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H∞ State Estimation for BAM Neural Networks
with Binary Mode Switching and Distributed

Leakage Delays under Periodic Scheduling Protocol
Fuad E. Alsaadi, Zidong Wang, Yuqiang Luo, Njud S. Alharbi, and Fawaz W. Alsaade

Abstract—This paper is concerned with theH∞ state esti-
mation problem for a class of bidirectional associative memory
(BAM) neural networks with binary mode switching, where the
distributed delays are included in the leakage terms. A couple
of stochastic variables taking values of1 or 0 are introduced
to characterize the switching behavior between the redundant
models of the BAM neural network, and a general type of
neuron activation function (i.e. the sector-bounded nonlinearity)
is considered. In order to prevent the data transmissions from
collisions, a periodic scheduling protocol (i.e Round-Robin proto-
col) is adopted to orchestrate the transmission order of sensors.
The purpose of this work is to develop a full-order estimator such
that the error dynamics of the state estimation is exponentially
mean-square stable and theH∞ performance requirement of the
output estimation error is also achieved. Sufficient conditions are
established to ensure the existence of the required estimator by
constructing a mode-dependent Lyapunov-Krasovskii functional.
Then, the desired estimator parameters are obtained by solving
a set of matrix inequalities. Finally, a numerical example is
provided to show the effectiveness of the proposed estimator
design method.

Index Terms—Artificial neural networks, bidirectional associa-
tive memory neural networks, H∞ state estimation, distributed
leakage delays, periodic scheduling protocol.

I. I NTRODUCTION

The study on bidirectional associative memory (BAM)
neural networks was originated in [25]. The BAM neural
network is a widely used artificial neural network (ANN)
that is featured by its ability to store a pair of analogue
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patterns through using the real-time unsupervised learning
[28]. As an extension of the unidirectional auto-associator
of Hopfield [51], BAM neural networks have found wide
applications in a range of areas such as fault diagnosis, model
of recognition and cued recall, signal and image processing
[1]. Accordingly, the research on BAM neural networks has
attracted considerable attention, see e.g. [7], [53] and the
references therein.

In many practical applications, structures and parameters
of the ANN might suffer from certain abrupt changes due
to various reasons such as component and interconnection
failures or repairs, variation of environmental factors, large
amplitude disturbances, and so forth [11], [45], [48]. These
abrupt changes would severely impact the operation of ANNs
[12], [13]. In order to protect the ANNs from being com-
promised by abrupt changes, the switching strategy is often
employed to ensure the continuously normal operation of
ANNs in real scenarios. With such a strategy, the ANNs would
automatically switch to a reductant mode when the abrupt
changes take place.

In the applications of ANNs, the information of neuron
states is of dominant importance since almost all ANN ap-
plications (i.e. optimization and approximation) are depen-
dent on the accurate state information. Unfortunately, the
full information of neuron states is not always accessible
in practical applications, and this has necessitated the state
estimation problem that aims to estimate the state information
of ANNs based on available measurements only. Indeed, the
state estimation problem of ANNs has been a focus of research
in the past decade [6], [30], [39], [47], [50]. For instance,
the state estimation issue has been studied in [24] for a
class of ANNs with continuous and bounded delays, where
certain delay-range-dependent stability conditions have been
established. Based upon the passivity theory, which is an
effective scheme for stability analysis of nonlinear system, an
exponential and passive estimator has been developed in [2]
for the delayed Takagi-Sugeno fuzzy Hopfield neural networks
with external disturbance. However, to the best of the authors’
knowledge, so far, theH∞ state estimation problem for BAM
neural networks with stochastic mode switching has not yet
been studied, and this situation constitutes the main motivation
of the present investigation.

It is now well known that time-delays have shown their
prevalent existence in signal transmission of the ANNs, and a
particular kind of time-delays occurs in stabilizing negative
feedback terms of neural networks. Such time-delays are
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referred to as the leakage delays [20], [49], which could lead
to the deterioration of the system performance or even cause
the instability of the system [21], [44]. By now, considerable
research attention has been drawn to various analysis issues
(e.g. stability analysis [3], [4], [41], [43], passivity analysis
and synchronization) of ANNS with leakage delays, see e.g.
[9], [18]. For the state estimation issue of ANNs, time delays
should be adequately taken into account in the estimator design
for the purpose of avoiding undesired oscillation, bifurcation
and chaotic attractors. Furthermore, it should be noted that
the number of the neurons in an ANN is usually very large,
which would lead to a huge amount of measurement data.
This is particularly true for the state estimation problem of a
BAM neural network with a limited communication channel
between the neural network and the remote estimator, in which
the considered ANN contains up to billions of neurons in order
to deal with some complex design problems.

It is quite common in a networked environment that the
state evolutions of certain ANNs need to be closely monitored
in a remote way via communication channels with limited
bandwidth [29], [34]. In this case, the remote estimators
receive measurement outputs of the ANNs sent by a group
of sensors through shared communication networks. Such
vast data transmissions would lead to heavy burden on the
communication channel of limited bandwidth, thereby re-
sulting in communication congestion and consecutive data
dropouts [15], [17]. In this case, the utilization of certain
communication protocols (e.g. periodic scheduling protocol)
serves as an effective method to mitigate the data collision
issue over communication channels of limited capacity. The
well-known Round-Robin protocol (RRP) is notably one of
the most widely employed periodic scheduling protocols and
has attracted quite a lot research attention, see e.g. [16], [27],
[46].

Although problems of state estimation and stability analysis
of BAM neural networks have been heavily discussed in [5],
[9], [12], [18], [53] in recent years, no studies on state esti-
mation problems of BAM ANNs with binary mode switching
have been reported, not to mention the case where distributed
leakage delays and the RRP are involved. Inspired by above
discussions, our attention in this paper is paid to theH∞

state estimation problem for stochastic BAM neural networks
with distributed leakage delays where the RRP is adopted to
schedule the signal transmission between the neural network
and the estimator with hope to make full use of the limited
communication bandwidth.

The main contributions of this paper are highlighted as
follows: 1) the considered BAM neural networks can switch
to another redundant mode when abrupt changes occur, which
will thus guarantee the performance of ANNs in case of
undergoing abrupt environment changes; 2) theH∞ state
estimation problem is, for the first time, investigated for
the stochastic BAM neural networks with distributed leakage
delays and RRP scheduling effects; 3) based on the stochastic
analysis approach, sufficient conditions are established to
guarantee a satisfactory state estimation performance; and 4)
the estimator gain matrices are obtained by solving a set of
matrix inequalities via standard software package.

The rest of this paper is organized as follows. In Section
II, a class of stochastic BAM neural networks with distributed
leakage delays and RRP scheduling are introduced and the
correspondingH∞ state estimation problem is formulated. In
Section III, sufficient conditions are established that guarantee
the existence of the desired estimator parameters, and the esti-
mator parameters are derived in terms of the solution to a set of
matrix inequalities. A numerical simulation example is given
in Section IV to show the effectiveness and correctness of the
proposed state estimation approach. Finally, the conclusion of
this work is drawn in Section V.

