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Abstract: Background: Recently, we have shown that seven genes, namely GBP5, IRS2, KRT4, LIN-

COO707, MRPL55, RRS1 and SLC4A11, have prognostic power for the overall survival in ovarian 

cancer (OC). Methods: We present an analysis on the association of these genes with any phenotypes 

and mutations indicative of involvement in female cancers and predict the structural and functional 

consequences of those SNPS using in silico tools. Results: These seven genes present with 976 

SNPs/mutations that are associated with human cancers, out of which 284 related to female cancers. 

We have then analysed the mutation impact on amino acid polarity, charge and water affinity, lead-

ing to the identification of 30 mutations in gynaecological cancers where amino acid (aa) changes 

lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified, only a 

missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC) was sug-

gestive of structural damage on the SLC4A11 protein. Conclusions: We demonstrate that the 

R831C/R804C mutation is deleterious and the predicted ΔΔG values suggest that the mutation re-

duces the stability of the protein. Future in vitro studies should provide further insight into the role 

of this transporter protein in UCEC. 

Keywords: missense mutations; protein modelling; SLC4A11; uterine corpus endometrial carci-

noma 

 

1. Introduction 

Ovarian carcinoma (OC) is the most fatal gynaecologic malignancy, accounting for 

more than 200,000 deaths annually (WHO; Cancer Today). Over 80% of patients with ad-

vanced OC will relapse, and despite further good remissions from additional chemother-

apy and surgery, they will usually die from their disease [1]. The median progression-free 

survival (PFS) for relapsed ovarian cancer (ROC) patients who last had treatment within 

3–12 months previously is 4–9 months, with overall survival (OS) of ~12–20 months [2]. It 

should be noted that there is a genetic variation of response to chemotherapy and subse-

quently to tumour progression [3]. 

A plethora of studies—primarily via genome-wide association studies—have con-

clusively demonstrated an association between single-nucleotide polymorphisms (SNPs) 

and cancer risk [4]. There is a high frequency of SNPs occurrence in the human genome. 

In particular, amino acid point mutations or non-synonymous single-nucleotide polymor-

phisms (nsSNPs) may alter the structure and subsequently affect the function of the mu-

tated protein [5]. More than 13,000 known SNPs are in exon regions, of which 58% are 
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nsSNPs [6]. Indeed, a number of nsSNPs are associated with an increased cancer risk [7]. 

For example, nsSNPs in codon 31 of the p21 gene are associated with an increased risk of 

cervical cancer development [8]. 

Apart from genetic changes, exposure to endocrine-disrupting chemicals (EDCs) can 

disturb the normal functions of the endocrine system in humans and increase the risk of 

adverse health effects [1]. Bisphenol A (BPA) (an EDC) has a pro-carcinogenic impact in 

hormone-dependent and hormone-independent cancers [9–11]. BPA exposure is reported 

to alter the cancer cells’ biological behaviours, particularly, proliferation, invasion, 

growth, survival, migration and apoptosis [9,12–16]. Recently, we have identified seven 

genes that have prognostic power for the overall survival in OC, namely Guanylate Bind-

ing Protein 5 (GBP5), Insulin Receptor Substrate 2 (IRS2), Keratin 4 (KRT4), long intergenic 

non-protein coding RNA 707 (LINC00707), Mitochondrial Ribosomal Protein L55 

(MRPL55), Ribosome Biogenesis Regulator 1 Homolog (RRS1) and Solute Carrier Family 

4 Member 11 (SLC4A11). Out of these seven genes, KRT4 appears to be a biomarker of 

BPA exposure-associated OC, whereas GBP5, LINC00707 and SLC4A11 appear to be bi-

omarkers of disease [17]. 

In this study, we aimed to predict the structural and functional consequences of SNPs 

mapped in genetic variants of these seven biomarkers in gynaecological malignancies. 

