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Abstract

Viscoelastic behaviour is modelled as a Volterra integral equation of the second kind
in classical continuum mechanics. Dynamic viscoelastic problems can be represented
by wave equations with hereditary integral terms. For example, a constitutive relation
between stress and strain is given by

o(t) = D(0)e(t) - /0 D.(t - 5)e(s)ds,

t
o(t) = D(1)e(0) + /0 DIt - )é(s)ds,

where o (t) is the stress tensor, g(t) is the strain tensor, D(t) is a symmetric positive
definite fourth order tensor and Dg(t — s) = %Q(t — 5). The kernel in Volterra integral
can be defined by

where Dy is a piecewise constant tensor and ¢(t) is called a stress relaxation function.

N‘P

One can be defined by a sum of decaying exponentials ¢(t) = po + > gpqe_t/ T¢, namely
q=1

Dirichlet-Prony series, based on Maxwell or Zener model. This allows us to introduce

two types of internal variables. On the other hand, power law gives another choice of
kernels such that ¢(t) = ¢t~ where 0 < o < 1, which models fractional order viscoelastic
problems. This weakly singular kernel forces us to be more careful. This thesis deals
with these two types of integro-differential equations.

Many people in engineering and mathematics take into account these type of prob-
lems in analytical and numerical ways. In this thesis, we aim to solve the dynamic
viscoelastic problems with spatial finite element methods, as well as finite difference
methods for time. We present variational formulations of our model problems with Con-
tinuous Galerkin Finite Element Method (CGFEM) and Discontinuous Galerkin Finite
Element Method (DGFEM). Also, Crank-Nicolson finite difference scheme is applied for
time discretisation and therefore, we are able to formulate fully discrete problems. We
state and prove stability and error estimates. Typical approach of a priori estimates
uses Gronwall’s inequality for time integral, but we avoid using it for better stability
and error bounds for long time integration. Not only are theoretical results presented

but also various numerical experiments. All numerical simulations are carried out based
on FEniCS.
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Chapter 1

Introduction

A viscoelastic problem is modelled with a Volterra type integro-differential equation [T} 2}
3,14]. The kernel in the integral can be either exponentially decaying or of weakly singular
type. In this thesis, we describe these two viscoelastic model problems with spatially
finite element methods and finite difference schemes in time. Our aim in the thesis is
to investigate the performance of numerical approximations to viscoelastic models. We
provide theorems regarding stability analysis and a priori error estimates. The thesis
shows not only theoretical works, but also numerical experiments for important evidences
of theories.

The classical theory of continuum mechanics is presented in [5] and references therein.
The fundamental principle of linear elasticity and Newtonian fluids, to describe material
response mathematically, is able to construct mathematical framework of viscoelasticity
[4, 2, [B]. It enforces engineers and mathematicians to solve boundary value problem of
integro-differential equation [1J.

Analytic and numerical methods for Volterra equation were studied in [0l [7] and see
references therein for more details. The analytic solution is given as a series form [6] and
it naturally introduces semi-group approach (spectral methods) to deal with regularity
of solution and stability analysis for fractional order viscoelasticity [8] 9l [10].

Finite element analysis is widely used for a large number of problems of engineering
and mathematical models due to the several advantages such as capture of local effects,
easy representation of solution, inclusion of material properties and complex geometry
[11]. Hrennikoff [I2] and Courant [13] firstly developed finite element method originated
from the need to solve complex elasticity and structural analysis problems in civil and
aeronautical engineering. In recent years, advanced finite element methods have been
employed for linear elasticity problems, see e.g. [11], 14, [15] 16} 17].

In 1970s, Discontinuous Galerkin methods (DG) which combine features of the finite
element and the finite volume framework were first proposed by Babuska [I8], Baker
[19], and Wheeler [20]. More recently, nonsymmetric interior penalty methods have
been introduced by Riviere, Wheeler and Girault [21], 22], and by Houston, Schwab, and
Siili [23]. For more references and applications of DG see [24] and references therein.

In case of viscoelasticity problem, it is necessary to deal with constitutive relation



given as a Volterra integral equation, which means hereditary terms appear more than
linear elasticity problem. In a classical manner of continuum mechanics, rheology mod-
els describe linear viscoelasticity models as Volterra integral equations of exponentially
decaying kernels [1]. While the semidiscrete formulations were derived by finite element
methods with respect to the space domain, a typical way of numerical integration, a
quadrature rule, and standard finite difference method were used to formulate fully dis-
crete schemes in [I17]. On the other hand, Johnson [25] proposed introduction of internal
variables for understanding of local constitutive equations. It allowed to replace memory
terms by internal variables, see e.g. [26]. It is beneficial to get better errors and cheaper
memory requirements of computing, on account of absence of quadrature errors and need
for all history. However, it is only applicable for linear viscoelasticity with exponentially
decaying kernels.