Notation. The notations used throughout the paper are fairly
standard except where otherwise stated.Rn, Rn×m and Z

(Z+,Z−) denote, respectively, then-dimensional Euclidean
space, the set of alln × m real matrices and the set of
all integers (nonnegative integers, negative integers).‖ · ‖
refers to the Euclidean norm inRn. For a scalara ∈ R, |a|
denotes its absolute value.In represents the identity matrix
of dimensionn × n. The notationX ≥ Y (respectively,
X > Y ), whereX andY are symmetric matrices, means that
X−Y is positive semi-definite (respectively, positive definite).
For a matrixM , MT and M−1 represent its transpose and
inverse, respectively. The shorthanddiag{M1, M2, . . . , Mn}
denotes a block diagonal matrix with diagonal blocks being
the matricesM1, M2, . . . , Mn. In symmetric block matrices,
the symbol ‘∗’ is used as an ellipsis for terms induced
by symmetry.λmin(·) and λmax(·) are the minimum and
maximum eigenvalues, respectively.mod(a, b) represents the
unique nonnegative remainder on division of the integera by
the positive integerb. δ(a) is a binary function which equals
to 1 for a = 0, and equals to0 for a 6= 0. Moreover, let
(Ω,F ,Prob) be a complete probability space, where Prob, the
probability measure, has total mass1. E{x} andE{x|y} stand
for, respectively, the expectation of the stochastic variablex

and the expectation ofx conditional ony with respect to
the given probability measure Prob. Matrices, if they are not
explicitly stated, are assumed to have compatible dimensions.

II. PROBLEM FORMULATION

Consider the following class of stochastic BAM neural
networks:





u(k + 1) =
(
A+ θ1(k)C

) ∞∑

d=1

µ1du(k − d)

+
(
V (1) + θ1(k)W

(1)
)
g
(
v(k)

)
,

z1(k) =Mu(k),

v(k + 1) =
(
B + θ2(k)D

) ∞∑

d=1

µ2dv(k − d)

+
(
V (2) + θ2(k)W

(2)
)
f
(
u(k)

)
,

z2(k) =Nv(k),

(1)

where u(k) ,
[
u1(k) u2(k) · · · un(k)

]T
∈ Rn and

v(k) ,
[
v1(k) v2(k) · · · vn(k)

]T
∈ Rn are the neuron

state vectors withui(k) ∈ R andvj(k) ∈ R being the states
of the i-th neuron from the neural fieldFU and the neural
field FV at time instantk ∈ Z, respectively.z1(k) ∈ Rnz
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and z2(k) ∈ Rnz are the signals to be estimated.g
(
v(k)

)
,[

gT1
(
v1(k)

)
gT2
(
v2(k)

)
· · · gTn

(
vn(k)

)]T
∈ Rn and

f
(
u(k)

)
,
[
fT
1

(
u1(k)

)
fT
2

(
u2(k)

)
· · · fT

n

(
un(k)

)]T
∈

Rn are two vector-valued functions wherefi(·) and gi(·)
(i = 1, 2, · · · , n) are the neuron activation functions.V (r) =
[v

(r)
ij ]n×n andW (r) = [w

(r)
ij ]n×n (r = 1, 2) are the connection

weight matrices.A = diag{a1, a2, · · · , an} (|ai| < 1 for
i = 1, 2, · · · , n) andB = diag{b1, b2, · · · , bn} (|bj| < 1 for
j = 1, 2, · · · , n) are the state feedback coefficient matrices.C,
D, M andN are known constant matrices with appropriate

dimensions.
∞∑
d=1

µidu(k−d) (i = 1, 2) represent the infinitely

distributed leakage delays with0 ≤ µid ≤ 1 being the conver-

gence constants satisfyinḡµi ,
∞∑
d=1

µid ≤
∞∑
d=1

dµid < +∞.

For anyi ∈ {1, 2} andk ∈ Z+, θi(k) is a Bernoulli distributed
stochastic variable taking values of1 and0 with

{
Prob{θ1(k) = 1} = θ̄1, Prob{θ1(k) = 0} = 1− θ̄1,

Prob{θ2(k) = 1} = θ̄2, Prob{θ2(k) = 0} = 1− θ̄2.

Furthermore,{θi(k)}i=1,2;k∈Z+ are mutually independent ran-
dom variables.

Remark 1:The well-known BAM neural network has exten-
sive application prospects in the area of pattern recognition.
Such a neural network is actually an extension of the uni-
directional auto-associator of Hopfield neural network, which
implies the BAM neural network is in fact a special recurrent
neural network [51]. In the system model (1), the terms

(
A+

θ1(k)C
) ∞∑
d=1

µ1du(k− d) and
(
B + θ2(k)D

) ∞∑
d=1

µ2dv(k − d)

are known as the distributed leakage delays, which represent
the distributed propagation delays in the leakage terms [20].
As pointed out in [20], the leakage delays have a significant
impact on the dynamic analysis problems of neural networks.
However, the state estimation problem of neural networks with
distributed leakage delays has not gained adequate research
attention due mainly to the resulting technical difficulties [5],
[20]. In this work, we pay our attention to the infinitely
distributed leakage delays, which can be used to effectively
describe the feature of the spatial extent in the ANNs [51].

Remark 2: In reality, the structures and parameters of
ANNs might undergo abrupt changes due to the variation of
environmental factors. Such unexpected abrupt changes would
affect the execution of ANNs. In order to alleviate the negative
effects, a possible way to protect the service performance of
ANNs is to switch the system mode to another redundant
one when abrupt changes occur. In this paper, two binary
sequencesθ1(k) andθ2(k) are introduced to characterize such
a switching behavior according to their distinct values. Apart
from the binary mode switching, the multi-mode switching
and the Markovian switching can also be used to regulate the
aforementioned switching behavior of the ANNs in case of
abrupt changes.

In this paper, the vector-valued neuron activation function
g(·) andf(·) with g(0) = f(0) = 0 are assumed to satisfy the

following sector-bounded conditions for anya, b ∈ Rn:




(
g(b)− g(a)−R2(b− a)

)T (
g(b)− g(a)

−R1(b − a)
)
≤ 0, R1 −R2 < 0

(
f(b)− f(a)− S2(b− a)

)T (
f(b)− f(a)

− S1(b − a)
)
≤ 0, S1 − S2 < 0

(2)

whereR1, R2, S1 andS2 are constant real matrices of appro-
priate dimensions. The measurement outputs of the system (1)
are of the following form:

{
x(k) = Eu(k) +Gϑ(k),

y(k) = Fv(k) +Hϑ(k),
(3)

where x(k) ,
[
x1(k) x2(k) · · · xm(k)

]T
∈ Rm and

y(k) ,
[
y1(k) y2(k) · · · ym(k)

]T
∈ Rm are the net-

work outputs.E, F , G andH are known constant matrices
with appropriate dimensions.ϑ(k) ∈ Rs is the measurement
noise belonging tol2([0,+∞) ;Rs).