2. Results 

2.1. Landscape of Mutations in Seven Biomarker Genes Based on TCGA, cBioPortal and UK 

Biobank 

We have previously identified seven biomarkers of OC and exposure-associated OC, 

as discussed [17]. We found that these 7 biomarkers represent 976 and 284 SNPs/muta-

tions associated with human cancers and female cancers, respectively. It should be noted 

that in Figure 1, we did not illustrate UK BioBank (PhenoScanner)-associated mutations 

(Table 1) as it has no overlapping/intersection with any other database (cBioPortal or 

TCGA). 

Table 1. Data summary for the mutation samples from TCGA, UK BioBank and cBioPortal datasets. 

The “Total Samples” is with respect to the samples associated with the genes of interest. 

Gene Samples TCGA UK BioBank cBioPortal 

 Total Samples 713  950 647 

 All cancers 713 (100%) 48 (100%) 647 (100%) 

 Female cancers * 145 (20.33%) 7 (14.58%) 208 (32.14%) 

GBP5 

 

All cancers 

Female cancers 
145 (20.33%) 

27 (3.78%) 

3 (6.25%) 

1 (2.08%) 

150 (23.18%) 

54 (8.34%) 

IRS2 

 

All cancers 

Female cancers 
114 (15.98%) 

30 (4.20%) 

8 (16.66%) 

- 

82 (12.67%) 

18 (2.78%) 

KRT4 

 

All cancers 

Female cancers 
154 (21.59%) 

22 (3.08%) 

7 (14.58%) 

2 (4.16%) 

158 (24.42%) 

50 (7.72%) 

LINC00707 

 

All cancers 

Female cancers 
- 

- 

24 (50%) 

2 (4.16%) 

- 

- 

MRPL55 

 

All cancers 

Female cancers 
35 (4.90%) 

10 (1.40%) 

1 (2.08%) 

1 (2.08%) 

24 (3.70%) 

9 (1.39%) 

RRS1 

 

All cancers 

Female cancers 
57 (7.99%) 

16 (2.24%) 

1 (2.08%) 

- 

38 (5.87%) 

11 (1.70%) 

SLC4A11 

 

All cancers 

Female cancers 
208 (29.17%) 

40 (5.61%) 

4 (8.33%) 

1 (2.08%) 

195 (30.13%) 

67 (10.35%) 

* Female cancers: ovarian, cervical/endocervical, uterine, breast and endometrial/uterine corpus en-

dometrioid carcinoma. 
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Figure 1. Venn diagram showing the possible mutations/SNPs associated with seven biomarkers in 

cBioPortal and UCSC Xena repository. (a) Mutations in human cancers. (b) Mutations in female 

cancers. 

These SNPs were further analysed according to the number and percentage of muta-

tions associated with seven biomarkers of interest in human cancers (Figure 2) and female 

cancers (Figure 3), along with mutation types. 

 

Figure 2. (a) Bar plot representing types of SNPs/mutations associated with seven biomarkers in 

human cancers. (b) Pie chart demonstrating the percentage distribution of 976 SNPs for 7 bi-

omarkers in human cancers, where red colour represents the number of mutations in each gene. 
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Figure 3. (a) Bar plot indicating different types of mutations associated with seven biomarkers in 

female cancers. (b) Pie chart specifying the percentage distribution of 284 SNPs for 7 biomarkers in 

female cancers, where red colour represents the number of mutations in each gene. 

Further, we analysed the percentage of mutation and sample size in all related hu-

man cancers (Figure 4a) and female cancers (Figure 4b), along with associated biomarkers 

(highlighted in seven colours). Table 2 summarises the mutation impact on protein struc-

ture and function, including amino acid (aa) polarity, charges and water affinity. 

 

Figure 4. (a) Bar plot showing the sample size and percentage of mutation in seven biomarkers in 

each human cancer type, (b) with emphasis on female cancers.  
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Table 2. Data summary for the exon mutation samples used in this study from TCGA, UK BioBank 

and cBioPortal datasets to analyse the mutation impact at protein structure and function. Including 

amino acid polarity, charges and water affinity. 

