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H,, State Estimation for BAM Neural Networks
with Binary Mode Switching and Distributed
Leakage Delays under Periodic Scheduling Protocol
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Abstract—This paper is concerned with the H., state esti- patterns through using the real-time unsupervised learning
mation problem for a class of bidirectional associative memory [28]. As an extension of the unidirectional auto-associator
(BAM) neural networks with binary mode switching, where the of Hopfield [51], BAM neural networks have found wide

distributed delays are included in the leakage terms. A couple L h . .
of stochastic variables taking values ofl or 0 are introduced applications in a range of areas such as fault diagnosis, model

to characterize the switching behavior between the redundant Of recognition and cued recall, signal and image processing
models of the BAM neural network, and a general type of [1]. Accordingly, the research on BAM neural networks has

neuron activation function (i.e. the sector-bounded nonlinearity) attracted considerable attention, see e.g. [7], [53] and the
is considered. In order to prevent the data transmissions from references therein

collisions, a periodic scheduling protocol (i.e Round-Robin proto- | tical licati truct d t
col) is adopted to orchestrate the transmission order of sensors. n many practical applications, structures and parameters

The purpose of this work is to develop a full-order estimator such Of the ANN might suffer from certain abrupt changes due
that the error dynamics of the state estimation is exponentially to various reasons such as component and interconnection

mean-square stable and thef. performance requirement of the  fajlures or repairs, variation of environmental factors, large
output estimation error is also achieved. Sufficient conditions are amplitude disturbances, and so forth [11], [45], [48]. These

established to ensure the existence of the required estimator by brupt ch Id Vi tth fi f ANN
constructing a mode-dependent Lyapunov-Krasovskii functional. abrupt changes would severely impact the operation o S

Then, the desired estimator parameters are obtained by solving [12], [13]. In order to protect the ANNs from being com-
a set of matrix inequalities. Finally, a numerical example is promised by abrupt changes, the switching strategy is often

provided to show the effectiveness of the proposed estimator employed to ensure the continuously normal operation of
design method. ANNSs in real scenarios. With such a strategy, the ANNs would

Index Terms—Artificial neural networks, bidirectional associa- automatically switch to a reductant mode when the abrupt
tive memory neural networks, Ho, state estimation, distributed changes take place.

leakage delays, periodic scheduling protocol. In the applications of ANNSs, the information of neuron
states is of dominant importance since almost all ANN ap-
|. INTRODUCTION plications (i.e. optimization and approximation) are depen-

o o dent on the accurate state information. Unfortunately, the

The study on bidirectional associative memory (BAM}y|| information of neuron states is not always accessible
neural networks was originated in [25]. The BAM neural, practical applications, and this has necessitated the state
network is a widely used artificial neural network (ANN)estimation problem that aims to estimate the state information
that is featured by its ability to store a pair of analogugi ANNs based on available measurements only. Indeed, the
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referred to as the leakage delays [20], [49], which could leadThe rest of this paper is organized as follows. In Section
to the deterioration of the system performance or even cauke class of stochastic BAM neural networks with distributed
the instability of the system [21], [44]. By now, considerabléeakage delays and RRP scheduling are introduced and the
research attention has been drawn to various analysis issc@sespondingd,, state estimation problem is formulated. In
(e.g. stability analysis [3], [4], [41], [43], passivity analysisSection lll, sufficient conditions are established that guarantee
and synchronization) of ANNS with leakage delays, see eiye existence of the desired estimator parameters, and the esti-
[9], [18]. For the state estimation issue of ANNSs, time delay®ator parameters are derived in terms of the solution to a set of
should be adequately taken into account in the estimator desigatrix inequalities. A numerical simulation example is given
for the purpose of avoiding undesired oscillation, bifurcatioim Section IV to show the effectiveness and correctness of the
and chaotic attractors. Furthermore, it should be noted thmbposed state estimation approach. Finally, the conclusion of
the number of the neurons in an ANN is usually very largéhis work is drawn in Section V.
which would lead to a huge amount of measurement data.Notation. The notations used throughout the paper are fairly
This is particularly true for the state estimation problem of standard except where otherwise stat&d, R"*™ and Z
BAM neural network with a limited communication channe(Z™,Z~) denote, respectively, the-dimensional Euclidean
between the neural network and the remote estimator, in whigpace, the set of alh x m real matrices and the set of
the considered ANN contains up to billions of neurons in ordafl integers (nonnegative integers, negative integels).||
to deal with some complex design problems. refers to the Euclidean norm iR™. For a scalam € R, |a|
It is quite common in a networked environment that thdenotes its absolute valué, represents the identity matrix
state evolutions of certain ANNs need to be closely monitored dimensionn x n. The notationX > Y (respectively,
in a remote way via communication channels with limited > Y’), whereX andY are symmetric matrices, means that
bandwidth [29], [34]. In this case, the remote estimator® —Y is positive semi-definite (respectively, positive definite).
receive measurement outputs of the ANNs sent by a groEpr a matrix A/, M” and M~! represent its transpose and
of sensors through shared communication networks. Suckerse, respectively. The shorthadicg{ M1, Mo, ..., M,}
vast data transmissions would lead to heavy burden on ftikenotes a block diagonal matrix with diagonal blocks being
communication channel of limited bandwidth, thereby rehe matrices\iy, Ma, ..., M,. In symmetric block matrices,
sulting in communication congestion and consecutive datee symbol %’ is used as an ellipsis for terms induced
dropouts [15], [17]. In this case, the utilization of certaily symmetry. \p,in(-) and Apax(-) are the minimum and
communication protocols (e.g. periodic scheduling protocat)aximum eigenvalues, respectivelyod(a, b) represents the
serves as an effective method to mitigate the data collisionique nonnegative remainder on division of the integéy
issue over communication channels of limited capacity. Tliee positive integeb. d(a) is a binary function which equals
well-known Round-Robin protocol (RRP) is notably one ofo 1 for a = 0, and equals td®d for a # 0. Moreover, let
the most widely employed periodic scheduling protocols ar{é, %, Prob) be a complete probability space, where Prob, the
has attracted quite a lot research attention, see e.g. [16], [Jfbbability measure, has total massE{x} andE{z|y} stand
[46]. for, respectively, the expectation of the stochastic variable
Although problems of state estimation and stability analysésxd the expectation of conditional ony with respect to
of BAM neural networks have been heavily discussed in [She given probability measure Prob. Matrices, if they are not
[9], [12], [18], [53] in recent years, no studies on state estexplicitly stated, are assumed to have compatible dimensions.
mation problems of BAM ANNs with binary mode switching
have been reported, not to mention the case where distributed II. PROBLEM FORMULATION
Ie_akage_ delays and the_ RR.P are involveql. Inspired by abOV"JConsider the following class of stochastic BAM neural
discussions, our attention in this paper is paid to fiig networks:
state estimation problem for stochastic BAM neural networks