If the number of internal variables (i.e. the total number of Maxwell elements) tends
to infinity, the viscoelastic behaviour describes fractional order evolution constitutive
equation, e.g. see [Il, [, [T0, 27]. We can choose another type kernels called power law
types, imposing use of numerical methods for fractional order integration. McLean and
Thomée presented numerical solution of a fractional order evolution equation, e.g. see
[8] and improved version [9]. By fundamental solutions of fractional order differential
equations [28, 29, B30, B31], Mittag-Leffler type kernels have also introduced to describe
fractional order viscoelastic models by Adolfsson, Enelund and Olsson [32], also see
1321 33, 34, 10].

We consider the viscoelastic model problems by numerical approaches based on spa-
tial finite element methods (e.g. see [11), 14}, 35 36, 37, [38] for CGFEM and [24], 1T, 15,
39, 211, 22, 17, 23| [16] for DGFEM) as well as Crank-Nicolson scheme (e.g. see [40]).
Using various novel papers in finite element theory and continuum mechanics, we shall
develop numerical approximations to viscoelastic models with appropriate theoretical
and computational works. Earlier work in [26] has provided DGFEM for dynamic linear
solid viscoelasticity problems. We are going to extend their work to improve stability
and error analysis, and introduce some equivalent form. Furthermore, according to [1],
we can consider fractional order viscoelastic models. For instance, elastomer 3M-467
exhibits a fractional order constitutive relation between stress and strain such that the
stress is proportional to 0.56 order derivative of the strain [41]. In a similar way with
the linear Maxwell solid, we present and demonstrate numerical schemes with proofs of
stability and error bounds. In addition, we implement bespoke codes as necessary in
FEniCS environment (see [42), 43] and https://fenicsproject.org for details).

Riviére, Shaw and Whiteman presented the application of the DGFEM to dynamic
linear solid viscoelasticity problems with internal stress representation [26]. The authors
showed a priori error estimate (energy error estimate) by using Gronwall’s inequality.
However, the Gronwall constants increase exponentially in time hence the constants of
stability bounds and error bounds are significantly large for long time period of vis-
coelastic response. On the other hand, in this thesis, we consider Lo, norm (max norm)
in time rather than use of Grénwall inequality. Also, we present Lo error estimates as
well as energy error estimates for semidiscrete and fully discrete cases. Whereas local
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constitutive relation were used as internal variables (second order tensor-valued func-
tions) in [26], we introduce different type of internal variables (vector-valued functions)
in two forms, displacement form and vector form. It has an advantage of saving memory
requirements for numerical experiments. To be more precisely, each internal variable
needs the memory to store a vector of length dimension d, instead a second order tensor
of d x d. We first study scalar-valued wave equation of viscoelastic functions, also known
as antiplane strain problem, e.g. see [44] [45] [46], by CGFEM and DGFEM, respectively.
In the same way, we deal with linear dynamic viscoelasticity problem of the generalised
Maxwell solid.

On the one hand, McLean and Thomée developed numerical analysis of fractional or-
der evolution equations [8,9]. The evolution equations is a scalar analogue of a fractional
order viscoelasticity problem of power law type and the authors proved a priori error es-
timates for the homogeneous Dirichlet boundary problem by using semi-group approach
and Laplace transformation of kernels. On the other hand, we study the fractional order
viscoelastic model problems, i.e. vector-valued problems, for mixed boundary condi-
tions. While we consider regularity of solutions via Laplace transformation, we present
suboptimal and optimal error estimates by using the same manner of a priori estimates
as in the linear viscoelasticity models of exponentially decaying kernels.

A plan for this thesis is organised as follows:

e Chapter 1 introduces preliminary work in terms of notations, and general defin-
itions and/or theorems in functional analysis. Also, we present basic concept of
continuum mechanics in elastic and linear viscoelastic behaviours. Then we can
put forward a linear viscoelastic solid model with internal variables. At the same
time, we give some background of finite element methods. Here, we can observe
useful tools to prove our claims.

e As following the linear viscoelastic model in Chapter 1, we can also reduce it to
scalar-valued to simplify the model problems. In Chapter 2, we solve the simplified
scalar wave equation with memory terms with CGFEM. Use of typical approach for
a priort estimates and Lo, norm estimates in time leads us to show well-posedness
and error estimates.

e In Chapter 3, we describe DG approximations to the scalar wave equations and
prove stability and error estimates as in CGFEM. In case of DGFEM, we consider
also non-symmetric bilinear forms so that proofs in DG may slightly differ from
CG formulations. We compare CGFEM and DGFEM as well.

e Turning back to vector-valued problems, we solve linear viscoelastic problems with
internal variables in CG and DG. As shown in the scalar problems, we can de-
rive and show the exactness and uniqueness of solution as well as a priori error
estimates. However, details in proofs are changed, for example, it is necessary to
use Korn’s inequality. Numerical experiments for vector-valued problems have also
been carried out.



e In Chapter 5, we introduce a kernel of power law type to model fractional order
viscoelastic problems. We give some preliminary introduction to fractional calculus
at the beginning. The spatial discretisation is the same as before but we have to
be more careful in time integration due to fractional calculus. Even if we use
second order finite difference schemes, we cannot take the full advantage of order
of accuracy. However, we can resolve weak singularity with some requirements
so that we get optimal error with respect to time. In numerical results, we can
compare suboptimal and optimal cases.