Feature Count 

Exon Mutation 807 (100%) 

Non silent mutation 560 (69.39%) 
Silent mutation 173 (21.43%) 
Stop codon mutation 74 (9.16%) 

Amino Acid Polarity 560 (100%) 

Polar to Non-polar 104 (18.57%) 
Non-polar to Polar 123 (21.96%) 
No charge 333 (59.46%) 

Amino Acid Charge 560 (100%) 

Positive to Negative 1 (0.17%) 
Positive to No charge 93 (16.60%) 
No charge to Positive 37 (6.60%) 
Negative to Positive 16 (2.85%) 
Negative to No charge 31 (5.53%) 
No charge to Negative 27 (4.82%) 
No charge 355 (63.39%) 

Amino Acid Water Affinity 560 (100%) 

Hydrophobic to Hydrophilic 8 (1.42%) 
Hydrophobic to Neutral 65 (11.60%) 
Neutral to Hydrophobic 84 (15%) 
Hydrophilic to Hydrophobic 47 (8.39%) 
Hydrophilic to Neutral 76 (13.57%) 
Neutral to Hydrophilic 46 (8.21%) 
No charge 234 (41.78%) 

We extracted the gynaecological cancer amino acid changes (n = 30) (Table 3) accord-

ing to the selection criteria in Figure 5.  

 

Figure 5. Amino acid change/SNP selection criteria according to the change in amino acid polarity 

and charge.  
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Table 3. Data summary of the gynaecological cancer amino acid changes, where n = 30, showing 

opposite polarity, charges and water affinity. 1—USCS Xena and 2—cBioPortal. 

Database Gene Cancer Type 
Amino Acid 

Change 
Mutation 

1/2 GBP5 Cervical and Endocervical Cancer R520I Missense  

1/2 GBP5 
Uterine Corpus Endometrioid 

Carcinoma 
R450W Missense  

1/2 GBP5 
Uterine Corpus Endometrioid 

Carcinoma 
R290C Missense  

1/2 GBP5 
Uterine Corpus Endometrioid 

Carcinoma 
P415H Missense  

2 GBP5 Uterine Endometrioid Carcinoma R396W Missense  

2 GBP5 Uterine Endometrioid Carcinoma F267C Missense  

2 IRS2 Uterine Endometrioid Carcinoma E1150K Missense  

1/2 KRT4 Ovarian Serous Cystadenocarcinoma R49P 5′UTR  

1/2 KRT4 Cervical and Endocervical Cancer E238K/E312K Missense  

1/2 KRT4 
Uterine Corpus Endometrioid 

Carcinoma 

R196M/R270

M  
Missense  

1/2 KRT4 Cervical and Endocervical Cancer R9P/R83P Missense  

1/2 KRT4 
Uterine Corpus Endometrioid 

Carcinoma 
R27I/R101I Missense  

2 KRT4 Uterine Endometrioid Carcinoma E509K Missense  

2 KRT4 Uterine Endometrioid Carcinoma G84D Missense  

2 KRT4 Uterine Endometrioid Carcinoma D507V Missense  

2 KRT4 Uterine Endometrioid Carcinoma R270M Missense  

2 KRT4 Uterine Endometrioid Carcinoma G578D Missense  

2 MRPL55 Uterine Endometrioid Carcinoma G20R Missense  

2 MRPL55 Uterine Endometrioid Carcinoma R96C Missense  

2 MRPL55 Uterine Endometrioid Carcinoma P86H Missense  

1/2 RRS1 
Uterine Corpus Endometrioid 

Carcinoma 
R83C Missense  

1/2 RRS1 
Uterine Corpus Endometrioid 

Carcinoma 
L157R Missense  

1/2 SLC4A11 
Uterine Corpus Endometrioid 

Carcinoma 

R831C/R804

C  
Missense  

1/2 SLC4A11 Cervical and Endocervical Cancer 
R309C/R282

C 
Missense  

1 SLC4A11 
Uterine Corpus Endometrioid 

Carcinoma 
R50M Missense  

2 SLC4A11 Serous Ovarian Cancer R488M Missense  

2 SLC4A11 Uterine Endometrioid Carcinoma R629W Missense  

2 SLC4A11 Uterine Endometrioid Carcinoma D149V Missense  

2 SLC4A11 Uterine Endometrioid Carcinoma E562K Missense  

2 SLC4A11 Uterine Endometrioid Carcinoma R157C Missense  

2.2. Prediction of the Effects of R804C/R831C on SLC4A11 Protein Stability, Function and 

Physiochemical Properties 

Out of 30 gynaecological cancer amino acid changes, only 1 amino acid change, at 

R831C/R804C, has detected the structural damage of the protein SLC4A11, therefore, we mod-

