 am, where all stations experience a significant increase in vehicle 

numbers, indicating a morning charging rush. Specifically, EVCS 2 reaches its highest 

vehicle count during this period, suggesting it is a preferred station or location for 

morning charging, which is because it is in a commercial area. Conversely, EVCS 3 

exhibits lower overall usage but still shows noticeable peaks at the 6am and 9am, 

indicating targeted high-demand periods. During the night at 8 pm, highlights another 

surge in charging activity, likely corresponding to evening charging. This trend is 

observed across all stations, with each showing increased vehicle numbers. EVCS 4  

also sees a significant peak currently, demonstrating consistent demand during evening 

hours. Early morning around 0-5 am show the lowest vehicle numbers across all stations, 

indicating minimal charging activity, which could reflect lower overall travel and 

charging needs during these hours and effective TOU strategies already in place, 

shifting demand away from this period. 

The observed charging patterns likely result from typical daily routines, where morning 

peaks correspond to pre-work charging and evening peaks to post-work or end-of-day 
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charging needs. Most of EV drives are preferring to charge their car before work and 

after work. Implementing strategies to manage these peaks, such as increasing charging 

station capacity or optimizing charging schedules, can enhance overall system 

efficiency and user experience. 

 
Figure 5-10 SHS-EVCS1 renewable energy usage and electricity load curve 



 136 

 
Figure 5-11 SHS-EVCS2 renewable energy usage and electricity load curve. 

 
Figure 5-12 SHS-EVCS3 renewable energy usage and electricity load curve. 
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Figure 5-13 SHS-EVCS4 renewable energy usage and electricity load curve. 

Figures 5-10 to 5-13 shows the energy utilization and electricity load profiles for four 

SHS-EVCSs. During the daytime, PV generation is the primary source of electricity. 

The efficiency and sustainability of PV systems make them an ideal choice for daytime 

power, reducing the need for grid electricity and minimizing carbon emissions. This 

reliance on solar power not only decreases operational costs but also aligns with 

renewable energy goals. After sunset, when solar power is no longer available, the SHS-

EVCSs shifts to hydrogen fuel cells for electricity generation. The hydrogen storage 

system used in EVCS can be generated during periods of low electricity demand or 

excess solar production, ensuring a sustainable and continuous energy supply. 

Supplementing hydrogen storage system, electricity is also drawn from battery storage 

system. These batteries store excess energy generated during the day, particularly from 

PV systems, and release it during peak demand periods or when renewable generation 

is low. The integration of battery storage ensures a stable and reliable power supply, 

balancing the intermittency of renewable energy sources. Additionally, each SHS-

EVCS has the capability to purchase electricity from other stations within the network 

based on cost-minimization strategies. This inter-station electricity trading allows for a 
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more flexible and efficient energy management approach, ensuring that each station can 

maintain optimal operations while minimizing expenses. By leveraging diverse energy 

sources and trading capabilities, the SHS-EVCSs can adapt to fluctuating energy 

demands and market conditions, enhancing the overall stability and sustainability of the 

power grid. 

 
Figure 5-14 electricity price and social welfare 

Figure 5-14 shows the interaction between electricity prices and social welfare over a 

24-hour period. Initially, electricity prices are relatively high, around £0.4. From 11 a.m. 

to 11 p.m., prices drop significantly and stabilize at approximately £0.2. After 11 p.m., 

prices begin to rise again, peaking around £0.35. In contrast, social welfare is lower 

when electricity prices are high, but it increases as prices decrease, highlighting an 

inverse relationship between the two. This inverse pattern is most pronounced between 

3 p.m. and 11 p.m., where lower electricity prices correspond to higher and more stable 

levels of social welfare. This suggests that lower electricity prices may enhance social 

welfare, likely due to improved energy affordability, which benefits consumers and 

contributes to overall social well-being. 
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Typically, fluctuations in electricity prices are driven by changes in demand and supply, 

peak versus off-peak hours, and other market factors. In this chapter, however, these 

fluctuations are influenced by the dynamics within the SHS-EVCSs alliance itself. 