In this paper, we assume the sensors are periodically sched-
uled by the RRP, under which the sensors are allocated with
the transmission opportunities one by one with a fixed circular
order. In this case, the estimator could only receive partial
measurement information at each transmission instant. In order
to compensate the received measurement information, a set
of zero-order holders (ZOHs) are employed to deal with the
update of the received signal for the estimator [40]. Under the
effects of RRP and ZOHs, the received signal of the estimator
is given as follows:

{
~x(k) = Ψ~(k)x(k) + (Im −Ψ~(k))~x(k − 1),
~y(k) = Ψ~(k)y(k) + (Im −Ψ~(k))~y(k − 1),

(4)

where ~x(k) ,
[
~x1(k) ~x2(k) · · · ~xm(k)

]T
and ~y(k) ,[

~y1(k) ~y2(k) · · · ~ym(k)
]T

are the real received mea-
surements of the estimator corresponding to the sensor out-
puts x(k) and y(k), respectively.Ψ~(k) , diag{δ(~(k) −
1), δ(~(k) − 2), · · · δ(~(k) − m)} is the update matrix with
~(k) = mod(k− 1,m)+ 1 ∈ {1, 2, · · · ,m} being the access
token holder by the~(k)-th sensor.

N���

����
N���

N���

Fig. 1: The transmission opportunity of nodes

The order number of the node that obtains the transmission
opportunity at each time instant is described in Fig. 1. One
can easily observes from Fig 1 and equation (4) that the
information propagation among network nodes is conducted
in a fixed circular order. Keeping this in mind and using
the zero-order holder strategy, at timek, the measurements
arriving at the estimator are given by equation (4) where
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the measurement coefficients whereΨ~(k) , diag{δ(~(k) −
1), δ(~(k)−2), · · · δ(~(k)−m)} is the protocol-induced update
matrix and~(k) = mod(k − 1,m) + 1 ∈ {1, 2, · · · ,m}
is the protocol-induced access token at timek. As a result,
protocol-induced coefficientsΨ~(k) and ~(k) are introduced
to all measurement-related terms (see the estimator (5), error
system (6) and Theorems 1–2), adding extra difficulties to the
design and analysis of the developed sate estimation approach.

Accounting for the fact that the scheduling process of
RRP is independent of the transmitted data, its accuracy or
reliability will not be affected by the sensor measurement error.
In addition, to prevent the failure of the network in case of
faulty nodes, a security strategy is introduced to the network
communication where each network node has its prescribed
waiting time. If no information is sent from the network
node within this waiting time, the node will be discarded and
replaced so as to avoid the failure of the whole system.

The following full-order estimator is adopted to estimate the
signalz1(k) andz2(k):





uf (k + 1) = Afuf (k) +Kf1~x(k),

xf (k) = Kf2xf (k − 1) +Kf3~x(k),

ẑ1 = Mfuf(k),

vf (k + 1) = Bfvf (k) + Lf1~y(k),

yf (k) = Lf2yf(k − 1) + Lf3~y(k),

ẑ2 = Nfvf (k),

(5)

whereuf (k) ∈ Rn andvf (k) ∈ Rn are the estimations of the
neuron statesu(k) and v(k), respectively.xf (k) and yf (k)
are the state vectors of the estimator corresponding to~x(k)
and~y(k), respectively.z1(k) ∈ Rnz andz2(k) ∈ Rnz are the
estimator outputs.Af , Bf , Kf1, Kf2, Kf3, Lf1, Lf2, Lf3,
Mf andNf are the estimator parameters to be designed.

To facilitate the subsequent analysis, we first establish the
following augmented dynamics of the state estimation process:




ξ(k + 1) = Ā(k)ξ(k) + Ād

∞∑

d=1

µ1dξ(k − d)

+ V 1g
(
Īζ(k)

)
+ Ḡ(k)ϑ(k)

+

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)
θ1(k),

z̃1(k) = M̄fξ(k),

ζ(k + 1) = B̄(k)ζ(k) + B̄d

∞∑

d=1

µ2dζ(k − d)

+ V 2f
(
Īξ(k)

)
+ H̄(k)ϑ(k)

+

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)
θ2(k),

z̃2(k) = N̄fζ(k),

(6)

where z̃1(k) , ẑ1(k)− z1(k) and z̃2(k) , ẑ2(k)− ẑ1(k) are
the output state estimation error, and

ξ(k) ,




u(k)
~x(k − 1)
uf(k)

xf (k − 1)


 , ζ(k) ,




v(k)
~y(k − 1)
vf (k)

yf (k − 1)


 ,

Ā(k) ,




0 0 0 0
Ψ~(k)E (Im −Ψ~(k)) 0 0

Kf1Ψ~(k)E Kf1(Im −Ψ~(k)) Af 0
Kf3Ψ~(k)E Kf3(Im −Ψ~(k)) 0 Kf2


 ,

Ād ,




A 0 0 0
0 0m×m 0 0
0 0 0n×n 0
0 0 0 0m×m


 , V 1 ,




V (1)

0m×n

0n×n

0m×n


 ,

Ḡ(k) ,




0n×n 0 0 0
Ψ~(k)G 0m×m 0 0

Kf1Ψ~(k)G 0 0n×n 0
Kf3Ψ~(k)G 0 0 0m×m


 ,

C̄ ,




C 0 0 0
0 0m×m 0 0
0 0 0n×n 0
0 0 0 0m×m


 , W 1 ,




W (1)

0m×n

0n×n

0m×n


 ,

H̄(k) ,




0n×n 0 0 0
Ψ~(k)H 0m×m 0 0

Lf1Ψ~(k)H 0 0n×n 0
Lf3Ψ~(k)H 0 0 0m×m


 ,

B̄(k) ,




0 0 0 0
Ψ~(k)F Im −Ψ~(k) 0 0

Lf1Ψ~(k)F Lf1(Im −Ψ~(k)) Bf 0
Lf3Ψ~(k)F Lf3(Im −Ψ~(k)) 0 Lf2


 ,

B̄d ,




B 0 0 0
0 0m×m 0 0
0 0 0n×n 0
0 0 0 0m×m


 , V 2 ,




V (2)

0m×n

0n×n

0m×n


 ,

D̄ ,




D 0 0 0
0 0m×m 0 0
0 0 0n×n 0
0 0 0 0m×m


 , W 2 ,




W (2)

0m×n

0n×n

0m×n


 ,

Ī ,
[
In 0n×m 0n×n 0n×m

]
,

M̄f ,
[
−M 0nz×m Mf 0nz×m

]
,

N̄f ,
[
−N 0nz×m Nf 0nz×m

]
.

Definition 1: The augmented dynamics of state estimation
process (6) withϑ(k) ≡ 0 is said to beexponentially mean-
square stableif there exist three constantsα > 0, ǫ ∈ (0, 1)
andτ ≥ 0 such that, fork ∈ Z+, the following holds:

E

{
‖ξ(k)‖

2
+ ‖ζ(k)‖

2
}

≤αǫk

(
sup

t∈[−τ,0]

E

{
‖ξ(t)‖

2
}
+ sup

t∈[−τ,0]

E

{
‖ζ(t)‖

2
})

.