with distributed leakage delays where the RRP is adopted to _ _
schedule the signal transmission between the neural network ulk+1) = (A i Gl(k)C) ;Mldu(k 9)
and the estimator with hope to make full use of the limited
communication bandwidth.p + (V(l) + el(k)W(l))g(U(k))’
The main contributions of this paper are highlighted as z1(k) = Mu(k), )
follows: 1) the considered BAM neural networks can switch e
to another redundant mode when abrupt changes occur, which v(k+1) = (B + 92(k)D) Z pizav(k — d)
will thus guarantee the performance of ANNs in case of d=1
undergoing abrupt environment changes; 2) thkg, state + (V(Q) +92(k)W(2))f(U(k)),
estimation problem is, for the first time, investigated for zo(k) = Nv(k),
the stochastic BAM neural networks with distributed leakage T
delays and RRP scheduling effects; 3) based on the stochadfere u(k) = [ui(k) wua(k) --- wun(k)]" € R™ and
analysis approach, sufficient conditions are established tdk) £ [vi(k) wva(k) - vn(k)]T € R™ are the neuron

guarantee a satisfactory state estimation performance; and gpte vectors withi; (k) € R andv;(k) € R being the states
the estimator gain matrices are obtained by solving a set of the i-th neuron from the neural fieldy; and the neural
matrix inequalities via standard software package. field Fy at time instantk € Z, respectively.z; (k) € R":
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and z;(k) € R are the signals to be estimater(v(k)) £ following sector-bounded conditions for anyb € R™:

T vy (k T(og(k)) - ¢T(un(k)]" € R" and T
g1 (vi(K)) g3 (va(k)) 9n (va(k))] (9(b) — g(a) — Ra(b—a))" (g(b) — g(a)

F(u() 2 [ (mn®) FE k) - ST (m(R)]" € CRiboa) <0, i Ry<0

R™ are two vector-valued functions wherg(-) and g;(-) . 2)
(i =1,2,---,n) are the neuron activation functiong(") = (f(b) = f(a) — Sa(b—a))” (f(b) — f(a)
[”Z)]nxn and (") = [ ]uxn (r = 1,2) are the connection —Si(b—a)) <0, Si—8 <0
weight matrices.A = diag{ai,az2,--- ,an} (la;] < 1 for )
i=1,2,--,n) and B = diag{by,bs, - ,bn} (|bj| < 1 for WhereR_l, RQ,_Sl and .S, are constant real matrices of appro-
j=1,2,---,n) are the state feedback coefficient matricgs. priate dlmen5|on_s. The measurement outputs of the system (1)
D, M and N are known constant matrices with appropriat@'® of the following form:
dimensions.> " pqu(k—d) (i = 1,2) represent the infinitely x(k) = Eu(k) + GY(k), 3
d=1
distributed leakage delays with< 1,4 < 1 being the conver- y(k) = Fo(k) + HI(k),
gence constants satisfying £ dzl Pid < dzl dpria < +00. oo v(k) 2 [oa(k) za(k) --- wm(k)}T c R™ and
Foranyi € {1,2} andk € Z*,Hi(g) is a Bernoulli distributed y(k) 2 [yl(k) ya(k) - ym(k)]T e R™ are the net-
stochastic variable taking values dbfand 0 with work outputs.E, F, G and H are known constant matrices
with appropriate dimensionsgl(k) € R® is the measurement
P v 7 o = noise belonging tds ([0, +00) ; R®).
rob{@l(k) = 1} = 91, Prob{@l(k) = 0} =1- 91, . . .
_ _ In this paper, we assume the sensors are periodically sched-
Prob{f(k) =1} = 63, Prob{fa(k) = 0} =1 — 6. uled by the RRP, under which the sensors are allocated with

the transmission opportunities one by one with a fixed circular
Furthermore{; (k) }i_1 s.ez+ are mutually independent ran-order. In this case, th.e estimator could. 0r_1|y receive partial
dom variables - measurement information at each transmission instant. In order

to compensate the received measurement information, a set

Remark 1.The well-known BAM neural network has exten-y¢ ;o0 orger holders (ZOHs) are employed to deal with the

. ) qubdate of the received signal for the estimator [40]. Under the
Such a neural network is actually an extension of the u