Despite these variations, the overall trend indicates that as electricity prices fall, social 

welfare stabilizes or even increases slightly. 

 
Figure 5-15 total user welfare in different time interval 

Figure 5-15 shows the connection between social welfare and time across various 

intervals, specifically over three distinct days: day 1, day 2, and day 3. The recurring 

patterns that emerge across these intervals suggest that short-term forecasting, which 

focuses on more immediate time frames, can be almost as reliable as long-term 

forecasting for effectively addressing and planning for social welfare outcomes. This 

observation is particularly relevant in scenarios where quick decision-making is 

required, highlighting that energy management strategies do not necessarily need 

extended forecasts to be effective. Moreover, the figure provides the ability to achieve 

similar levels of social welfare with short-term forecasts suggests that in the further 

case study, the MATLAB simulation can potentially optimize resources and make 

informed decisions without always relying on extensive long-term data. 
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Figure 5-16 Total optimal dynamic load 

Figure 5-16 shows the optimal dynamic power load over a 24-hour period. During the 

low-demand period from 11:00 PM to 9:00 AM, the power load gradually rises from 

approximately 2,000 kW to 12,000 kW. This period sees low charging demand for EVs 

since many owners charge overnight, with some vehicles already fully charged or no 

longer charging. The sharp increase in load between 6:00 AM and 7:00 AM likely 

reflects a surge in charging activity as drivers prepare to leave for work. The SHS-

EVCS system optimizes EV charging loads through demand response, load forecasting 

algorithms, and TOU pricing, improving power utilization and balancing the internal 

grid load. Additionally, it regulates power distribution to prevent resource wastage 

during off-peak hours, ensuring efficient energy use throughout the system.  

Around 10:00 AM and between 4:00 PM and 5:00 PM, the power load stabilizes at 

about 14,000 kW, indicating a steady demand for EV charging. Implementing dynamic 

pricing during these periods can help further smooth the load curve and reduce 

fluctuations in grid pressure, contributing to a more resilient power system. Peak load 

periods are observed from 11:00 AM to 3:00 PM and from 6:00 PM to 10:00 PM, with 

loads exceeding 16,000 kW and peaking at 18,000 kW. These peaks are largely due to 

increased charging demand, particularly in the evening when many drivers charge their 

vehicles after returning home. To manage these peaks, strategies such as time-based 
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charging fees, peak time restrictions, and intelligent scheduling systems can be 

employed, which can also encourage more even distribution of charging times among 

users. By adjusting the output power of charging stations and coordinating power 

demand, grid stress during peak periods can be mitigated, ensuring that energy 

distribution remains efficient and reliable. Furthermore, SHS-EVCS leverages energy 

storage systems to return excess power to the grid during peak times, effectively 

contributing to peak shaving and valley filling, which helps in maintaining grid stability. 

Alongside IMS, this setup allows for real-time monitoring and dynamic management 

of EV charging demand, enhancing the reliability and stability of both internal and 

external grids, and giving an advice for more sustainable energy practices in the future. 

 
Figure 5-17 Convergence of real-time electricity price distributed (SHS-EVCS profit) 

algorithms 
Figure 5-17 shows the relationship between profit and iteration, where iterations span 

from 0 to 25, and corresponding profit values range between £0 and £18,000. The graph 

shows a significant and rapid surge in profit between the first and second iterations, 

quickly reaching nearly £16,800. After this sharp increase, the profit levels off, 

indicating a stabilization around this peak for the subsequent iterations. This pattern 
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suggests that the process efficiently achieves its optimal profit level early on, requiring 

minimal adjustments to maintain profitability thereafter.  