The objective of this paper is to design aH∞ estimator of
the form (5) for the stochastic BAM neural networks (1) with
distributed leakage delays and the measurement outputs (3).
More specifically, we aim to obtain the estimator parameters
Af , Bf , Kfi and Lfi (i = 1, 2, 3) such that the following
requirements are simultaneously achieved:

1) the augmented dynamics of the system (6) isexponen-
tially mean-square stable; and

2) for the given disturbance attenuation levelγ > 0 with
ϑ(k) 6= 0, the output state estimation error̃z(k) ,
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[
z̃T1 (k) z̃T2 (k)

]T
satisfies

∞∑

k=0

E

{
‖z̃(k)‖

2
}
≤ γ2

∞∑

k=0

‖ϑ(k)‖
2

under the zero initial condition.

III. M AIN RESULTS

We first present the following lemmas which will be used
in the sequel.

Lemma 1: Let M ∈ Rn×n be a positive semi-definite
matrix. Forxi ∈ Rn and constantai > 0 (i = 1, 2, . . . ,∞),
if the series concerned is convergent, then we have
(

∞∑

i=1

aixi

)T

M

(
∞∑

i=1

aixi

)
≤

(
∞∑

i=1

ai

)
∞∑

i=1

aix
T
i Mxi.

In this section, our main results will be stated in two
theorems. The first theorem provides a set of access-token-
dependent conditions such that the augmented dynamics (6)
is exponentially mean-square stable, and the design of the
full-order estimator (5) is discussed in the second theorem.
By resorting to the Lyapunov stability theory, the exponential
stability condition of the dynamics (6) is derived step by step,
and the stochastic analysis technique and matrix theory are
employed to facilitate the establishment of the main results.

Theorem 1: Let the estimator gain matricesAf , Kfi,
Bf , Lfi (i = 1, 2, 3) of the estimator (5) be given. The
augmented dynamics of the system (6) is exponentially mean-
square stable with the given disturbance attenuation level
γ > 0 if there exist positive definite matricesPj~(k) =
diag{P1,j~(k), P2,j~(k), P3,j~(k), P4,j~(k)}, Pj~(k+1) =
diag{P1,j~(k+1), P2,j~(k+1), P3,j~(k+1), P4,j~(k+1)} andQj

(j = 1, 2) such that the following matrix inequalities hold for
all possible token~(k) ∈ {1, 2, · · · ,m}:

Ω(k) =



Ω̄11 ∗ ∗
Ω̄21 Ω̄22 ∗
Ω̄31 Ω̄23 Ω̄33


 < 0 (7)

where

Ω̄11 ,




−Ωk
11 ∗ ∗ ∗

0 −Q1

µ̄1
∗ ∗

0 0 −2In ∗
0 0 Ω43 −Ωk

44


 ,

Ω̄21 ,




0 0 0 0
Ω61 0 0 0
0 0 0 0

Ā(k)
(
Ād + θ̄1C̄

) (
V 1 + θ̄1W 1

)
0


 ,

Ωk
77 , P−1

1~(k+1),

Ω̄22 ,




−Q2

µ̄2
∗ ∗ ∗

0 −2In ∗ ∗
0 0 −γ2I ∗
0 0 Ḡ(k) −Ωk

77


 ,

Ω̄31 ,




0 0 0 B̄(k)
0 θ̄1(1− θ̄1)C̄ θ̄1(1− θ̄1)W 1 0
0 0 0 0
M̄f 0 0 0
0 N̄f 0 0



,

Ωk
88 , P−1

2~(k+1),

Ω̄32 ,




(
B̄d + θ̄2D̄

) (
V 2 + θ̄2W 2

)
H̄(k) 0

0 0 0 0
θ̄2(1− θ̄2)W 2 0 0 0

0 0 0 0
0 0 0 0



,

Ω̄33 ,




−Ωk
88 ∗ ∗ ∗ ∗

0 −Ωk
77 ∗ ∗ ∗

0 0 −Ωk
88 ∗ ∗

0 0 0 −Inz
∗

0 0 0 0 −Inz



,

Ωk
11 , P1~(k) − µ̄1Q1 + ĪTST

2 S1Ī + ĪTST
1 S2Ī ,

Ωk
44 , P2~(k) − µ̄2Q2 + ĪTRT

2 R1Ī + ĪTRT
1 R2Ī ,

Ω61 , (S1 + S2)Ī , Ω43 , ĪT (R1 +R2)
T .

Proof: Let us first consider the exponential stability for
the augmented dynamics (6).

Noticing g(0) = f(0) = 0, it follows from (2) that
(
− g(a) +R2a

)T (
− g(a) +R1a

)
≤ 0,

(
− f(a) + S2a

)T (
− f(a) + S1a

)
≤ 0,

which implies




gT
(
Īζ(k)

)
(R1 +R2)Īζ(k)− gT

(
Īζ(k)

)
g
(
Īζ(k)

)

− ζT (k)ĪTRT
2 R1Īζ(k) ≥ 0,

fT
(
Īξ(k)

)
(S1 + S2)Īξ(k)− fT

(
Īξ(k)

)
f
(
Īξ(k)

)

− ξT (k)ĪTST
2 S1Īξ(k) ≥ 0.

(8)

Consider the following matrix functional for the system (6):

V (k) , ξT (k)P1~(k)ξ(k) +

+∞∑

d=1

µ1d

−1∑

t=−d

ξT (k + t)Q1

×ξ(k + t) + ζT (k)P2~(k)ζ(k)

+

+∞∑

d=1

µ2d

−1∑

t=−d

ζT (k + t)Q2ζ(k + t). (9)

Let ϑ(k) = 0. Calculating the difference ofV (k) along
the trajectory of state estimation process (6) and taking the
mathematical expectation yield

∆V (k)

=E

{
V (k + 1)− V (k)

∣∣∣ℵ(k)
}

=E

{
ξT (k + 1)P1~(k+1)ξ(k + 1)− ξT (k)P1~(k)ξ(k)

+ ζT (k + 1)P2~(k+1)ζ(k + 1)− ζT (k)P2~(k)ζ(k)

+µ̄1ξ
T (k)Q1ξ(k)−

+∞∑

d=1

µ1dξ
T (k − d)Q1ξ(k − d)

+ µ̄2ζ
T (k)Q2ζ(k)−

+∞∑

d=1

µ2dζ
T (k − d)Q2ζ(k − d)

∣∣∣ℵ(k)
}
,

whereΘt(k) ,
{
e(k), e(k − 1), · · · , e(k − t)

}
andℵ(k) ,

∞⋃
t=1

Θt(k).
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By using Lemma 1, one obtains

∆V (k)

≤E

{[
Ā(k)ξ(k) + Ād

∞∑

d=1

µ1dξ(k − d) + V 1g
(
Īζ(k)

)

+θ̄1

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)]T

×P1~(k+1)

×

[
Ā(k)ξ(k) + Ād

∞∑

d=1

µ1dξ(k − d) + V 1g
(
Īζ(k)

)

+θ̄1

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)]

+

[
B̄(k)ζ(k) + B̄d

∞∑

d=1

µ2dζ(k − d) + V 2f
(
Īξ(k)

)

+θ̄2

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)]T

×P2~(k+1)

×

[
B̄(k)ζ(k) + B̄d

∞∑

d=1

µ2dζ(k − d) + V 2f
(
Īξ(k)

)

+θ̄2

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)]

+θ̄1(1− θ̄1)

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)T

×P1~(k+1)

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)

+θ̄2(1− θ̄2)

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)T

×P2~(k+1)

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)

−ξT (k)P1~(k)ξ(k)− ζT (k)P2~(k)ζ(k)

+µ̄1ξ
T (k)Q1ξ(k)−

1

µ̄1

(
+∞∑

d=1

µ1dξ(k − d)

)T

Q1

×

+∞∑

d=1

µ1dξ(k − d)

+µ̄2ζ
T (k)Q2ζ(k)−

1

µ̄2

(
+∞∑

d=1

µ2dζ(k − d)

)T

Q2

×

+∞∑

d=1

µ2dζ(k − d)
∣∣∣ℵ(k)

}
.