elled this protein (SLC4A11) with SNP at R831C/R804C in uterine corpus endometrioid carci-

noma (Figure 6). The reason for the 2 different positions is due to the presence of 3 distinct N-
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terminal variants of human SLC4A11: 918 amino acid splice form 1 (where the mutation is at 

position 831), 891 amino acid splice form 2 (where the mutation is at position 804) and 875 

amino acid splice form 3 (where the mutation is at position 788) [18,19]. 

For the 918 amino acid variant, the R831C substitution does not alter the secondary struc-

ture, but this substitution leads to the expansion of cavity volume by 97.2 Å3. Cavity also refers 

to a pocket on the surface (Figure 6). This substitution also results in a change between the 

buried and exposed state of the target variant residue. ARG is buried (RSA 7.6%) and CYS is 

exposed (RSA 20.7%). In the same protein, an increased z-score from −3.23 to −1.19 was noted, 

whereas for the mutant-type protein, the z-score changed from −3.24 to −1.16. 

 

Figure 6. (a) Aligned structure of solute carrier family 4, sodium borate transporter, member 11 

protein wildtype (918 aa, grey colour) and energy-minimised wildtype (cyan colour). (b) Aligned 

structure of SLC4A11 protein mutant (grey colour) and energy-minimised mutant (red colour). (c) 

Aligned structure of energy-minimised solute carrier family 4, sodium borate transporter, member 

11 protein wildtype (cyan) and energy-minimised mutant (red). (d) Surface view of aligned struc-

ture of energy-minimised solute carrier family 4, sodium borate transporter, member 11 protein 

wildtype (cyan) and energy-minimised mutant (red). 

For the 891 amino acid variant, the R804C substitution does not alter the secondary struc-

ture, but this substitution leads to the expansion of cavity volume by 99.792 Å3. Cavity also 

refers to a pocket on the surface (Figure 7). This substitution also results in a change between 

the buried and exposed state of the target variant residue. ARG is buried (RSA 6.8%) and CYS 

is exposed (RSA 20.0%). Similarly, an increased z-score from −3.22 to −1.09 was also recorded 

for the wildtype protein and a similar change (from −3.22 to −1.11) for the mutant. 
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Figure 7. (a) Aligned structure of solute carrier family 4, sodium borate transporter, member 11 

protein wildtype (891 aa, grey colour) and energy-minimised wildtype (cyan colour). (b) Aligned 

structure of SLC4A11 protein mutant type (grey colour) and energy-minimised mutant type (red 

colour). (c) Aligned structure of energy-minimised solute carrier family 4, sodium borate trans-

porter, member 11 protein wildtype (cyan) and energy-minimised mutant type (red). (d) Surface 

view of aligned structure of energy-minimised SLC4A11 protein wildtype (cyan) and energy-mini-

mised mutant type (red). 

Moreover, we created an electrostatic potential surface for solute carrier family 4, so-

dium borate transporter, member 11 protein (Figure 8). As the colour legend indicates, the 

red colour (negative potential) arises from an excess of negative charges near the surface 

and the blue colour (positive potential) occurs when the surface is positively charged. The 

white regions correspond to fairly neutral potentials. 
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Figure 8. (a) An electrostatic potential surface of wildtype solute carrier family 4, sodium borate 

transporter, member 11 protein indicating amino acid residue ARG at position 831/804. (b) An elec-

trostatic potential surface of mutant-type protein indicating amino acid residue CYS at position 

831/804. In the colour legend, the red colour indicates negative potential, the blue colour indicates 

positive potential of the protein surface and the white regions correspond to fairly neutral poten-

tials. Yellow arrow indicates towards the mutation site at position 831/804. 