The rapid convergence of the solution within only two iterations, especially in the 

context of a complex network of charging stations, suggests that the optimization 

algorithm effectively reached a near-optimal solution almost immediately. This could 

be due to several reasons: The algorithm may have started with an initial population or 

solution that was already close to the optimal. In some cases, well-designed 

initialization strategies can lead to fast convergence because the initial points are in 

favourable regions of the search space. Although the EVCS network is complex, the 

model used for optimization may have been simplified, with fewer variables or 

constraints than expected. This reduction in complexity could allow the algorithm to 

identify the optimal solution with minimal iterations. PSO algorithm used in this 

simulation can be configured with high convergence rates under specific settings. This 

would allow the process to quickly focus on the best or nearly best solutions in just a 

few steps. The last reason is the optimization problem includes effective constraints that 

limit the search space significantly, the algorithm may need fewer iterations to find 

feasible solutions that also meet profitability objectives. 

 
Table 5-2 Energy optimal parameters and cost 

Parameters Hammersmith 
& Fulham 

Richmond 
upon Thames Hounslow Ealing 

Battery storage system (kWh) 800 1762.6758 1000 2000 
Battery storage system 
investment & O/M cost (£/kWh) 265,240 584,415.16 497,325 663,100 

Hydrogen storage tank capacity 
(kWh) 1369.49 1524.98 1379.1612 1277.0575 

Hydrogen storage tank 
investment & O/M cost (£/kWh) 55,100.09 61,356.08 55,489.204 51,381.16 

Fuel cell capacity (kWh) 1582.5 1988 1500 1000 
Fuel cell investment & O/M cost 
(£/kWh) 79,3845.3 997,260.32 752,460 501,640 

Table 5-2 presents the energy storage and generation technologies deployed in 

Hammersmith and Fulham, Richmond upon Thames, Hounslow, and Ealing, 

highlighting key trends and strategic differences in the adoption of battery and hydrogen 
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storage systems. The analysis reveals that Ealing has the highest battery storage 

capacity at 2,000 kWh, reflecting a focused investment strategy in this technology. In 

contrast, Richmond upon Thames has adopted a more diversified approach, investing 

significantly across all technologies. Richmond leads in battery system investment with 

a capacity of 1,762.68 kWh at a cost of £584,415.16, and leads in fuel cells with a 

capacity of 1,988 kWh at a cost of £997,260.32, underscoring its commitment to a 

balanced and resilient energy infrastructure. 

Hydrogen storage capacity is relatively consistent across all regions, ranging from 

1,300 to 1,500 kWh. However, Richmond again slightly exceeds others in both capacity 

and cost, indicating a strategic emphasis on this technology as well. Richmond’s 

substantial investment in fuel cells is particularly noteworthy, likely due to their higher 

efficiency and operational flexibility compared to other energy storage and generation 

methods. 
Table 5-3 MAPE for 4 SHS-EVCSs 

 Hammersmith & 
Fulham 

Richmond upon 
Thames Hounslow Ealing 

MAPE/% 13.04 11.37 11.8 13.56 

Table 5-3 shows the MAPE percentages for four regions: Hammersmith & Fulham 

(13.04%), Richmond upon Thames (11.37%), Hounslow (11.8%), and Ealing (13.56%). 

Richmond upon Thames exhibits the lowest MAPE, signifying the most accurate 

predictions, with Hounslow following closely. Conversely, both Hammersmith & 

Fulham and Ealing have higher MAPE values, with Ealing's figure being the highest, 

indicating the least accuracy in predictions. While these values are generally within an 

acceptable range, there is a clear opportunity to enhance forecasting methods in the 

future. 