Keeping the relationship (8) in mind, we have

∆V (k)

≤E

{
− ξT (k)

(
P1~(k) − µ̄1Q1 + ĪTST

2 S1Ī + ĪTST
1 S2Ī

)

× ξ(k)− ζT (k)
(
P2~(k) − µ̄2Q2 + ĪTRT

2 R1Ī

+ ĪTRT
1 R2Ī

)
ζ(k) −

1

µ̄1

(
+∞∑

d=1

µ1dξ(k − d)

)T

Q1

+∞∑

d=1

µ1d

× ξ(k − d)−
1

µ̄2

(
+∞∑

d=1

µ2dζ(k − d)

)T

Q2

+∞∑

d=1

µ2dζ(k − d)

− 2gT
(
Īζ(k)

)
g
(
Īζ(k)

)
− 2fT

(
Īξ(k)

)
f
(
Īξ(k)

)

+ 2gT
(
Īζ(k)

)
(R1 +R2)Īζ(k)

+ 2fT
(
Īξ(k)

)
(S1 + S2)Īξ(k)

+

[
Ā(k)ξ(k) +

(
Ād + θ̄1C̄

) ∞∑

d=1

µ1dξ(k − d)

+
(
V 1 + θ̄1W 1

)
g
(
Īζ(k)

)
)]T

P1~(k+1)

×

[
Ā(k)ξ(k) +

(
Ād + θ̄1C̄

) ∞∑

d=1

µ1dξ(k − d)

+
(
V 1 + θ̄1W 1

)
g
(
Īζ(k)

)
)]

+

[
B̄(k)ζ(k) +

(
B̄d + θ̄2D̄

) ∞∑

d=1

µ2dζ(k − d)

+
(
V 2 + θ̄2W 2

)
f
(
Īξ(k)

)
)]T

P2~(k+1)

×

[
B̄(k)ζ(k) +

(
B̄d + θ̄2D̄

) ∞∑

d=1

µ2dζ(k − d)

+
(
V 2 + θ̄2W 2

)
f
(
Īξ(k)

)
)]

+ θ̄1(1− θ̄1)

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)T

× P1~(k+1)

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)

+ θ̄2(1− θ̄2)

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)T

× P2~(k+1)

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)∣∣∣ℵ(k)

}
.

By denoting

φ(k) =


ξT (k)

(
∞∑

d=1

µ1dξ(k − d)

)T

gT
(
Īζ(k)

)
ζT (k)

(
∞∑

d=1

µ2dζ(k − d)

)T

fT
(
Īξ(k)

)


T

,
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we have∆V (k) ≤ E
{
φ(k)TΞ(k)φ(k)

∣∣ℵ(k)
}

, where

Ξ(k) ,




−Ξ11 ∗ ∗ ∗ ∗ ∗
Ξ21 −Ξ22 ∗ ∗ ∗ ∗
Ξ31 Ξ32 −Ξ33 ∗ ∗ ∗
0 0 Ω43 −Ξ44 ∗ ∗
0 0 0 Ξ54 −Ξ55 ∗

Ω61 0 0 Ξ64 Ξ65 −Ξ66



,

Ξ11 , Ω11 − ĀT (k)P1~(k+1)Ā(k),

Ξ22 ,
Q1

µ̄1
−
(
Ād + θ̄1C̄

)T
P1~(k+1)

(
Ād + θ̄1C̄

)

− θ̄1(1 − θ̄1)C̄
TP1~(k+1)C̄,

Ξ33 , 2I −
(
V 1 + θ̄1W 1

)T
P1~(k+1)

(
V 1 + θ̄1W 1

)

− θ̄1(1 − θ̄1)W
T

1 P1~(k+1)W 1,

Ξ44 , Ω44 − B̄T (k)P1~(k+1)B̄(k),

Ξ55 ,
Q2

µ̄2
−
(
B̄d + θ̄2D̄

)T
P1~(k+1)

(
B̄d + θ̄2D̄

)

− θ̄2(1 − θ̄2)D̄P2~(k+1)D̄,

Ξ66 , 2I −
(
V 2 + θ̄2W 2

)T
P1~(k+1)

(
V 2 + θ̄2W 2

)

− θ̄2(1 − θ̄2)W 2P2~(k+1)W 2,

Ξ21 ,
(
Ād + θ̄1C̄

)T
P1~(k+1)Ā(k),

Ξ31 ,
(
V 1 + θ̄1W 1

)T
P1~(k+1)Ā(k),

Ξ32 ,
(
V 1 + θ̄1W 1

)T
P1~(k+1)

(
Ād + θ̄1C̄

)

+ θ̄1(1 − θ̄1)W
T

1 P1~(k+1)C̄,

Ξ54 ,
(
B̄d + θ̄2D̄

)T
P2~(k+1)B̄(k),

Ξ64 ,
(
V 2 + θ̄2W 2

)T
P2~(k+1)B̄(k),

Ξ65 ,
(
V 2 + θ̄2W 2

)T
P2~(k+1)

(
B̄d + θ̄2D̄

)

+ θ̄2(1 − θ̄2)W
T

2 P2~(k+1)D̄,

which further imply that

∆V (k) ≤ λmax(Ξ(k))E
{∥∥ξ(k)

∥∥2 +
∥∥ζ(k)

∥∥2
∣∣∣ℵ(k)

}
.

On the other hand, by the definition ofV (k) in (9), for any
sufficiently large integerτ > d, it is obvious that

E
{
V (k)

}
≤λmax(P1~(k))E

{∥∥ξ(k)
∥∥2}

+ λmax(P2~(k))E
{∥∥ζ(k)

∥∥2}

+ λmax(Q1)µ̄1

−1∑

t=−τ

E
{∥∥ξ(k + t)

∥∥2}

+ λmax(Q2)µ̄2

−1∑

t=−τ

E
{∥∥ζ(k + t)

∥∥2}.

Furthermore, for any given scalarµ > 1, one obtains

E
{
µkV (k)

}

=E

{
V (0) +

k−1∑

i=0

(
µi+1∆V (i) + (µ− 1)µiV (i)

)
}

=E

{
V (0) +

k−1∑

i=0

µi
(
µ∆V (i) + (µ− 1)V (i)

)
}
.