1.1 Preliminary

Definition Let v : R — R be a scalar function and w : R? — R be a vector-valued
function where d denotes the number of dimensions. Then the gradient of v and the
divergence of w are defined as

v d ow;
V”:(axi>1<i<d’ Vo= G
Definition Let V be a inner product space. Then its inner product is denoted by
u,v €V, (u,v)y = R,
and the induced norm is defined by

[ully = v/ (u,w)v -

For instance, let u,v € La(2) then

1/2
(U, V) 1y(0) = /qu dQ2 and [[ul| 1, @) = </Q u? dQ> .

Moreover, in the vector-valued case, for ¢,r € Ly(2)?

1/2
(@0 = [ - a9 and gl — ( [ a2 d@) .

Definition A topological dual space to a Hilbert space V is denoted by V'’ which means
V' is the set of linear functionals on V

V'={¢:V = R| ¢ is a linear functional}.

For Q C R? bounded, we introduce Hilbert space and Sobolev space as following. Let
D(R) be the space of C* functions with compact support in Q. Its dual space D'(f2) is



the space of distributions then we define the partial differential operator D“v € D'()
by

alelg
DY(¢) = (=)ol [ v dQ, V¢ e D(Q
v(6) = (~1) [ﬁaﬁku&@d | V6 eD(©)
d
where the multi-index a = (az,...,aq) € N& for Ng = NU {0} and |a| = > ;. If v is
i=1
smooth enough,
olely

D% = ——F—F .
Qxt-- - Oy

With this notation, let us define the Sobolev space H*(Q2) for non-negative integer s as
H?(Q)={v € Ly(Q) | D € La(Q), V || =0,...,s}
also the Sobolev norm and semi-norm are given as
1/2 1/2

]l s (@) = Z ||D%||%2(Q) and |v|pgs(q) = Z IDv[|7,q

0<|a|<s lal=s

Note that for s > 1, H5(€) C H*~(£2). More generally, we have a Sobolev space W} ()
such that
Wh(Q) = {u € Ly(Q) ( D € Ly(Q), Y]a| < k}

for keNand 1 <p < oo.
Remark Let 1 < p < oo. For v € L,(Q),
1 .
1vllz,0) = (JololPd)" ", i1 < p < o0,
v esssup |v|, if p = o0.

Theorem 1.1. Trace Inequality [11]
Suppose that Q) has a Lipschitz boundary. Then there is a positive constant C, such that

[0l ooy < Clloll g, ol » Yo € HY(Q).

Trace theorem and its applications can be found in [I1, Chapter 1.6].

Theorem 1.2. Holder Inequality

Let p,q € [1,00] with 1/p+1/q=1. Then, if f € L,(?) and g € Ly(),
1f9llLy@) < IfllL,@llgll,@)-

Here, q is called the Holder conjugate of p. In case of p =2, we call it Cauchy-Schwarz
inequality,
(Do) < gl < 1l 190, -

5



Theorem 1.3. Young’s Inequality
For any positive a,b and e,

€ 1
b< —a®+ —b2.
a _2a +26

Theorem 1.4. Property of L., norm
We will use the following property of supremum or maximum later. Let f,g be non-
negative bounded functions on A. For anyt € A, if

ft)+g(t) <C, for some positive C,

then
[f Lo (a) + 19l o) < 2C-

In a discrete sense, let (f,), (gn) be non-negative sequences forn € {0,...,N}. If
font+gn <C, for some positive C,

for any n, then
max + max < 2C.
0<n<N In 0<n<N In =

Theorem 1.5. Poincaré-Friedrichs Inequality [11]
For any v € H(Q),

[0l ey < C (HVU|]L2(Q) n ‘/m er ,

where C' is a positive constant that depends only on 0 and 0S2.

Hereafter, let us introduce the time variable. For a function z(x,t),  is in the space
domain 2 and ¢ is in the time interval [0,7]. Then we define

T
Ls(0,T5V) = {z :(0,T) — V measurable and / |z(t)||5 dt < oo} ,
0

where V' is a normed space equipped with the norm |||y and 1 < s < co. Then the
norm of L4(0,7"; V) is defined as

1/s
(i =@lar) . 1< s < oo,

12l Lo co,mvy = ess sup |z(t)|v, § =00
0<t<T

Theorem 1.6. Gronwall’s Inequality [47, [48]
Assume f,g are piecewise continuous functions on (a,b) and g is non-decreasing and
non-negative. If there exists a positive constant C' such that

F(1) < gt) + C/tf(t’)dt’, Wt € (a,b),

6



then
F(t) < e“Ug(1),

for any t. Furthermore, for a non-negative, non-decreasing and piecewise continuous
function h, if

Vt € (a,b), f(t)+h(t) <g(t)+ C/tf(t’)dt’

then
FiO) = 50+ 00 < o0+ € [ 10)
y+e | t(F(t') )i’
<gt)+C /
< Ola),
and hence

F(t) + h(t) < eCCVg(t), ¥ t € (a,b).