N ) : . effects of RRP and ZOHs, the received signal of the estimator
directional auto-associator of Hopfield neural network, whic|

S o . iS given as follows:
implies the BAM neural network is in fact a special recurrent g

neural network [51]. In the system model (1), the terfris+ {:ﬁ(k) = Vypyx(k) + (In — \I/n(k)):_ﬁ:(k —1), @
01(k)C) S pnqu(k — d) and (B + 05(k)D) > paav(k — d) (k) = Wiy (k) + (I — e )il — 1),

are known as the distributed leakage delgysl, which represefiere (k) £ [#1(k) @2(k) fm(k)}T and j(k) £

the distributed propagation delays in the leakage terms [20%; (k) (k) --- gjm(k)}T are the real received mea-
As pointed out in [20], the leakage delays have a significagitirements of the estimator corresponding to the sensor out-
impact on the dynamic analysis problems of neural networksuts =(k) and y(k), respectively. Uy, = diag{d(h(k) —
However, the state estimation problem of neural networks with, §(si(k) — 2),---5(h(k) — m)} is the update matrix with
distributed leakage delays has not gained adequate rese#(@) = mod(k—1,m)+1 € {1, 2,--- ,m} being the access
attention due mainly to the resulting technical difficulties [Skoken holder by théi(k)-th sensor.

[20]. In this work, we pay our attention to the infinitely

distributed leakage delays, which can be used to effectively ko2 a2 Ime2

describe the feature of the spatial extent in the ANNs [51]. T ""k=1, m+1, 2m+1,..
Remark 2:In reality, the structures and parameters of

ANNs might undergo abrupt changes due to the variation of

environmental factors. Such unexpected abrupt changes would

affect the execution of ANNSs. In order to alleviate the negative k=3 m+3 2m+3,.. @ "=’"' 2m, 3m,..

effects, a possible way to protect the service performance of /

ANNSs is to switch the system mode to another redundant ’

one when abrupt changes occur. In this paper, two binary , _ o )
sequences8; (k) andf, (k) are introduced to characterize such Fig. 1: The transmission opportunity of nodes

a switching behavior according to their distinct values. Apart The order number of the node that obtains the transmission
from the binary mode switching, the multi-mode switchingpportunity at each time instant is described in Fig. 1. One
and the Markovian switching can also be used to regulate ti¢n easily observes from Fig 1 and equation (4) that the
aforementioned switching behavior of the ANNs in case Qfiformation propagation among network nodes is conducted
abrupt changes. in a fixed circular order. Keeping this in mind and using
In this paper, the vector-valued neuron activation functidhe zero-order holder strategy, at tink¢ the measurements
g(-) and f(-) with g(0) = f(0) = 0 are assumed to satisfy thearriving at the estimator are given by equation (4) where
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the measurement coefficients whebg,, = diag{é(h(k) — 0 0 0 0
1),8(h(k)—2),---d(h(k)—m)} is the protocol-induced update A(k) & Uhr) & (L = Wa(r)) 0 0 7
KpVamE Kp(Ln —Vypy) Ay 0

matrix andi(k) = mod(k — 1,m) +1 € {1, 2,--- ,m}

is the protocol-induced access token at timeAs a result, Kp3Un B Kps(Im = Wpry) 0 Ky

protocol-induced coefficientd ;) and h(k) are introduced A 0 0 0 v
to all measurement-related terms (see the estimator (5), error o |0 Opxm 0 0 v, 2 Omxn
system (6) and Theorems 1-2), adding extra difficulties to the? ~ | 0 0 O xcn 0 LT Opn |
design and analysis of the developed sate estimation approach. 0 0 0 Omxm Omxn
Accounting for the fact that the scheduling process of O sen 0 0 0
RRP is independent of the transmitted data, its accuracy or UpyG  Opmxm O 0
reliability will not be affected by the sensor measurement errd (k) = KpUhnG 0 O R
In addition, to prevent the failure of the network in case of K'fgq,h(k)g 0 0 Omxm
faulty nodes, a security strategy is introduced to the network c 0 0 0 W
communication where each network node has its prescribed 0 0 0 0 o 0
waiting time. If no information is sent from the networkC £ 0 moxm 0 0 , Wi O’”X" ,
node within this waiting time, the node will be discarded and 0 0 ”OX" 0 O"X”
replaced so as to avoid the failure of the whole system. mxm mxm
The following full-order estimator is adopted to estimate the Onxn 0 0 0
signal z; (k) and z3(k): (k) 2 Uiy H  Omxm 0 0
. LpVryH 0 Opxn 0 |’
up(k+1) = Apusp(k) + Knz(k), LysWpi H 0 0 O
zy(k) = Kpawy(k — 1) + Kp32(k), 0 0 0 0
21 = Myug(k), (5) B(/{) 2 W F I = W) 0 0
vi(k+1) = Byvg(k) + Lij(k), LV P Lp(Im = ¥pwy) By 0|7
ys (k) = Lyayg(k = 1) + Lyag(k), Ls¥aF  Lps(m =¥noy) 0 Ly
29 = vaf(k), 0 0 0 V(Q)

B
N 0
whereuy (k) € R™ andvs(k) € R™ are the estimations of the Bq = 0
neuron statesi(k) and v(k), respectively.z (k) andyy(k) 0
are the state vectors of the estimator corresponding(kg D 0 0 0 W@
andy(k), respectivelyz; (k) € R™= andzz(k) € R"= are the 0
estimator outputsAy, By, Kri, Ko, Ky, L1, L2, Lys, D2 0
My and Ny are the estimator parameters to be designed. 0
To facilitate the subsequent analysis, we first establish the
following augmented dynamics of the state estimation process= [In  Onxm  Onxn  Onxm)