Subsequently, it follows that

E
{
µkV (k)

}

≤λmax(P1~(0))E
{∥∥ξ(0)

∥∥2}+ λmax(P2~(0))E
{∥∥ζ(0)

∥∥2}

+ λmax(Q1)µ̄1τE
{∥∥ξ(t)

∥∥2}+ λmax(Q2)µ̄2τE
{∥∥ζ(t)

∥∥2}

+ λmax

(
µΞ(k) + (µ− 1)P1~(k)

) k−1∑

i=0

µi
E
{∥∥ξ(k)

∥∥2}

+ λmax

(
µΞ(k) + (µ− 1)P1~(k)

) k−1∑

i=0

µi
E
{∥∥ζ(k)

∥∥2}

+ (µ− 1)λmax(Q1)µ̄1

(
τ2µτ sup

j∈N[−τ, 0]

E
{∥∥ξ(k)

∥∥2}

+τµτ

k−1∑

j=0

µj
E
{∥∥ξ(j)

∥∥2}



+ (µ− 1)λmax(Q2)µ̄2

(
τ2µτ sup

j∈N[−τ, 0]

E
{∥∥ζ(k)

∥∥2}

+τµτ

k−1∑

j=0

µj
E
{∥∥ζ(j)

∥∥2}



≤a1(µ) sup
j∈N[−τ, 0]

E
{∥∥ξ(j)

∥∥2}+ b1(µ)

k∑

j=0

µj
E
{∥∥ξ(j)

∥∥2}

+ a2(µ) sup
j∈N[−τ, 0]

E
{∥∥ζ(j)

∥∥2}

+ b2(µ)

k∑

j=0

µj
E
{∥∥ζ(j)

∥∥2},

where

a1(µ) ,λmax(P1~(0)) + λmax(Q1)µ̄1τ

+ (µ− 1)λmax(Q1)µ̄1τ
2µτ ,

a2(µ) ,λmax(P2~(0)) + λmax(Q2)µ̄2τ

+ (µ− 1)λmax(Q2)µ̄2τ
2µτ ,

b1(µ) ,µλmax(Ξ(k)) + (µ− 1)λmax(P1~(k))

+ (µ− 1)λmax(Q1)µ̄1τµ
τ ,

b2(µ) ,µλmax(Ξ(k)) + (µ− 1)λmax(P2~(k))

+ (µ− 1)λmax(Q2)µ̄2τµ
τ .

Here, we knowa1(1) > 0 and a2(1) > 0 from the positive
definiteness of the matricesPj~(k) and Qj (j = 1, 2), and
b1(1) < 0 andb2(1) < 0 from Ξ(k) < 0. By further denoting

Ξ(k)

,




−Ξ11 ∗ ∗ ∗ ∗ ∗ ∗
Ξ21 −Ξ22 ∗ ∗ ∗ ∗ ∗
Ξ31 Ξ32 −Ξ33 ∗ ∗ ∗ ∗
0 0 Ω43 −Ξ44 ∗ ∗ ∗
0 0 0 Ξ54 −Ξ55 ∗ ∗

Ω61 0 0 Ξ64 Ξ65 −Ξ66 ∗
Ξ71 Ξ72 Ξ73 Ξ74 Ξ75 Ξ76 −Ξ77




,

Ξ11 , Ω11 − ĀT (k)P1~(k+1)Ā(k) + M̄T
f M̄f ,

Ξ44 , Ω44 − B̄T (k)P1~(k+1)B̄(k) + N̄T
f N̄f ,
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Ξ71 , ḠT (k)P1~(k+1)Ā(k),

Ξ72 , ḠT (k)P1~(k+1)

(
Ād + θ̄1C̄

)
,

Ξ73 , ḠT (k)P1~(k+1)

(
V 1 + θ̄1W 1

)
,

Ξ74 , H̄T (k)P1~(k+1)B̄(k),

Ξ75 , H̄T (k)P1~(k+1)

(
B̄d + θ̄2D̄

)
,

Ξ76 , H̄T (k)P1~(k+1)

(
V 2 + θ̄2W 2

)
,

Ξ77 , −ḠT (k)P1~(k+1)Ḡ(k)− H̄T (k)P2~(k+1)H̄(k) + γ2,

we obtainΞ(k) < 0 from Ω(k) < 0 in the help of Schur
Complement, which indicatesΞ(k) < 0 becauseΞ(k) is a
principal submatrix ofΞ(k). Moreover, noting thata1(1) > 0,
a2(1) > 0, b1(1) < 0 andb2(1) < 0, we have

E
{∥∥ξ(k)

∥∥2}+ E
{∥∥ζ(k)

∥∥2}

≤− µ−k
max{a1(z), a2(z)}

max{b1(z), b2(z)}

(
sup

j∈N[−τ, 0]

(
E
{∥∥ξ(j)

∥∥2}

+E
{∥∥ζ(j)

∥∥2}
)
− E

{
zkV (k)

})
,

which indicates that the state estimation process (6) isexpo-
nentially stablein the mean-square sense.

We are now in the position to deal with theH∞ performance
analysis for the state estimation process (6). Based upon the
aforementioned stability analysis, it follows that

∞∑

k=0

E
{
V (k + 1)− V (k) + z̃T (k)z̃(k)− γ2ϑT (k)ϑ(k)

}

≤E

{
− ξT (k)

(
P1~(k) − µ̄1Q1

+ ĪTST
2 S1Ī + ĪTST

1 S2Ī
)
ξ(k)

− ζT (k)
(
P2~(k) − µ̄2Q2 + ĪTRT

2 R1Ī + ĪTRT
1 R2Ī

)
ζ(k)

−
1

µ̄1

(
+∞∑

d=1

µ1dξ(k − d)

)T

Q1

+∞∑

d=1

µ1dξ(k − d)

−
1

µ̄2

(
+∞∑

d=1

µ2dζ(k − d)

)T

Q2

+∞∑

d=1

µ2dζ(k − d)

− 2gT
(
Īζ(k)

)
g
(
Īζ(k)

)
− 2fT

(
Īξ(k)

)
f
(
Īξ(k)

)

+ 2gT
(
Īζ(k)

)
(R1 +R2)Īζ(k)

+ 2fT
(
Īξ(k)

)
(S1 + S2)Īξ(k)

+

[
Ā(k)ξ(k) +

(
Ād + θ̄1C̄

) ∞∑

d=1

µ1dξ(k − d)

+
(
V 1 + θ̄1W 1

)
g
(
Īζ(k)

)
+ Ḡ(k)ϑ(k)

]T
P1~(k+1)

×

[
Ā(k)ξ(k) +

(
Ād + θ̄1C̄

) ∞∑

d=1

µ1dξ(k − d)

+
(
V 1 + θ̄1W 1

)
g
(
Īζ(k)

)
+ Ḡ(k)ϑ(k)

]

+

[
B̄(k)ζ(k) +

(
B̄d + θ̄2D̄

) ∞∑

d=1

µ2dζ(k − d)

+
(
V 2 + θ̄2W 2

)
f
(
Īξ(k)

)
+ H̄(k)ϑ(k)