On the other hand, as considering discrete Grénwall’s inequality, let At, B,C > 0 and
(an), (bn), (cn), (dn) be sequences of non-negative numbers such that

n n n
Vn € N, an+Athi < B+C’AtZai +Athi.
=0 =0 =0

For CAt < 1,

Vn € No, an—i-Ath < Clntha (B—l—AthZ).

=0 =0

Furthermore, more general version of discrete Gronwall’s inequality is given in [48] as
follows. For non-negative sequences (ay), (bn) and (gn), if for n € N

n—1

an < bn + Zgiaia
1=0

then
n—1 n—1
an < by + Zgibi exp Zgj
i=0 =i

Theorem 1.7. Leibniz’s Integral Rule
For a differentiable function f(x,t) with respect x,

d [? b9
dx/a f(a:,t)dt:/a 2 fa,tyit

7



In general, we have

e ; ] o
Ir /a(z) f(z,t)dt = f(z, b(x))%b(a:) - f(x,a(x))%a(l‘) + /m:) %f(x,t)dt.

Moreover, in higher dimension
b b
v/ Fa, byt :/ Y f(z, t)dt.
a a
Theorem 1.8. Crank-Nicolson Method [40]

Let y be a class of C® in time. Define At =T /N > 0 for finite time T and N € N, and
t, = nAt. Taylor’s expansion leads us to have

j(z, tn+1)2+ (@, t) _ y(=, th)At_ Y@ tn) L oA,

This yields Crank-Nicolson finite difference scheme when we consider y(t) = F(y;t)
where F' is linear and smooth,

y(tn+1) - y(tn)

~ F™
At ’

where bar notation denotes average by

Fn - F(y;tn+1) + F(% tn)
= 5 .

We need to use this bar notation to express average values for the sake of Crank-Nicolson
scheme. Note that Crank-Nicolson scheme is unconditionally stable with second order
accuracy.

To make it clear, before considering our model problems, we introduce the following
definitions and notations.
Notation

e Kronecker delta: Define the Kronecker delta by

5 — 1 ifi=j,
771 0 otherwise.

e Einstein notation: We are going to use the convention notation that obeys the
following rules [49]:

1. Repeated indices are implicitly summed over.

2. Each index can appear at most twice in any term.



For instance, let «,y € R%. Then we can write

d
Y= szyz = TilYi-
i=1

In a similar way, we can also have matrix-vector multiplication by

d
(Az); = ZAijxj = Ajjzjfori=1,...,d
j=1

where A € R™¥4, g ¢ R%.

Standard basis of R%: {e; g:l' For example, if d = 2 the standard basis is

t=o)e=(0))

For f € HY(Q) and v € [H'(Q)],

9 (%i
fi= a—f, and v; j == P

Lj

'fori,jzl,...,d

j
where Q C R? and v = (v;)%_;.

Tensor divergence: Suppose A is a second order tensor in R?. Then its divergence
is denoted by

d
) L. . Ay
with Einstein notation for A;;; := ) 8690-] .
i=1

Tensor inner product: Let A and B be second order tensors in R?. Then we have

A:B= Z AijBij = AijBj.

=1 1i=1

By the tensor inner product, let us define Ly norm in tensor by

(4,B),0) = /Q A: B do.

In a similar way, we could also define the Sobolev norm and others.



1.2 Continuum Mechanics: The Linear Elastic Problem

Let B be a compressible solid body which occupies  C R? with density p. Its surface
00 is separated by I'p and I'yy, which is I'p N I'y = (0 and a positive measure of
I'p. Let u = (ui)fl:l be a displacement vector. We define a body force f on € by
f(x,t) := (fi(a:,t))f-l:l and a surface traction g onto I'y by g(x,t) := (gi(m,t))?zl. In
a classical physics, a particle motion obeys the Newton’s second law(F = ma where F'
is the force, m is the mass and a indicates the acceleration). Here, the acceleration is
equivalent to a second order time derivative of the displacement vector, that is 4. Hence
the equation of motion for an elastic model can be governed by the Newton’s second law
expressed as

V.ot f=rpi (1.2.1)

where o := (Uij)f j—1 is a symmetric stress tensor. In a classical theory of elasticity, a
strain tensor € associated with the displacement vector is defined by

( )_1 8ui+8uj
S =5\ 0x; " Oy

where € := (51-]')?7]-:1, called Cauchy infinitesimal tensor. Furthermore, the constitutive
relation between the stress and the strain follows Hooke’s law and the constitutive equa-
tion is given by

(1.2.2)

o = De (1.2.3)

where D := (Dijkl)g jki=1 is a positive definite fourth order stiffness tensor (also called
Hooke’s tensor) satisfying

Dijii = Djigt, Dijri = Digji, and Djjgpr = Dijype.
Hence ((1.2.3) is also written as
Oi5 = Dijklgkl for i,j = 1,...,d.

On the other hand, the surface I'y is subject to the surface traction g which provides a
boundary condition for the system

OijN; = gi for i = 1,...,d (1.2.4)
where n := (n;)_, is the outward unit normal vector to I'y.