Arginine (R) is a positively charged, polar and hydrophilic amino acid in proteins that 

has a profound role in protein structure and function that involves electrostatic interactions 

and protein solvation [20]. Alternatively, cysteine (C) is a non-polar, uncharged and hydro-

phobic amino acid, and the substitution from R to C may have a deleterious impact on the 

protein hydration and electrostatic interactions of the protein. When we used PROVEAN 

(Protein Variation Effect Analyzer), a software tool which predicts whether an amino acid 

substitution has an impact on the biological function of a protein, it provided a score of 

−7.292 with the annotation “Deleterious” for both R831C and R804C. The default score 

threshold is currently set at −2.5 for binary classification (i.e., deleterious vs. neutral). 

We have further evaluated changes in protein stability using MUpro: Prediction of Pro-

tein Stability Changes for Single-Site Mutations from Sequences [21,22], where Delta Delta 

G (DDG), a metric for predicting how a single point mutation will affect protein stability, 

was measured. In both variants, the predicted DDG was −0.704, suggesting a decrease in 

protein stability. Similar data were obtained from the BIOCOMP.UNIBO prediction server 

[23], with a DDG of −0.67 and a prediction of a disease-related mutation. Finally, we have 

used the DeepDDG server [24] that predicts the stability change of protein point mutations 

using neural networks and calculated a DDG value of −1.802 (kcal/mol). 

3. Discussion 

In this study, we provided a comprehensive overview of a wide repertoire of muta-

tions of seven recently predicted biomarkers for OC that can be acquired using a number 

of in silico tools. These 7 genes present with 976 SNPs/mutations that are associated with 

human cancers, out of which 284 are related to female cancers that include ovarian, cervi-

cal, endometrial cancer, as well as endometrioid and uterine carcinomas. The most prev-

alent type of mutation occurring on six (i.e., GBP5, IRS2, KRT4, MRPL55, RRS1 and 

SLC4A11) out of seven genes was missense mutation, followed by silent and 3′untrans-

lated region (3′UTR) mutations. In the case of LINC00707, being a long non-coding RNA 

(lncRNA), non-coding transcript exon and intron mutations were the only two types iden-

tified in both all cancers and female ones. In both cases, SLC4A11 had the largest percent-

age of mutations out of all 7 genes at 29.4% and 28.9%, respectively. 
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In missense mutations, there is a change of a single nucleotide, resulting in a codon 

that can produce a different amino acid. Using the Human Genome Database as a para-

digm, it is evident that several missense mutations are linked with inherited predisposi-

tions to malignancies [25]. For example, in a recent analysis of more than 113,000 women, 

missense variants for BRCA1, BRCA2 and TP53 were associated with a risk of breast can-

cer [26]. Equally, a number of studies have indicated that mutations at the 3′UTR can drive 

oncogene activation or inactivation of tumour suppressors by altering the binding effi-

ciency of microRNAs [27,28]. For example, a GAPDH mutation in the 3′UTR creates a miR-

125b binding site, and as a result facilitates the development of OC [27]. 

On the other hand, the mutational landscape for the lncRNA LINC00707 is quite dif-

ferent. We know that lncRNAs exhibit a complex biology and are involved in a number 

of processes, including gene transcription or gene silencing [29]. Although there is no pub-

lished data on intronic mutations and their impact on LINC00707, a recent study high-

lighted their importance in cancer, since 64 tumour suppressors were affected by intronic 

mutations, and blood cancers showed higher proportions of deep intronic mutations [30]. 

We have then provided a deeper insight into the percentage of mutation of each of 

the seven genes of interest in all cancers and in female cancers. For the latter, the largest 

percentage (28.9%) was attributed to SLC4A11, with GBP5 and KRT4 exhibiting a high 

percentage as well (21.5% and 20.4%, respectively). In this cohort of cancers, the largest 

datasets were of uterine endometrioid carcinoma (n = 102) and uterine corpus endometri-

oid carcinoma (UCEC; n = 85). UCEC is the most common female pelvic malignancy, and 

the sixth most common gynaecological malignancy in females, with an estimated 417,367 

new cases and 97,370 deaths worldwide in 2020 [31]. Despite the wide repertoire of ther-

apeutic options for UCEC, there is an increase in the incidence of endometrial cancer. Of 

note, numerous shared and cancer type-specific mutation signatures have been identified, 

with UCEC depicting a number of clusters with distinct mutation frequencies [32]. Out of 

the seven genes in question, only one study associates the IRS2 polymorphism G1057D 

with endometrial cancer [33]. 