]T
P2~(k+1)

×

[
B̄(k)ζ(k) +

(
B̄d + θ̄2D̄

) ∞∑

d=1

µ2dζ(k − d)

+
(
V 2 + θ̄2W 2

)
f
(
Īξ(k)

)
+ H̄(k)ϑ(k)

]

+ θ̄1(1− θ̄1)

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)T

× P1~(k+1)

(
C̄

∞∑

d=1

µ1dξ(k − d) +W 1g
(
Īζ(k)

)
)

+ θ̄2(1− θ̄2)

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)T

× P2~(k+1)

(
D̄

∞∑

d=1

µ2dζ(k − d) +W 2f
(
Īξ(k)

)
)

+ ξT (k)M̄T
f M̄fξ(k)

+ ζT (k)N̄T
f N̄fζ(k)− γ2ϑT (k)ϑ(k)

∣∣∣ℵ(k)
}

=E
{
φ̄(k)TΞ(k)φ(k)

∣∣ℵ(k)
}
,

whereφ(k) ,
[
φT (k) ϑT (k)

]T
. ConsideringV (k) ≥ 0 for

anyϑ(k) 6= 0 and the zero initial condition, one immediately
has

∞∑

k=0

E
{
z̃T (k)z̃(k)− γ2ϑT (k)ϑ(k)

}

≤

∞∑

k=0

E
{
V (k + 1)− V (k) + z̃T (k)z̃(k)− γ2ϑT (k)ϑ(k)

}

≤0,

and the proof is complete.
In Theorem 1, sufficient conditions, which are dependent on

the access token~(k), are established to ensure the exponential
stability of the dynamics of estimation process (6). Here, it
should be emphasized that the disturbance attenuation levelγ

given in this paper is a prescribed constant which might not be
optimal. In case of seeking the optimal disturbance attenuation
level for the proposed estimation approach, the gevp solver of
the LMI toolbox in Matlab can be used. Moreover, since the
matrix inequalities (7) are nonlinear due to the existence of
the termP−1

1~(k+1), which brings much difficulty for numerical
solutions. The following theorem provides a method to deal
with the design issue of the suggested estimator (5).

Theorem 2:Under the RRP and the assumption (2), there
exists anH∞ exponential estimator of the form (5) for the
original stochastic BAM neural networks (1) such that the
augmented dynamics of the system (6) is exponentially mean-
square stable with the given disturbance attenuation level
γ > 0 if there exist positive definite matricesP1,jl ∈ Rn×n,
P2,jl ∈ Rm×m, P3,jl ∈ Rn×n, P4,jl ∈ Rm×m, Qj (j =
1, 2, l = 1, 2, · · · ,m) and matricesAfl, Kfil, Bfl, Lfil

(i = 1, 2, 3) such that the following linear matrix inequalities
(LMIs) hold:

Ω(l, r) < 0

{
l ∈ {1, 2, · · · ,m− 1} , r = l + 1,

l = m, r = 1,
(10)

where

Pjl , diag{P1,jl, P2,jl, P3,jl, P4,jl},

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
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Ω(l, r) ,



Ω̌11 ∗ ∗
Ω̌21 Ω̌22 ∗
Ω̌31 Ω̌32 Ω̌33


 , Ω̌21 ,




0 0 0 0
Ω61 0 0 0
0 0 0 0

Ãl,r Ãr
d Ṽ r

1 0


 ,

Ω̌11 ,




−Ωl
11 ∗ ∗ ∗

0 −Q1

µ̄1
∗ ∗

0 0 −2In ∗
0 0 Ω43 −Ωl

44


 ,

G̃l,r ,




0 0 0 0
P2,1rΨlG 0 0 0
Kf1rΨlG 0 0 0
Kf3rΨlG 0 0 0


 ,

Ω̌22 ,




−Q2

µ̄2
∗ ∗ ∗

0 −2In ∗ ∗
0 0 −γ2I ∗

0 0 G̃l,r −Ω̃r
77


 ,

Ω̌31 ,




0 0 0 B̃l,r

0 C̃r W̃ r
1 0

0 0 0 0
M̄f 0 0 0
0 N̄f 0 0



,

Ω̌32 ,




B̃r
d Ṽ r

2 H̃ l,r 0
0 0 0 0

D̃r W̃ r
2 0 0

0 0 0 0
0 0 0 0



,

Ω̌33 , diag{−Ω̃r
88,−Ω̃r

77,−Ω̃r
88,−Inz

,−Inz
},

Ωl
11 , P1l − µ̄1Q1 + ĪTST

2 S1Ī + ĪTST
1 S2Ī ,

Ωl
44 , P2l − µ̄2Q2 + ĪTRT

2 R1Ī + ĪTRT
1 R2Ī ,

Ω̃r
77 , P1r, Ω̃

r
88 , P2r, Ã

r
d , P1r

(
Ād + θ̄1C̄

)
,

Ṽ r
1 , P1r

(
V 1 + θ̄1W 1

)
,

B̃r
d , P2r

(
B̄d + θ̄2D̄

)
, Ṽ r

2 , P2r

(
V 2 + θ̄2W 2

)
,

C̃r , θ̄1(1− θ̄1)P1rC̄, W̃ r
1 , θ̄1(1− θ̄1)P1rW 1,

D̃r , θ̄2(1− θ̄2)P2rD̄, W̃ r
2 , θ̄2(1− θ̄2)P2rW 2,

Ãl,r ,




0 0 0 0
P2,1rΨlE P2,1r(Im −Ψl) 0 0
Kf1rΨlE Kf1r(Im −Ψl) Afr 0
Kf3rΨlE Kf3r(Im −Ψl) 0 Kf2r


 ,

B̃l,r ,




0 0 0 0
P2,2rΨlF P2,2r(Im −Ψl) 0 0
Lf1rΨlF Lf1r(Im −Ψl) Bfr 0
Lf3rΨlF Lf3r(Im −Ψl) 0 Lf2r


 ,

H̃ l,r ,




0 0 0 0
P2,2rΨlH 0 0 0
Lf1rΨlH 0 0 0
Lf3rΨlH 0 0 0


 .

In this case, the gains of the desiredH∞ exponential estimator
are given as follows(i = 2, 3):

Af = P−1
3,1rAfr, Kf1 = P−1

3,1rKf1r,

Kfi = P−1
4,1rKfir, Bf = P−1

3,2rBfr,

Lf1 = P−1
3,2rLf1r, Lfi = P−1

4,2rLfir .

(11)

Proof: According to the relationship (11), one hasAfr =
P3,1rAf , Kf1r = P3,1rKf1, Kfir = P4,1rKfi (i = 2, 3),
Bfr = P3,2rBf , Lf1r = P3,2rLf1, Lfir = P4,2rLfi (i =
2, 3). Consequently, it is easy to deduceΩ(k) < 0 in (7) by
performing a congruence transformation

̥ , diag{I8(n+m)+2n, P
−1
1r , P−1

2r , P−1
1r , P−1

2r , Inz
, Inz

}

to the condition (10), which completes the proof.
Remark 3: It can be seen from the condition (10) that

the nonlinear termP−1
1~(k+1) is successfully eliminated by

using the matrix transformation technique. Actually, it can be
verified that the established condition (10) is equivalent to the
condition (7) by replacingl and r with ~(k) and ~(k + 1),
respectively. Meanwhile, the estimator gains are characterized
by a low-hanging inverse transformation (11). Feasibility of
the estimator design problem can be checked by the solvability
of the LMIs (10).