5.4. Chapter Summary 

The chapter conducted in this thesis has thoroughly explored the optimization and 

economic feasibility of SHS systems integrated with EVCS, utilizing both non-

cooperative and cooperative game theory frameworks. The development and 
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implementation of a bi-level optimization model have proven to be a robust method in 

addressing the dual goals of minimizing capital and operational costs while maximizing 

social welfare. The use of non-cooperative game theory at the individual SHS-EVCS 

level allows for strategic cost minimization by treating each RE supplies as independent 

players. The solutions ensure that no single RE can reduce its cost further without 

increasing the costs of others, thus achieving an optimal balance in the energy dispatch 

strategy. At the second level, the cooperative game theory framework facilitates internal 

energy trading and demand response among multiple SHS-EVCSs. This collaborative 

approach, managed by an IMS, enhances overall system efficiency by dynamically 

adjusting electricity prices based on real-time supply and demand data. This iterative 

process not only stabilizes the electricity market but also ensures that EV charging 

demands are met effectively, even under conditions of uncertainty. 

The use of Markov decision processes to simulate EV charging times, combined with 

Monte Carlo simulations to forecast charging demand, is crucial for capturing the 

unpredictability of EV usage patterns. These methods ensure high forecasting accuracy 

and enable the optimization model to adapt to changing conditions, thereby enhancing 

the reliability of the SHS-EVCS system. Additionally, the application of duality theory 

in setting real-time electricity prices helps manage energy consumption on the demand 

side. By implementing these theoretically optimized prices, the system encourages off-

peak charging, alleviates peak load pressure, and improves grid stability. This approach 

aligns with the broader goals of demand-side management, such as peak load shaving, 

ultimately reducing overall energy costs and enhancing system sustainability. Empirical 

analysis and case studies illustrate the effectiveness of the TOU strategy in reducing 

peak loads and balancing demand. The comparison between forecasted and actual load 

scenarios underscores the critical role of TOU in preventing demand surges and 

promoting efficient energy use. This not only benefits the grid by minimizing the need 

for additional infrastructure investment but also provides economic advantages to 

EVCS operators and consumers through lower electricity prices and reduced operating 

costs. 
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To conclude, the implementation of optimization strategies and game theory models 

within SHS-EVCSs systems presents a significant opportunity to greatly improve the 

sustainability and efficiency of energy infrastructures. By applying these sophisticated 

methods, energy systems can be managed in a way that balances various demands more 

effectively. The findings from this study offer crucial insights into the complex 

interactions between renewable energy sources, storage capacities, and the demands of 

EV charging. These insights provide a clearer understanding of how to optimize these 

elements for better performance and efficiency. A particularly noteworthy result is the 

potential for social welfare to reach as high as £4.218*10^4, contingent upon 

maintaining EV charging electricity prices below £0.20. This highlights the critical role 

of pricing in achieving both economic benefits and enhanced social welfare. Overall, 

the study underscores the importance of integrating these advanced models to foster 

more sustainable and economically beneficial energy systems. 
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Chapter 6 Conclusion. 

This thesis has contributed the planning and operation of Solar-Hydrogen-Storage 

Integrated Electric Vehicle Charging Stations (SHS-EVCS) within smart cities. It 

encompasses the design of SHS-EVCS capacity, energy exchanges among various 

SHS-EVCSs, and case studies across different countries. This work also develops real-

time forecasts of EV charging demand to optimize SHS-EVCS charging loads and 

employs Time-of-Use (TOU) strategies to maximize social welfare for both EV drivers 

and SHS-EVCS operators. 

6.1 Basic knowledge using for SHS-EVCS 

Chapter 2 gives a detailed review of the theoretical frameworks and modelling 

techniques to incorporating renewable energy sources into EVCS within smart city. It 

covers a range of renewable energy models, such as photovoltaic, hydrogen storage 

system, and battery storage systems. Additionally, this chapter introduces an analytical 

tool including game theory and social welfare models that tackle both the operational 

and economic dimensions of energy systems. Game theory is using to arrange the 

interactions and energy transactions among various EVCSs, optimizing these 

relationships for both cost-effectiveness and equity. Meanwhile, the social welfare 

model aiming to enhance benefits for all EV drivers to SHS-EVCSs. 