Example (e.g. see [25] for detail) Let d = 3 and B be a homogeneous isotropic elastic
body. We assume the equation of motion is on an equilibrium state in other words i = 0.
Hence the equilibrium equation is given by

—045,5 = fZ in Q, for i = 1,2,3.
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For an isotropic material, the constitutive equation is given by
05 = Adivuéij + ,ueij(u) in Q

3
for i,j = 1,2,3 where divu = ) g;zj, a constant A € R and p is a positive constant. In
i=1

addition, the boundary conditions allow us to have ((1.2.4)) and

u=20 on I'p.

Since the stress tensor is symmetric, use of Einstein notation gives

1
o 1 e(v) = 0ijeij(v) = 5(03vig + 0ijvja) = 5(03vi + 05ivj) = 0ijvig

Vo € [H'(2)]3. This result also holds for general spatial dimension d. It will lead us to
derive a variational formulation for viscoelasticity later.

Theorem 1.9. Korn’s Inequality [50] 511 [52] [11]
For any v € [HY(Q)]? for Q@ C R? bounded, there exists a positive constant C such that

IM%mnSCOWMﬂn+AaAw%@MQ) (1.2.5)

Furthermore, if Q is Lipschitz and v € [H*(Q)]? such that v|r,, = 0 with positive measure
I'p then

C ol < [ 2o()ey(o)i0 (1.2.6)

for some positive C' independent of v.

These Korn’s inequalities would be significantly important to prove stability bounds
and error bounds for finite element approximations. Korn’s inequalities are used for a
priori estimates for a linear elastic problem. Also, it implies that there exists a positive
constant ¢ such that

cllolZ, @ < /Qeij(v)gij(v)dg, (1.2.7)

where v € [H(Q2)]¢ and v|r,, = 0 with positive measure I'p.

1.3 Linear Viscoelasticity

In this section, we describe the theory of viscoelasticity and rheology model problems.
Viscoelasticity is the property of materials equipped with viscosity and elasticity. It can
be shown in dispersive media such as amorphous polymers, semi-crystalline polymers,
bio tissue and metals at high temperature [5, B]. Before we consider viscoelasticity,

11



let us begin with elasticity and viscosity. In a physical experiment, a spring and a
dashpot represent elasticity and viscosity, respectively. These two elements compose
viscoelastic models which constructed by in series and parallel (see e.g. [3], I, 2]). Based
on rheological theory, Hooke’s law and Newton’s law provide constitutive equations for
a spring and a dashpot, respectively as

o = Ee (for a linear spring)

and
o = né (for a linear dashpot)

where o is stress, € is strain, F is the Young’s modulus and 7 is the Newtonian viscosity.
Combinations of springs and dashpots in series or in parallel would construct viscoelastic
models satisfied by Hooke’s law and Newton’s law. In addition, the constitutive equations
of viscoelastic behaviours would be given by the following principal rules [3]:

e For elements connected in series, their stresses coincide, and the total strain equals
a sum of strains in individual elements.

e For elements connected in parallel, their strains coincide, and the total stress equals
a sum of stresses in individual elements.

Under the above laws, we can consider rheological models of viscoelasticity.

1.3.1 Maxwell Model

One of the simplest viscoelastic models is constructed by one spring and one dashpot
in series as seen in Figure We denote the stress and strain of the spring by og and
€g, respectively. In a similar way, we define op and ep for the dashpot, and ¢ and ¢ for
total amount. By the rule for series, we have

os=op =0 and € =g + €p.
On the other hand, Hookes’ law and Newton’s law give
og = Feg and op = nép.
If we suppose strains are smooth enough in time and we differentiate it,
€ =¢€g+Ep.
Also, we assume the stresses are differentiable then g = Feg. As a result, we can obtain

) O’S+. d’_l_U
E=—+ép=—+—.
E  PTETq

This ODE can be solved by integration factor method which is a typical way to solve
simple ODEs. When we multiply e*/” on the ODE where 7 = 7 /E, we have

et/Té‘ + et/TE _ i(et/TO.) _ Eet/Té.
T dt

12



Integration yields
t
o (t) — o(0) = E/ e*/7¢(s)ds.
0
With the initial condition ¢(0) = Ee(0), we can obtain
t
o(t) = Ee t/7(0) + E/ e~ E=9)/7¢(s5)ds.
0
(1.3.1)) can be rewritten by
t
1
o(t) = Ee(t)— E / —e~ =97 (5)ds
o T
with integration by parts.

'€D,0D
—_

(1.3.1)

(1.3.2)

Y
™
Q

7 ‘ 1 ‘
:;;}—’\/\/\/\/\/\/\/\/\/\/\/\/\/— ° IJ °

Figure 1.1: Maxwell model

1.3.2 Voigt Model

Voigt model is constructed by a spring and a dashpot in parallel as shown in Figure
The constitutive equation for Voigt model can be derived by the principle rule for
parallel, Hooke’s law and Newton law as shown in Maxwell model. First of all, we have

e=¢e¢g=cpand 0 =05+ op.