0 Onxn 0
0

O Ome OmX’ﬂ

e My 2 [N O My O]
§(k+1) =A(k)E(k) + Ag ;wa(k —d) Ny 2 [=N O Ny Onosm] .
+ Vig(I¢(k)) + G(k)d (k) Definition 1: The augmented dynamics of state estimation
> o process (6) with}(k) = 0 is said to beexponentially mean-
+ CZMldf(k —d) +Wig(I¢(k)) |61(k), square stabldf there exist three constants > 0, € € (0,1)
- d=1 andr > 0 such that, fork € Z*, the following holds:
Z1(k) = MyE(k),
) = ® B {lewI® +lcwI*
((k+1) =B(k)¢(k) + Ba Y _ paaC(k — d)
=1 <ae ( sup E{[l¢(t))*} + sup E{|<<t>|2}> .
+ Vaof (IE(k)) + H(k)d(k) te[—7,0] te[—r,0]

0 (k) The objective of this paper is to designfa,, estimator of
2 the form (5) for the stochastic BAM neural networks (1) with
distributed leakage delays and the measurement outputs (3).

+ <D > zaC(k = d) + Waf (IE(K))

d=1

Za(k) = NyC(), More specifically, we aim to obtain the estimator parameters
wherez; (k) £ 2,(k) — z1(k) and Zy(k) £ 25(k) — 21(k) are Ay, By, Ky; and Ly; (i = 1,2,3) such that the following
the output state estimation error, and requirements are simultaneously achieved:

u(k) v(k) 1) the augmented dynamics of the system (6@xponen-
A | E(k—1) A | Gk —1) tially mean-square stabjeand
(k) = up(k) |’ (k) = vp(k) | 2) for the given disturbance attenuation leyel> 0 with
A

:vf(k— 1) yf(.k— 1) (k) # 0, the output state estimation erréfk) =
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- ~ T - _
[ (k) zI(k)]" satisfies Qb 2 P2h(k+1)’

o0 ~ © (Bd + 6‘2D) (Vz + 92_2) E[(k) 0
SE{IE®)IP} <42 I 0 0 0 0
k=0 k=0 Qgg £ 52(1 — éQ)WQ 0 0 0 )

under the zero initial condition. 0 0 0 0
0 0 0 0
[1l. M AIN RESULTS
. . . . —Qgg * * * *
We first present the following lemmas which will be used 0 _Qk N “ N
in the sequel. Q21 0 0 _Qk « %
Lemma 1:Let M € R™ ™ be a positive semi-definite 53 0 0 0 g .|
matrix. Forz; € R™ and constant; > 0 (i = 1,2,...,00), 0 0 0 Onz I

if the series concerned is convergent, then we have - P T T T o
Q= Plh(k) — Q1+ 1755511 +1°57 521,

o0 T oo o0 oo

(Z ai:m) M (Z aixi> < (Z ai> Zaix?Mxi. Q2 Popry — p2Q2 + I"RY R\ I+ I"R{Ro1,

i=1 i=1 i=1 i=1 Q61 2 (S1+ 82), Qs 2T7 (R + Ro)T.

In this section, our main results will be stated in two
theorems. The first theorem provides a set of access-token-
dependent conditions such that the augmented dynamics%i‘
is exponentially mean-square staplend the design of the

Proof: Let us first consider the exponential stability for
augmented dynamics (6).
oticing ¢g(0) = f(0) = 0, it follows from (2) that

full-order estimator (5) is discussed in the second theorem. (—g(a) + RQG)T( —g(a) + Ria) <0
By resorting to the Lyapunov stability theory, the exponential T N
stability condition of the dynamics (6) is derived step by step, (= fla) + S2a)" (= f(a) + S1a) <0

and the stochastic analysis technique and matrix theory gjgich implies
employed to facilitate the establishment of the main results. B . B
Theorem 1:Let the estimator gain matriced;, Ky, 9" (I¢(K)) (Ry + Ro)I¢(k) — g™ (1¢(k))g(I¢(k))
By, Ly (1 = 1,2,3) of the estimator (5) be given. The — T (k) I"RYRLIC(K) >0 @©
augmented dynamics of the system (6) is exponentially mean-y ,r TEON(Ss + STk — T (Te(k Te(k
square stable with the given disturbance attenuation level / (Tf( )_)T( ;—i_ _2) sk) = f ( N ))f( & ))
v > 0 if there exist positive definite matrice®;,) = — & (k)17 S5 S1IE(k) > 0
diag{ P1 jnk)s Pojnkys Psjntkys Pajaiots Pingrr) = Consider the following matrix functional for the system (6):
dlag{Pl,gh(kJrl)a Py inet1)s Psjne+1)s Pajne+1)} and @
(j = 1,2) such that the following matrix inequalities hold for Vik) 2 )P, (k+1)Q
all possible tokerfi(k) € {1, 2,--- ,m}: (k) £ €1 () Praao +Zuld Z U