6.2 Planning and operating a single SHS-EVCS 

In chapter 3, it provides an isolated microgrid SHS-EVCS, which integrates 

photovoltaic power, battery storage, and a hydrogen storage system, which including a 

fuel cell generator, an electrolyser, and a hydrogen storage tank. It introduces an energy 

management approach designed for isolated microgrids that aims to minimize costs and 

maintain a stable energy storage state. By employing a PSO algorithm to reduce the 

costs of the energy storage system, it ensures the maintenance of the energy storage 
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state at optimal levels. The energy management strategy is validated through MATLAB 

simulations, demonstrating that the proposed system significantly lowers costs 

compared to traditional way to buying electricity from grid. The findings confirm that 

the energy storage maintains its desired level consistently, enhancing the overall system 

reliability and efficiency. 

6.3 Multi-SHS-EVCSs energy exchange planning and 

operating 

Chapter 4, Section 4.2, introduces a novel multi-objective optimization design approach 

that accounts for both economic and environmental factors. The NSGA-II and 

MOEA/D algorithms are employed to optimize the distributed generation power rating 

and energy storage system capacity of SHS-EVCS. By comparing the optimization 

results from both algorithms, the proposed approach in this study demonstrates clear 

advantages, providing a comprehensive analysis of various influencing factors to 

achieve the best trade-off results. The management of energy flows from sources such 

as solar energy, hydrogen storage, battery storage, and the grid are effectively optimized, 

ensuring that the EVCS delivers a cost-effective energy supply. This thorough 

optimization approach enables charging stations to meet the variable energy demands 

of EV charging while minimizing costs and maximizing sustainability. 

Section 4.3 introduces a game theory-based P2P energy trading strategy specifically 

designed for multiple SHS-EVCSs, addressing the challenges of intermittency and 

volatility inherent in renewable energy generation. The strategy aims to mitigate the 

uncertainties caused by inaccurate renewable energy forecasts, which can significantly 

impact the operational efficiency and economic viability of SHS-EVCS. A notable 

advancement in this study is the introduction of a cooperative game theory approach 

based on P2P trading, which serves as a mechanism to resolve conflicts of interest and 

ensure mutually beneficial cooperation among participating SHS-EVCSs. Such 

cooperation is crucial for maintaining system stability and preventing any single SHS-

EVCS from destabilizing the network through actions like electricity price adjustments. 

The proposed energy trading strategy enhances the operational efficiency of SHS-
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EVCS and fosters a collaborative environment, ensuring the long-term sustainability 

and economic efficiency of renewable energy use in EV charging infrastructure. 

However, this study has several limitations that require further investigation. It does not 

incorporate demand-side management strategies, particularly demand response, into its 

framework. Additionally, it overlooks important distinctions between cooperative and 

non-cooperative game theory approaches, which could influence the results. Moreover, 

social welfare aspects, such as the well-being of EV drivers, have not been fully 

considered. Future research should address these gaps to improve the robustness and 

applicability of the findings in a broader context. 

6.4 SHS-EVCS demand side management consider as social 

welfare maximization 

The chapter 5 conducted in this thesis has thoroughly explored the optimization and 

economic feasibility of SHS systems integrated with EVCS, utilizing both non-

cooperative and cooperative game theory frameworks. The development and 

implementation of a bi-level optimization model have proven to be a robust method in 

addressing the dual goals of minimizing capital and operational costs while maximizing 

social welfare. The use of non-cooperative game theory at the individual SHS-EVCS 

level allows for strategic cost minimization by treating each RE supplies as independent 

players. The solutions ensure that no single RE can reduce its cost further without 

increasing the costs of others, thus achieving an optimal balance in the energy dispatch 

strategy. At the second level, the cooperative game theory framework facilitates internal 

energy trading and demand response among multiple SHS-EVCSs. This collaborative 

approach, managed by an IMS, enhances overall system efficiency by dynamically 

adjusting electricity prices based on real-time supply and demand data. This iterative 

process not only stabilizes the electricity market but also ensures that EV charging 

demands are met effectively, even under conditions of uncertainty. 