Then Hooke’s law and Newton law give
og = Feg and op = nép.
In a similar way with the Maxwell model, combining the result leads
o= FEec+ne.
Then we can solve it with e*/™ by
/t es/T@ds = 7e!/Te(t) — 7(0)

0 E

where 7 = n/E. Hence it yields
e(t) = %e’t/TU(O) + ! /t e =9/ 5(s)ds

nJo
with ¢(0) = Ee(0). This can be also written as

t
c(t) = %a(t) _ % /0 ==/ (5)ds.

13
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Figure 1.2: Voigt model

1.3.3 Maxwell Solid

Maxwell Solid consists of one spring and a series of a spring and a dashpot in parallel
as shown in Figure Using the principle rules, Hooke’s law and Newton’s law, the
constitutive equation can be derived. We can observe the relations between stresses and
strains, respectively as

oc*=o0p, o=0"+o0g

and
e=eg=¢c"+ep.

In addition,
os = Epeg, 0" = E1e* and op = nép.

Since 0* = op = Eie*,
E\e" =nép =n(é —£%).

When we solve this ODE, it yields

t
e¥(t) = e /7e(0) + / e =9/7s(5)ds
0

where 7 = n/E; with €*(0) = £(0). Now, let us define the stress relaxation function E(t)
by
E(t) = Eg + E1e™t/7,

Recall the relations of stresses and strains. Using Hooke’s law,
o(t) =Epes(t) + E1e*(t)

t
=FEoe(t) + E1e/7(0) + E; / e =9)/7¢(s)ds
0

t
— Foe(t) + (—Foe(0) + Eoe(0)) + Bre t/72(0) + i / e~ (=9/7¢(5)ds
0

14



t t
—F, / £(s)ds + Eoe(0) + Ere t/7=(0) + By / e (=9)/7¢(5)ds
0 0
t
=(Eo + E1e Y7)£(0) + / (Eo + Ere= /M) (5)ds
0
SO
t
o(t) = E(t)e(0) —|—/ E(t — s)é(s)ds. (1.3.5)
0
With integration by parts, we also gain

o(t) = B(0)e(t) — [ Ey(t — s)=(s)ds (1.3.6)

where Es(t — s) :

I
o
&
—~
~
|
v
S~—

1£5,08

— =
Ey w
—NVVWWA— @

Figure 1.3: Maxwell solid

1.3.4 Internal Variables

As shown in the Maxwell solid, a pair of spring and dashpot, called a Mazwell element,
follows the principal rule of continuum mechanics to lead a constitutive equation. In
parallel construction of Maxwell elements, local strains are same each other and the
total stress is equal to a sum of local stresses. It is a key idea of internal variables
that we set local constitutive equations as new variables. According to [25], when we
consider the generalised Maxwell solid, we will introduce internal variables for the stress
relaxation functions. To be specific, locally constitutive relations are dealt with in order
to derive total constitutive equation between total stress and total strain. In this thesis,
each internal variable will be defined as a vector-valued function rather than a tensor-
valued function [26].

In addition, we can define stress relaxation function and it enables us to solve the
model problem with Laplacian transformation (convolution form with exponential ker-
nels) in the integral form in time [§].
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The generalised Maxwell solid would be constructed by a linear spring connected in
parallel to a sequence of N, spring-dashpot pairs as shown in Figure Hooke’s law
and the principal rule for parallel lead us to have

gg = ¢, o9 = Eye, and a;‘ = Eqaz

for each ¢ € {1,..., N,}. For each spring-dashpot pair, we can derive ODEs such that

* t
G4 —e = )= e + [ I sy

Tq 0

where 7, = E;/n, for each ¢ € {1, ..., N,}. Since the total stress equals a sum of stresses
and o4 = o for each ¢, we can derive

a(t) =oo(t) + o1(t) + -+ on, (1)
=Eoe(t) + Ere1(t) + -+ + En,en, (¢)

N, .
=Foe(t) + Z (qut/%(O) + / qu(ts)/ﬂlé(s)d5> .
q=1 0

If we define

N
E(t):=Eo+» Ege '™, (1.3.7)
q=1

then the total stress can be expressed as

t
o(t) =E(0)e(t) — /0 Ey(t — s)e(s)ds (1.3.8)

o (1) =E(1)e(0) + /0 Bt — 5)2(s)ds (1.3.9)

by integration by parts. We can expand the constitutive relation with respect to the
displacement vector u by

o(u;x,t) =D(0)e(u; z,t) — /0 D,(t — s)e(u;x, s)ds (1.3.10)

o(u;xz,t) =D(t)e(u; x,0) + /OtD(t — s)é(u; @, s)ds (1.3.11)
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where Dg(t — s) := %Qs(t — s), D is a positive definite fourth order tensor as seen in

(1.2.3). Then (1.3.8) and (|1.3.9)) are scalar analogues of (1.3.10) and ((1.3.11]), respect-

ively. Moreover, when we define a generic stress relaxation function by

Ny

p(t) =po+ Y _ pge ™
q=1

with N, € N, ¢(0) = 1, positive coefficients {goq}évz"’o and {Tq}év:"’l, we have
D(t) = D(0) (1) (1.312)
from [I]. Then we can express D(t — s) by
Dy(t - 5) = D(0)ps(t — s)
where

t—S Z(P(I—t S/’Tq

Let us define internal variables 1, by

P, (t) = /Ot P4 o= (t=9)/Tagy(¢')ds (1.3.13)