IV. I LLUSTRATIVE EXAMPLE

The main purpose of this section is to examine the validity
of the achieved results in the previous section, and the per-
formance of theH∞ exponential estimator (5) under the RRP
scheduling.

Consider a three-neuron stochastic BAM neural network of
the form (1), which is configured by the following (here only
partial matrices are listed out to save space)

W2 =




0.32 0 0.28
−0.04 0.04 0.43
0.27 0 0.15


 , C =



−0.21 0.02 0
−0.13 0.04 0.02
0.01 0 0.07


 ,

E =



−0.43 0 0.02
−0.01 −0.27 0
−0.04 0.01 0


 , H =



−0.37 0 −0.42
−0.03 0 −0.09
0.09 0 0.03


 ,

M =

[
−0.41 0.21 0.09
0.21 0.11 0.02

]
, V2 =




0 0.03 0.06
0.02 0 −0.08
0.03 0.07 0


 .

The nonlinearitiesg(·) andf(·) are set as

g
(
v1(k)

)
= 0.03v1(k)− tanh

(
0.06v1(k)

)
,

f
(
u1(k)

)
= 0.12u1(k)− tanh

(
0.01u1(k)

)
,

g
(
v2(k)

)
= 0.25v2(k)− tanh

(
0.13v2(k)

)
,

f
(
u2(k)

)
= −0.15u2(k)− tanh

(
0.13u2(k)

)
,

g
(
v3(k)

)
= 0.01v3(k)− tanh

(
0.02v3(k)

)
,

f
(
u3(k)

)
= −0.04u3(k)− tanh

(
0.03u3(k)

)
.

It is obvious that the adopted nonlinearities satisfy the con-
dition (2) with R1 = diag {−0.03 , 0.12, −0.01}, R2 =
diag{0.03, 0.25, 0.01}, S1 = diag{0.12, −0.15, −0.04}
and S2 = diag{0.13, −0.02, −0.01}. We take µ1d =
0.42 × 0.7d, µ2d = 0.6 × 0.7d and γ = 1.4353. Then it can
be seen that̄µ1 = 1.4 and µ̄2 = 1.2.

With the help of the LMI toolbox in Matlab software, we
can obtain the solution to the matrix inequalityΩ(l, r) < 0
in Theorem 2 and, accordingly, the desired estimator gains of
H∞ exponential estimator (5) are characterized as follows:

Af =



0.0078 −0.0000 −0.0004
0.0002 0.0049 0.0000
0.0007 −0.0002 −0.0000


 ,
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Bf =



−0.0058 0.0000 0.0003
−0.0001 −0.0037 −0.0000
−0.0005 0.0001 −0.0000


 ,

Kf1 =



0.0077 0.0000 0.0017
0.0002 0.0049 −0.0016
0.0007 −0.0002 −0.0021


 ,

Kf2 =



0.0078 −0.0000 −0.0004
0.0002 0.0049 0.0000
0.0007 −0.0002 −0.0000


 ,

Kf3 =



0.0077 0.0000 0.0017
0.0002 0.0049 −0.0016
0.0007 −0.0002 −0.0021


 ,

Lf1 =



−0.0132 −0.0010 0.0018
0.0018 −0.0055 −0.0007
−0.0053 0.0029 −0.0035


 ,

Lf2 =



−0.0058 0.0000 0.0003
−0.0001 −0.0037 −0.0000
−0.0005 0.0001 −0.0000


 ,

Lf3 =



−0.0132 −0.0010 0.0018
0.0018 −0.0055 −0.0007
−0.0053 0.0029 −0.0035


 ,

Mf =

[
−0.1550 −0.0250 0.1550
0.4150 0.0350 0.7100

]
,

Nf =

[
0.3850 −0.1450 −0.1450
−0.3650 −0.1000 −0.3700

]
.

Let the disturbance input be

ϑ(k) =

{
0.6, if 1 ≤ k ≤ 15,
0, otherwise.

Consequently, the state estimation results of the discussed
estimator can be simulated in the Matlab platform. Figs. 2 are
the state responses of the estimation errors of the neuron states
u(k)−uf(k) andv(k)−vf (k), and the state estimation errors
z̃1 andz̃2, respectively. It is confirmed from the simulation that
the designedH∞ exponential estimator performs well.

Letting C = A and B = D, we investigate the effect
of the binary mode switching on the system performance.
Figs. 2–3 show the state estimation errors of the proposed
algorithm with and without mode switching, from which one
observes that, the estimation speed of the algorithm with mode
switching is slower than the estimation speed of the algorithm
without mode switching. In addition, the estimation speed of
the considered system without the RRP can be revealed by
simply settingΨ~(k) = Im.

Remark 4:Although state estimation problems for BAM
neural networks have gained much research interest among
researchers,existing results can be hardly applied to large-
scale networks with communication constraints. In comparison
with the developed estimation approach in [8], our proposed
H∞ state estimation problem is capable of handling the
difficulties brought by the simultaneous presence of the limited
communication bandwidth, the leakage delays and the stochas-
tic switching between redundant models, resulting in more
accurate and precise estimation results on the neuron states.
In the absence of the leakage delays, stochastic switching and
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Fig. 2: State estimation error

communication constraints, the main results obtained in this
paper will degenerate to that in [8].

V. CONCLUSIONS

In this paper, we have developed a systematic framework for
H∞ state estimation problem with communication-constrained
measurements. The presences of the distributed delays in the
leakage terms and the stochastic mode switching have been
simultaneously considered. The well-known RRP has been
used to avoid the possible transmission collisions subjected to
limited bandwidth. The purpose of this paper is to estimate the
output signal of the BAM neural networks through the received
measurements. By applying stochastic analysis means, convex
optimization techniques, and Lyapunov stability theory, suffi-
cient conditions have been derived to ensure the existence of
the discussedH∞ estimator in terms of matrix inequalities.
Then, the desired estimator parameters are calculated by
solving a set of LMIs. Finally, an illustrative example has been
provided to demonstrate the effectiveness of the proposed state
estimation method.
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Fig. 3: State estimation error without mode switching

Further research topics include the extension of the main
results to
• Fusion estimation problems for delayed ANNs [19], [35].
• Moving-horizon estimation problems for BAM neural

networks with network-induced phenomena [54], [56].
• The improvement of the state estimation performance by

using some latest optimization algorithms [37], [38].
• State estimation problems under various communication

protocols, e. g. the random access protocol and try-once-
discard protocol [23], [33], [42], [55].

• State estimation problems for BAM neural networks with
engineering-oriented complexities, e.g. uncertain param-
eters, correlated missing measurements, random packet
losses, censored measurements and event-triggered mech-
anism [10], [14], [22], [26], [31], [32], [36], [52].
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