t=—d
Qu - * * xE(k+1t)+ " (k )P2h(k)<( )
Qk) = Q21 Q22 * | <0 (7) +o0 -1
31 Qa3 Qg +> paa Y Tk +1)Qa((k +1). 9)
where d=1  t=—d
[—Qk % * * Let ¢¥(k) = 0. Calculating the difference oV (k) along
Q.. & 0 _%1 * * the trajectory of state estimation process (6) and taking the
R ) 0 -2I, « |’ mathematical expectation yield
L 0 0 Qg —0f AV (k)
[0 0 0 0
o o | % 0 0 0 :iE{V(k—i— 1) — V(k)’N(k)}
0 0.0 0’
LA(k) (Aqa+6:C) (Vi+6W1) 0 —E{ET(k + 1) Piagesné(k +1) — €7 (k) P € (k)
Qk ép—l ,
" _m(g:l) + ¢k + 1)P2h(k—i-1)<(k +1) — ¢ (k) Panry S ()
— = * * *
M2
Qs | 0 =2 x| +in€" (k)Q:€(k ZuldéT k—d)Qi&(k — d)
0 0 —:yQI * —
L O 0 G(k) —Qk
[0 0 0 B(k) + ¢ (k) QaC (K Zude (k = d)Q2((k — d) ’N }
) 0 0.(1-6)C 6,(1—0)W 0
Q512 | 0 0 0 0 |, where©,(k) £ {e(k), e(k —1),--- ,e(k —t)} andR(k) £
M; 0 0 0 >
L 0 Ny 0 0 tL:Jl Oe(k).
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By using Lemma 1, one obtains

AV (k)

gE{ A(R)E(k) + Aa Y ma&(k — d) + Vig(I¢(k))

d=1

o T
4 (oz prat(k — d) + ngu«k»)]

o0

d=1

B(k)((k) + Ba Y p2aC(k — d) + Vo f (I€(k))

d=1

+05 (D i p2aC(k — d) + sz(f_ﬁ(k))ﬂ
d=1

- T
+61(1 - 6) <CZM1d§(k —d) +W19(I§(/€))>

d=1

X P1p(k+1) (CZMldf(k —d) +W19(I<(k))>

d=1

DY pnaClk — d) + sz(fé‘(k))>

d=1

+02(1 — 65)

N

X Papis1) (Dzuzdg k—d)+Wsf(I&(k )))
d=1
—&" (k) Py (k) — ¢ (k) Pagiy (k)

+oo
+n€" (k) Qié(k) — Hi (ng (k—d ) O

+oo
x> paé(k — d)

+i2¢" (k) Qa2( (K ——<Zﬂ2d<k d) Q2

+oo
X ZMde(k - d)‘N(k)}
d=1
Keeping the relationship (8) in mind, we have
AV (k)

SE{ N (k) (Pipgy — Q1 + 1787 S I + I S] So1)

x &(k) — ¢ (k) (Pangy — A2Q2 + IR Ry T

+oo
k) — o <Zu1d§(/€ - d)) Q1) pia
d=1 d=1
1 400 T +oo
xg(k—d)—z<zu2d§(k—d)> QzZMwﬁ(/{—d)

d=1
— 29" (I¢(k)) g(I¢(R)) — 2T (I€(k)) f (1E(K))
+2g7 (IC(k)) (Ry + Ro) IC(k)
+ 27 (T¢( k)sl+sz>15()

+ IR R 1) ((

T

+ [A(R)E(k) + (Aa+ 6,.C Zuldék d)

T

+(Vi+6:W1)g(I¢(k)) Pipktr)

N———

x [AR)E(R) + (Aa+6:C) > paé(k — d)

+(Va + G_QWz)f(If(k))>]

+0:(1=0)( CD " mab(k — d) +W19(f4(k))>

VR

Mgfr

X Piakt1) <C p1aé€(k — d) + ng(ﬂ““)))

I
Il

1

o T
DY paalh— d) +W2f<fs<k>>)

d=1

+62(1 — 6)

VR

X Pop(k1) <D ZMZdC(k d) + Wof (I¢(k ))) ‘ (k)}
=

By denoting

o(k) = [H(k) (Zuldak—d)) T(I¢(k)) ¢ (k)
d=1
(Zuzdc(k—cw) fT(If(k))] ,
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we haveAV (k) < E {¢(k)TE(k)¢(k)|R(k)}, where
——:11 * * * * -
=91 =99 * * * *
- ry Egl =32 —533 * * *
H(k) - O O Q43 544 * * ’
0 0 0 554 —555 *
| Q61 0 0 Eea  Zes  —Ze6

En 2 Yy — AT (k) Py Ak),

= — (Aa+ 910) Pipt1) (Ad + 6:C)

— 0,1 = 01)C" Pryesn) C,

E33 221 — (Vi + §1W1)Tp1h(k+1) (Vi+6,Wh)
_ _ T —

—01(1 = 00)W | PipgeryWa,

Baa £ Qus — BT (k) Py B(R),

— = (Bd + 92D) Piy(et1) (Ba + 62D)

- (Va2 + 92W2) Pirgisny (Va + 02W2)
—02(1 — 52)W2P2h(k+1)W2,
Eo1 = (Ag+ 910) Prrrsny Ak
B 2 (Vi+ 91W1) Pripgrs1)
Ep s (Vi+ §1W1) P (
+6:(1- él)Wme(kH)C’
Es4 £ (Ba+ 9_2D)TP2h(k+1)B(k),

Ees = (Vo + éQWQ)TP2h(k+1)B(k)7

Ees = (Vo + 92W2)szh(k+1) (Ba+62D)
+05(1 — 52)W2TP2h(k+1)D,

);
Ak),
Aq+6,0)

which further imply that
AV (k) < Amax(Z2

ENE{ @I + ([ |*|Rek)

On the other hand, by the definition &f(k) in (9), for any
sufficiently large integer > d, it is obvious that