Tq

for g =1,...,N,. Hence we can replace (1.3.10)) with {wq}f]\i"l by
N

o(u(t)) = D(0)e(u(t) — Y 1h,(1)). (1.3.14)
On the other hand, also yields

D(t — s)é(u;x, s)ds —/ woD(0)é(u; x, s)ds

+Z/ g~/ D(0)é(u; x, 5)ds

= @oD(0)e(u; z,t) — poD(0)e(u; x,0)

and



When we define ¢, by

t
C(t) = /O g M (s)ds (1.3.15)

forg=1,..., N, we can write (1.3.11) as
N, N,

o(u(t) = DOE(pou(t) + 3 ¢,0) + 3 goe DO)e(we)  (1316)

q=1 q=1

when ug = u(0). We will call {1/)q}]qu“’1 and {Cq}évjl the internal variables for the
displacement form and the velocity form, respectively.

EN_ O
En  —Ne) T NeTIN,

¥ |
11
— A WVWN— @ \
1 u 1
1 1
1 1
1 1
1 1
* *x
- 1€1,07 m L »c,0
E]_ 1 |—|
e 1
'€0,00
EO l
—AVWAN— @

Figure 1.4: Generalised Maxwell solid

1.3.5 Primal Model Problem

In the same sense in the elastic theory, Newton’s second law gives the equation of motion
for a viscoelastic model. Recall (1.2.1)) and (1.2.2)). Thus our primal model problem is

given as
pu—V-o=f in (0,7] x ( )
u=gp on [0,7]xTp ( )
og-n=gy on [0,7]xTIy (1.3.19)
u=ug on {0} xQ ( )
u=wy on {0} xQ ( )

where () is a viscoelastic material domain in R%, I'p and Iy represent Dirichlet boundary
and Neumann boundary, respectively, and [0,7] is the time domain. I'p and T'y are
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disjoint and the measure of I'p is non-zero. Since we have the equivalent constitutive
equations ([1.3.10) and (1.3.11]), (1.3.17)) can be rewritten as

piii(t) — (Dijri(0)er(u(t))) ; —i—/o (W@Au(s))) ds = fi(t), (1.3.22)

)]

and

i (t) + /0 (Dijualt = $)eua(@t(s))) ; ds = fil) + (Dygra®em(uo)) ;. (1.323)

respectively, for ¢ = 1,...,d. Moreover, when we use internal variables for the con-

stitutive equation (|1.3.14]) and ([1.3.16)), our primal model problem is given by

(Displacement form)

NSP

pit— V- [D(O)e(w->"9,) | =Ff n0T]xQ (1.3.24)
qg=1

Tqibq + i,bq = Qpqu forg=1...,N,in [0,T] x Q (1.3.25)

and

(Velocity form)

N, N,
pit =V - [ oD 0)e(u+> ¢,) | =F+V - | D wqe /™ D(0)e(uo)
q=1 q=1

in (0,77 x Q2 (1.3.26)
Ty +Co=Tapqu  forg=1...,N,in[0,T] xQ  (1.3.27)

(1.3.25) and (|1.3.27)) are governed by first time derivatives of (1.3.13)) and (|1.3.15)),
respectively. Note that 1,(0) = 0 and ¢,(0) = 0 for each ¢ by definitions, (1.3.13)) and

i35

1.4 Finite Element Methods

Finite element methods are approximate ways to solve PDEs with variational formula-
tions. First of all, choose a grid for a given domain and define a test space. Then we
should derive the variational form and find the approximate solution in the test space sat-
isfying the variational form. More detailed information is given in [I1}, 24] and references
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therein. In our case, we are going to use Continuous Galerkin Finite Element Method
(CGFEM) and Discontinuous Galerkin Finite Element Method (DGFEM) for spatial
discretisation. In this section, we present the background of CGFEM and DGFEM as
well as some elliptic projection properties for error estimates later.

1.4.1 Continuous Galerkin Finite Element Method (CGFEM)

Let © C R? for d € N be a bounded polytope domain. Suppose 92 = I'p UT'y with
I'pNT'xy =0 and I'p is of positive measure. Consider the following the elliptic problem

-V -DVu=f in Q, (1.4.1)
u=0 on I'p, (1.4.2)
Vu-n=g on I'y (1.4.3)

where D is a positive constant and n is the outward unit normal vector. Let
V ={ve H(Q) | v|r, = 0}.
Then for any v € V it is true that

(DVu, Vo) 0y = (f,0)py@) + (90 1oy

by integration by parts where (g, v) Lo(Ty) = fFN gv dI'. When we define a bilinear form
and a linear form by

a(v,w) = (DVv,Vw), ) and F(v) = (f,v) 1) + (9,0) 1,10

for v,w € V. Then the elliptic problem of (1.4.1)-(1.4.3|) generates the variational form
such that find v € V satisfying

a(u,v) = F(v) (1.4.4)
for any v € V.