We then analysed the mutation impact on amino acid polarity, charge and water affin-

ity, leading to the identification of 30 mutations in gynaecological cancers where amino acid 

changes lead to opposite polarity, charges and water affinity. Out of 30 gynaecological can-

cer amino acid changes, only missense mutation (i.e., R831C/R804C in UCEC) was sugges-

tive of structural damage on the solute carrier family 4, sodium borate transporter, member 

11 protein. Therefore, we modelled this protein and provided in silico evidence of how a 

change from arginine (R) to cysteine (C) can exert potential deleterious consequences. 

SLC4A11 is a member of the SLC4 family of bicarbonate transporters that is primarily 

expressed as an integral membrane protein, with aberrant expression in the cornea, thy-

roid, salivary gland and kidney. This transporter is also involved in sodium-mediated 

fluid transport in different tissues. The human SLC4A11 gene encodes three splice variants 

at the NH2 terminus. These include the 918 variant A, the 891 amino acid variant B and 

the 875 amino acid variant C [18,19]. Of these, according to UniProt, SLC4A11-B is the 

canonical sequence. To date, most of the work on SLC4A11 is concentrated on corneal 

dystrophies. Indeed, mutations of SLC4A11 are the cause of congenital hereditary endo-

thelial dystrophy (CHED) and some cases of late-onset Fuchs endothelial corneal dystro-

phy (FECD) [18]. Interestingly, one the mutations found in families with autosomal reces-

sive corneal endothelial dystrophy (CHED2) was on arginine 804 (G804A). The authors of 

the study argued that the mutation can alter the hydrophobic interaction of methyl groups 

located in the arginine stem, thus impacting on the loop stability [34]. 

In this study, we have shown that (1) the R831C/R804C mutation is deleterious and 

(2) predicted ΔΔG values suggest that the mutation reduces the stability of the protein. As 

mentioned, DDG is the change in Gibbs free energy (Gibbs free energy (G) = Enthalpy (H) 

− Temperature (T) × Entropy (S)) [24]. There is also a strong structural explanation for the 

change in stability: Arg-831 is in a salt bridge with nearby Glu-519, so R831C will have a 

large enthalpic impact. However, we acknowledge that it is difficult to further dissect the 
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functional impact of this change in stability without embarking on in vitro studies, mu-

tating the protein in cellular models of UCEC. We also acknowledge that the cavity hy-

pothesis is limited by the neglect of protein–membrane interactions in YASARA. Very 

recently, a new artificial intelligence system (AI) that predicts 3D protein structures with 

high accuracy has emerged, termed AlphaFold [35]. Subsequently, we have modelled our 

predicted structures of the two SLC4A11 protein variants with that of AlphaFold and 

there is 100% alignment in the R804 transmembrane region (Supplementary Figure S1), 

suggesting a conserved 3D configuration irrespective of the modelling software. 

In terms of its role in female reproductive organs, the only data available come from 

a study in OC, where high expression of SLC4A11 is a predictor for poor overall survival 

in serous OC (grade 3/4) [36]. Leveraging data from TCGA and GTEX, we also demon-

strated significant upregulation of SLC4A11 in UCEC (Supplementary Figure S2). Future 

studies should concentrate on gaining a deeper understanding of the actual role of this 

transporter protein in UCEC and how this deleterious mutation might affect its function, 

as the normal function(s) of SLC4A11 in gynaecological malignancies still remains unclear. 

4. Materials and Methods 

4.1. Data Availability 

Xena Repository: Somatic mutation data and sample phenotype information were 

extracted from the data generated by The Cancer Genome Atlas (TCGA) research network 

and TCGA somatic mutations (Pan-cancer Atlas), as published in the Xena repository 

hosted at the University of California Santa Cruz (UCSC) [37]. 