E{V(£)} <hmax(Piagiy JE{[|6(8)]|"}
+ )\max(Psz(k))E{ HC(k) H2}

)\maX(Ql)ﬂl _Z E{Hf(k + t)Hz}

T Ao (@)t ij E{||c(k +D||°).
Furthermore, for any given scalar> 1, one obtains
E{p*V(k)}

k—1

=E{V(0) +> (WA () + (n— 1)uiV(i))}
=0
k—1

=E{V 0) + Z ' (LAV (i) + (p— 1)V(i))}.
=0

Subsequently, it follows that
E{u*V (k)}

S)\max(Pm(o))E{Hf(O
+ Amax(Q1)pa TE{ || £(2)

M} + Ame(Panco)E{ <O}
17} + Ao (Q2)27E{ | (0)

")

20 + 0= D Po) S )
209 + 0 1P B0
+ (1t = D) Amax(Q1)in (Tzu s ]E{Hﬁ 1%}
+w72uﬂE{HE(J’)IIQ}

+ (1= 1) Amax(Q2) iz (Tzzfj sup }E{HC(k)Hz}

k—1
+rum > wE{]|CH)|%}
j=0

k
<a(e) _swp E{0)} + b 3w E{l6)}
JjE j=0
+aa(p) swp E{|<G )}

a0 S WE{ G,
=0

where

= Amax (P1a(0)) + Amax(Q1) 1T
+ (1 = DAmax(Q1) i 72p7,
2 Amax (P2h(0)) + Amax(Q2) fi2T
+ (.u - 1)/\maX(Q2)ﬂ272H77
b1 () 2 pAmax (E(K)) + (1 — 1) Amax(Piagr))
+ (1 = 1) Amax(Q1)aTp”,
ba (1) 2 pAmax (E(K)) + (1 — 1) Amax(Pan(r))
+ (1 = 1) Amax (Q2) iz
Here, we knowa;(1) > 0 andax(1) > 0 from the positive

definiteness of the matriceB;; () and Q; (j = 1,2), and
b1(1) < 0 andbs(1) < 0 from =(k) < 0. By further denoting

ai(p)

az(p)

=(k)
[—Z=1; * * * * * x ]
o1 —Z99 * * * * *
Egl 332 333 * * * *
£ 0 0 943 —§44 * * * s
0 0 0 554 —555 * *
Q6 0 0 Z64  Zes  —Zec  *
| 271 E72 Zr3 B Ers Ere —Err]

[l

E11 2 Qu — AT(k) Py A(k) + M My,

Eas £ Qua — BT (k) Pipeg) B(k) + Nf Ny,
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—G" (k) Pipes1)G(k) — H" (k) Popes 1y H (k) + 72,

we obtainZ(k) < 0 from Q(k) < 0 in the help of Schur
Complement, which indicateS(k) < 0 because=(k) is a
principal submatrix oE (k). Moreover, noting that; (1) > 0,

az(1) >0, b1(1) < 0 andbs(1) < 0, we have

E{[lsm|*} +E{Ic®)II*}

_j max{ay(s), az:)} sup
JEN[—T,

max{by(2), ba(2)} (]E{H5 *

+E{[[<()I"}) —E{=*VR)}),

which indicates that the state estimation process (@&xso-
nentially stablein the mean-square sense.

We are now in the position to deal with ti&,, performance
analysis for the state estimation process (6). Based upon
aforementioned stability analysis, it follows that

o0
SE{V(k+1) -
k=0

V(k) + 2" (k)Z(k) — 7*07 (k)9 (k) }

SE{ — &M (k) (Pipy — Q1

ITSQTSlI + IS8T S D)e(k)
— (T (k) (Pangry — 12Q2 + I RTRll + I"RT Ry 1) ¢ (k)

—+oo

T
Zuldw d) Q1) paé(k — d)

T e
—ﬂi Zﬂzdck d) Q2ZH2dC(k—d)
d= d=1
— 29" (fc(zc (k) — 2" (1&(k)) f (TE(K))
+ 29" ( IC(K))( 1+R2)IC( )
+2fT( IE(k)) (S1 + S2)IE(k )

+ |A(k)E(k) + (Aa + 6,C

+(_Vl +0,W1)g(I¢(k)) +G kw(k)i Prp(rt1)

8

A(R)E(k) + (Aa+ 0.C) > ma&(k — d)
1

d=

(V1 + 071 g (IG(R)) + GR)I(b)]

B(k)((k) + (Ba + 62D) Zugdgk d)

H (k)9 (k )] Poprt1)

B(k)¢(k) + (B4 + 62D) Z pi2a¢(k — d)
L d=1

(T 0T72) F(TE() +

+ (Vo + 0:W2) f(IE(k)) + H(k)9(k)]

o T
(1 6) <czmd5<k —d) +ng(f<<k>)>

d=1

X Pip(kt1) <CZM1d§(k —d) +W19(IC(/€))>
d=1
00 T
+%u—ﬁﬁ<D§:mx%—d%HVJUﬂwﬂ
d=1

)

X Pop(k+1) <D Z p2aC(k — d) +Wo f (I€(k))

d=1
+ T (k)M M&(k)
+ " (R)NT Ny (k) - WzﬁT(k)ﬁ(k)iN(k)}
=E {¢(k) = (k)d(k)[X(k)}
whereg(k) £ [¢7 (k) 9T (k )]T ConsideringV (k) > 0 for
any J(k) # 0 and the zero initial condition, one immediately
has
theS B {27 (02(0) — 20" ()90}
k=0
< iE {V(k+1)—V(k)+ 2" (k)z(k) — 9" (k)9 (k) }
<0,
and the proof is complete. [ |

In Theorem 1, sufficient conditions, which are dependent on
the access tokel(k), are established to ensure the exponential
stability of the dynamics of estimation process (6). Here, it
should be emphasized that the disturbance attenuationevel
given in this paper is a prescribed constant which might not be
optimal. In case of seeking the optimal disturbance attenuation
level for the proposed estimation approach, the gevp solver of
the LMI toolbox in Matlab can be used. Moreover, since the
matrix inequalities (7) are nonlinear due to the existence of
the termPfh w41+ Which brings much difficulty for numerical
solutions. The gollowing theorem provides a method to deal
with the design issue of the suggested estimator (5).