By combining Markov decision processes to model EV charging times with Monte 

Carlo simulations to forecast charging demand, these methods effectively capture the 
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stochastic nature of EV usage patterns. They provide highly accurate forecasts and 

enable the optimization model to adapt to varying conditions, thereby enhancing the 

reliability of the SHS-EVCS system. Additionally, duality theory is applied to 

determine real-time electricity prices, aiding in the management of demand-side energy 

consumption. By leveraging these theoretically optimal prices, the system incentivizes 

off-peak charging, reduces peak load pressure, and contributes to grid stability. This 

aligns with the broader objectives of demand-side management, which aim to achieve 

peak load reduction, ultimately lowering overall energy costs and improving system 

sustainability. 

The proposed empirical analysis and case studies demonstrate the effectiveness of the 

TOU strategy in reducing peak loads and balancing energy demand. The comparative 

results between forecasted and actual load scenarios underscore the significant impact 

of TOU in mitigating demand peaks and promoting efficient energy utilization. This 

approach not only benefits the grid by reducing the need for additional infrastructure 

investment but also offers economic advantages to EVCS operators and consumers 

through lower electricity prices and operating costs. In summary, the integration of 

advanced optimization techniques and game theory models in managing SHS-EVCS 

systems presents a promising pathway toward achieving sustainable and efficient 

energy infrastructure. The findings in this chapter provide valuable insights into the 

complex interactions between renewable energy, storage systems, and EV charging 

requirements. Future research should continue to explore the scalability of these models 

and their applicability in diverse geographic and economic contexts, thereby supporting 

the global transition to cleaner and more resilient energy systems. 

In conclusion, the integration of advanced optimization techniques and game theory 

models in the management of SHS-EVCS systems offers a promising pathway toward 

sustainable and efficient energy infrastructure. The findings from this chapter provide 

valuable insights into the complex interplay between renewable energy sources, storage 

systems, and EV charging demands. Future research should continue to explore the 

scalability of these models and their application in diverse geographical and economic 
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contexts, thereby contributing to the global transition toward cleaner and more resilient 

energy systems. 

6.5 Future Research 

All the questions and conclusions intended to be addressed in this paper have been 

presented. However, there are still areas where the research direction can be expanded. 

This section will outline some potential future work that can be extend follow the 

current study. 

a) Future research could explore the uncertainties associated with renewable energy 

sources in EVCSs. For instance, it could examine how seasonal variations in solar 

energy affect the operation of charging stations in different regions or countries. 

Additionally, research could investigate the selection of various renewable energy 

sources, such as wind energy or geothermal energy, based on differences in 

locations or climate. The integration of these new energy sources would also need 

to address their inherent uncertainties. 

b) Due to the lack of widespread adoption of networked EVs and CSs, empirical 

analysis is currently not feasible. Existing research primarily tests algorithms and 

models through simulations, lacking the necessary analysis of feasibility. In the 

future, more robust validation can be achieved through extensive empirical 

analysis using actual network data. 

c) In Chapter 5, this research considers the uncertainty related to when EV drivers 

decide to start or stop charging their EVs. However, in reality, EV charging 

uncertainty involves many more factors. For example, the distance between home 

or workplace and nearby EVCSs can influence the choice of CS. Additionally, 

personal charging preferences and behaviours, such as range anxiety, charging 

habits, and acceptable electricity price range etc. These uncertainties affect the 

charging load on EVCS and the internal distribution of RE supply. This presents 
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an interesting and meaningful research topic that warrants further exploration in 

future studies. 

d) It will be essential for future research to further investigate the scalability of these 

models and explore their applicability in a wide range of geographical and 

economic contexts. Such exploration is crucial for ensuring that these advanced 

methods can be adapted to different regions and circumstances, ultimately 

supporting the global transition towards more sustainable, resilient, and adaptable 

energy systems. This research not only contributes to the academic understanding 

of energy management but also has practical implications for the development of 

cleaner and more secure energy solutions worldwide. 
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