UK BioBank: Genetic variation/mutation data were extracted from PhenoScanner 

(version 2), which is a curated database holding publicly available results from large-scale 

genome-wide association studies (GWAS) for the UK Biobank data. This tool helps to fa-

cilitate “phenome scans”, the cross-referencing of genetic variants with a broad range of 

phenotypes, to help aid the understanding of disease pathways and biology. 

cBioPortal: Genomic alterations across a set of patients were quarried from cBioPortal 

(for cancer genomics), an exploratory analysis tool for exploring large-scale cancer ge-

nomic datasets that hosts data from large consortium efforts, such as TCGA and TARGET, 

as well as publications from individual labs. The cBioPortal assists to explore specific 

genes or a pathway of interest in one or more cancer types. 

Statistical Analysis: All unstructured data gathering, processing, modelling and sta-

tistical analyses were conducted using R (v. 4.1.0, The R Foundation for Statistical Com-

puting, Vienna, Austria) under the R Studio desktop application (version 1.4.1717, RStu-

dio, Boston, MA, USA). 

4.2. Protein Structure Prediction Tools 

UniProt Knowledgebase: The amino acid sequence of the protein of interest was ex-

tracted from the UniProt Knowledgebase (UniProtKB) (https://www.uniprot.org (ac-

cessed on 10.11.2021)), which is the central hub for the collection of functional information 

on proteins, with accurate, consistent and rich annotation. It records the information ex-

tracted from the literature and curator-evaluated computational analysis. 

Protein Data Bank (RCSB PDB): We used the Protein Data Bank (PDB) 

(https://www.rcsb.org (accessed on 10.11.2021)) to gather the known protein structure in-

formation of our genes of interest. It is the single worldwide archive of structural data of 

biological macromolecules. It includes data obtained by X-ray crystallography and nu-

clear magnetic resonance (NMR) spectrometry submitted by biologists and biochemists 

from all over the world. 

Phyre2: In order to predict the three-dimensional (3D) structure of our desired pro-

tein sequence/gene, we used Phyre2 (v. 2.0). The software assists with the construction of 

3D models of our protein of interest based on the alignments between the hidden Markov 

model (HMM) of the desired sequence and the HMMs of known structure. 
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SWISS-MODEL: We also used a fully automated 3D protein structure homology-

modelling server, SWISS-MODEL (https://swissmodel.expasy.org/ (accessed on 

10.11.2021)), to predict the 3D structure of our desired protein sequence. Homology mod-

elling is currently the most accurate method to generate reliable 3D protein structure mod-

els, as it makes use of experimental protein structures (“templates”) to build models for 

evolutionary-related proteins (“targets”). 

AlphaFold: The Protein Structure Database (https://alphafold.ebi.ac.uk/ (accessed on 

10.11.2021)), an AI system which is able to computationally predict protein structures with 

unprecedented accuracy and speed, was also used to predict the 3D structure. 

Missense3D: Structural changes introduced by an amino acid substitution/SNP were 

measured and predicted by the Missense3D tool (http://missense3d.bc.ic.ac.uk/mis-

sense3d (accessed on 10.11.2021)). 

YASARA Energy Minimisation Server: Energy minimisation of the protein was per-

formed using the YASARA server (http://www.yasara.org/minimizationserver.htm (ac-

cessed on 10.11.2021)), and the YASARA application (v. 21.8.26) was used to view and 

save the 3D energy-minimised structure in PDB format. 

PyMOL: Electrostatic potential surfaces, electron densities and three-dimensional 

(3D) visualisation of proteins were analysed by PyMOL (v. 2.4.1), which is an open-source 

molecular visualisation platform. 

PROVEAN: Impacts on the biological function of protein sequence variations including 

single or multiple amino acid substitutions were predicted by the PROVEAN (Protein Varia-

tion Effect Analyzer) (v. 1.1) tool (http://provean.jcvi.org/ (accessed on 10.11.2021)) [38]. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/ijms23031725/s1. 
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