Theorem 2:Under the RRP and the assumption (2), there
exists anH,, exponential estimator of the form (5) for the
original stochastic BAM neural networks (1) such that the
augmented dynamics of the system (6) is exponentially mean-
square stable with the given disturbance attenuation level
~ > 0 if there exist positive definite matrice3, ;; € R™*",

P2,jl c Rmxm’ P3,jl c Rnxn, P4,jl c Rmxm, Qj (] —
1,2, 1 =1, 2,--- ,m) and matriceSAfl, Kty Beiy L

(1 =1,2,3) such that the following linear matrix inequalities
(LMIs) hold:

le{l, 2,---,m
l=m

-1}, r=1+41,

i (10)

Ql,r) <0 {

where

Pj; £ diag{ P ji, Paji, Psji, Piji}
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- 0 0 0
R Q1 0 0
Q(l,T) é 921 922 v* 5 921 é O O O
Q31 Q32 Q33 Alr gg vr
—Qlll z * *
SN 0 —=L * *
= H
Q” o 0 -2, « |’
0 0 Q3 —0Q4,
0 0 0 0
Glr & P, G 0 0 0
~ K ®G 0 0 0
K3 UG 0 0 0
[ Q2 * * *
6L2 21, * *
_— —oI,
P22 =1 0 -2 % |’
L0 0o G -0
0 o0 0 B
) 0o ¢ Wi 0
Q=0 0 0 o0 [,
M; 0 0 0
L0 Ny, 0 0
Bg V‘Qr Hl,r 0
} 0 0 0 0
Q22 |D" WZ 0 0],
0 0 0 0
0 0 0 0

Q33 £ diag{—ﬁgs, _6;77 Q88a Lo, —1In.},
QY & Py — Q) + 1753811 +1757 8,1,
QLY 2 Py — 10Qo + I"RT R T + I"RT R, 1T,
Or. 2 P, Qg 2 Py, Ay 2 P (Ag+6,0),
Vi AP (Vi +6,W)),
By 2 Py, (Bq+0:D), V5
Cr£6,(1 - 61) P, C, er 260,(1~ 91)P1TW1,

D2 92(1 —02) P2 D, Wy 2 03(1 — 09) Py, Wo,
0 0 0 0
o |PrWE Poy(ln %) 0 0
KU B /Cflr(fm - .Afr 0 ’
_K:fgr\I/lE ICf3T(Im — \I/l) 0 ngr
I 0 0 0 0
Bl & Py o, U F Poop(Iy, —¥;) O 0
Ly WF Lpyp(I;y =) By 0|7
_Efgr\I/lF Efgr(lm — \I/l) 0 ﬁng
0 0 0 O
o |PaaWH 00 0
L H 0 00
Ly WH 0 0 0

In this case, the gains of the desirAd, exponential estimator

are given as followgi = 2, 3):
Ay =Py Ay Kpi= Pyl Ky,
Kypi = Py, Kpir, By = P38y,
Lf1= Py, Lre,  Lpi= Py, Lpir.

o o oo

©

Proof: According to the relationship (11), one hds, =
P31, Ap, Kir = P31 K, Kpir = P Ky (1 = 2,3),
By, = P32.By, Lf1r = P3arLy1, Lyir = PaorLy; (i =
2,3). Consequently, it is easy to dedu@ék) < 0 in (7) by
performing a congruence transformation

F £ diag{l8(n+m)+2n7 Pl_rla P2_rla Pl_rla P2_rla Inza Inz}

to the condition (10), which completes the proof. [ |
Remark 3:1t can be seen from the condition (10) that
the nonlinear terum%kH) is successfully eliminated by
using the matrix transformation technique. Actually, it can be
verified that the established condition (10) is equivalent to the
condition (7) by replacing and r with (k) and h(k + 1),
respectively. Meanwhile, the estimator gains are characterized
by a low-hanging inverse transformation (11). Feasibility of
the estimator design problem can be checked by the solvability

of the LMIs (10).

IV. | LLUSTRATIVE EXAMPLE

The main purpose of this section is to examine the validity
of the achieved results in the previous section, and the per-
formance of thefi,, exponential estimator (5) under the RRP
scheduling.

Consider a three-neuron stochastic BAM neural network of
the form (1), which is configured by the following (here only
partial matrices are listed out to save space)

0.32 0 0.28 -0.21 0.02 O
Wy = 1-0.04 0.04 043|,C=|-0.13 0.04 0.02],
0.27 0 015 0.01 0 0.07
—0.43 0 0.02 —-0.37 0 —-0.42
E=1-001 =027 0 |,H={-003 0 -0.09],
—0.04 0.01 0 0.09 0 0.03
0 0.03 0.06

v e o e
) . . 0.03 0.07 0

The nonlinearitieg(-) and f(-) are set as
g(v1(k)) = 0.03v1(k) — tanh(0.06v1 (k)),
f(ui(k)) = 0.12u; (k) — tanh(0.01uq(k)),
g(v 2( )) = 0.25v2(k) — tanh(0.13v2(k)

f(ua(k)) = —0.15uz(k) — tanh(0.13us(k)),
( 3(k)) = 0.01vz(k) — tanh(0.02v3(k)),
f(us(k)) = —0.04us(k) — tanh(0.03us(k)).

It is obvious that the adopted nonlinearities satisfy the con-
dition (2) with R; = diag{—0.03, 0.12, —0.01}, Ry =
diag{0.03, 0.25, 0.01}, S; = diag{0.12, —0.15, —0.04}
and S, = diag{0.13, —0.02, —0.01}. We take y14 =
0.42 x 0.7%, pag = 0.6 x 0.7% and~ = 1.4353. Then it can
be seen thati; = 1.4 andji, = 1.2.

With the help of the LMI toolbox in Matlab software, we
can obtain the solution to the matrix inequali®(l,) < 0
in Theorem 2 and, accordingly, the desired estimator gains of
H, exponential estimator (5) are characterized as follows:

0.0078 —0.0000 —0.0004
Ay = 10.0002 0.0049  0.0000 |,
0.0007 —0.0002 —0.0000
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—0.0058  0.0000  0.0003
By = [—0.0001 —0.0037 —0.0000 15 ‘
—0.0005  0.0001  —0.0000 (3wl
[0.0077  0.0000  0.0017 ] ) s
K = [0.0002 0.0049 —0.0016] , valk)
0.0007  —0.0002  —0.0021] s(k)
[0.0078  —0.0000 —0.0004]
Ky = [0.0002  0.0049  0.0000 |,
0.0007  —0.0002  —0.0000]
[0.0077  0.0000  0.0017 |
Kfs = (0.0002 0.0049 —0.0016],
0.0007  —0.0002  —0.0021] -10}
[—0.0132  —0.0010  0.0018 ]
Ly = | 00018 —0.0055 —0.0007 15 - = > n “
| —0.0053  0.0029  —0.0035] K
Lyo— | 0001 0005 o0 1070 o)
f2=1—VU —uU. —uU.
| —0.0005  0.0001  —0.0000] 5 ‘
[—0.0132 —0.0010  0.0018 ] A o
Lyz= | 0.0018 —0.0055 —0.0007 | —— ) |
| —0.0053  0.0029  —0.0035 ()
Af _ [F01550  —0.0250 0.1550 2
7= 104150 0.0350 0.7100]° i
N, - 03850 _01450 _01450 §; sk “;5;::#:::::::‘-&:::::::‘-&:::::::#:&::::::::&::
5= 1-0.3650 —0.1000 —0.3700] " ) \/
Let the disturbance input be 2T
,3»
0.6, if 1<Fk<15,
ﬁ(k)_{ 0, otherwise “
o 10 20 30 40 50

Consequently, the state estimation results of the discuss K
estimator can be simulated in the Matlab platform. Figs. 2 are
the state responses of the estimation errors of the neuron states
u(k) —uys(k) andv(k) —vs(k), and the state estimation errors
Z1 andz,, respectively. It is confirmed from the simulation that
the designedi ., exponential estimator performs well.
Letting C = A and B = D, we investigate the effect communication constraints, the main results obtained in this
of the binary mode switching on the system performanceaper will degenerate to that in [8].
Figs. 2—-3 show the state estimation errors of the proposed
algorithm with and without mode switching, from which one V. CONCLUSIONS
observes that, the estimation speed of the algorithm with modén this paper, we have developed a systematic framework for
switching is slower than the estimation speed of the algorithf,, state estimation problem with communication-constrained
without mode switching. In addition, the estimation speed @fieasurements. The presences of the distributed delays in the
the considered system without the RRP can be revealed lbgkage terms and the stochastic mode switching have been
simply setting¥ ) = . simultaneously considered. The well-known RRP has been
Remark 4:Although state estimation problems for BAMused to avoid the possible transmission collisions subjected to
neural networks have gained much research interest amdingted bandwidth. The purpose of this paper is to estimate the
researchers,existing results can be hardly applied to largetput signal of the BAM neural networks through the received
scale networks with communication constraints. In comparisameasurements. By applying stochastic analysis means, convex
with the developed estimation approach in [8], our proposegtimization techniques, and Lyapunov stability theory, suffi-
H,., state estimation problem is capable of handling thment conditions have been derived to ensure the existence of
difficulties brought by the simultaneous presence of the limitéde discussed{., estimator in terms of matrix inequalities.
communication bandwidth, the leakage delays and the stoch@en, the desired estimator parameters are calculated by
tic switching between redundant models, resulting in mos®lving a set of LMIs. Finally, an illustrative example has been
accurate and precise estimation results on the neuron stapegvided to demonstrate the effectiveness of the proposed state
In the absence of the leakage delays, stochastic switching astimation method.

(b) 2(k)

Fig. 2: State estimation error



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI 10.1109/TNNLS.2021.3055942, IEEE Transactions on Neural Networks and Learning Systems

FINAL VERSION

—200 1
-300 . . ' -
0 10 20 30 40 50
k
@) u(k) — ug(k) and v(k) — vy (k)
150 T
—— Z11 (k)
Z12 (k)
—— Zy (k)
100 ——Zn (k) [
50 1
0 Il s s s s e s s s e e el e
fV
=50 4
-100 - - - -
0 10 20 30 40 50
k
(b) (k)
Fig. 3: State estimation error without mode switching
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