Definition Let (V, (-,-)y) be a Hilbert space. Then we have the induced norm defined
by
[vlly = (v, v)v)"?, Yo e V.

Suppose a(-, ) is a bilinear form on V x V and F € V'.

(i) a(--) is coercive on V if a(v,v) > k|jv||} Vv € V for some positive constant .
(ii)  a(-,-) is continuous on V' if |a(w,v)| < Clw|v|v]lv Yv,w € V

for some positive constant C.
(ili) F is continuous if |F'(v)| < Kljv|ly Vv € V for some positive constant K

Here, k, K and C are independent of any v, w.
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Theorem 1.10. Lax-Milgram Theorem [11], 53]
Given a Hilbert space (V, (+,-)v), if there exist a coercive continuous bilinear form a(-,-)
and continuous linear functional F € V',

Jlu € V' such that a(u,v) = F(v) YveV.

Lemma 1.1. The given bilinear form a(-,-) is coercive. That is
w ol < avv), Vo eV ={ve HY(Q) | vlr, =0},

for some positive k.
Proof. The proof is shown in [54]. O

Let us define the energy norm by
[v]|?, = a(v,v), Yv e V.

Then Lemma allows us to have the norm equivalence between H' norm and the
energy norm by Vv € V

2 2 2
ol o) < Iolly < Dllvllizg) -

Also, we can observe
la(v, w)| < Dol g1y Il g1(q)

for any v,w € V by Cauchy-Schwarz inequality and the definition of H' norm. Hence
the bilinear form is continuous. Moreover, we assume f € L9(Q2) and g € Lyo(I'y) so
that we can have continuity of the linear form F'. Therefore, we can solve the variational
problem uniquely.

From now on, we are going to approximate the solution of variational problem in
practice. We follow [I1, Chapter 3] in order to consider the construction of finite ele-
ments. Let &, be a set of non-degenerate subdivisions of the domain 2. Then for E € &,
E is a sub-interval in d = 1, a triangle in d = 2 or a tetrahedron in d = 3. By using
Lagrange finite element, we can construct V? C V such that is the set of continuous
piecewise polynomials (e.g. see [I1, 55]). We denote

VP =span{ ®; |i=1,...,Ny» } NV

where Ny, is the number of global functions and ®; is a global basis function such that
is a piecewise polynomial of degree k € N for ¢ = 1,..., Nyu. In other words, for £ € &,
®,|p is either a polynomial of degree k or a constant 0 but continuous in the domain,
Vi =1,..., Nys. Additionally, we can express for any v € V"

Nyn
v(x) = Z v;®;(x)
i=1
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for v; € R, Vi € {1,..., Nyn}. Now, we consider the variational problem such that find
up, € VP satisfying

a(up,v) = F(v) (1.4.5)

for any v € V*. Since up, € V", wuy, can be expressed with a linear combination of
N N .
{tl)i}i:vlh and the degree of freedoms can be computed by substitution of global basis

functions in (1.4.5)).

In [11, [38, 55|, the error estimates for elliptic problems have been introduced. If
u€ H*(Q)NV for s € N, we have the following results

lu = wnll g1y + 1w = unll 1) < CR™Hular o (1.4.6)

where r = min(k+1, s), h represents a mesh size, and C' is a positive constant independ-
ent of u and h. If the domain is convex or has a smooth boundary, elliptic regularity
will be provided so that we have

lw —unll g,y < CR|ulpr (o) (1.4.7)

(e.g. see [I1, Chapter 5.5] for the elliptic regularity and its condition).
Let us define an elliptic projection operator R such that for w € V

R:V — V" by a(Rw,v) = a(w,v), Yv e V"
Remark By the definition of elliptic projection, it is true that for any w € V
a(w — Rw,v) = a(w,v) — a(Rw,v) =0, Yv e V.
We call this property Galerkin orthogonality.

Remark (e.g. see [38] in detail)
For any w € VN H*(Q),

= Rl sy + w0 = Rl gy < Ch7? (1.48)

for some positive C' independent of h and r = min(k 4 1,s). Furthermore, if elliptic
regularity is provided, it satisfies

lw — Ruwl|,q) < CI. (1.4.9)

1.4.2 Discontinuous Galerkin Finite Element Method(DGFEM)

As part of framework for DGFEM, we will define a subdivision as following the definitions

n [24]. Let E be a bounded polytope domain with diameter hp := sup ||z — y|| where
ryel

||I-]| is the Euclidean norm. |E| denotes the measure of E. In a similar way, let us define
le| where e is the edge of E. The main concept of DG scheme is that when a variational
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problem is dealt, the test functions are defined as piecewise continuous functions on each
element but it could be discontinuous on edges. In other words, our finite dimensional
test space consists of the piecewise polynomials but does not need to be continuous on
whole domain. Define the space of polynomials of degree less than or equal to k on E
for E C R? by

Pr(E) = span{zl -- 'xild |14+ +ig <k, x € E}.

Suppose &, = {E; : i € I} where the measure of E; N E; is zero for any i,j € I with
i # j where [ is an index set. Then let us define

Di(&En) = {v ’ v|g, € Pr(E;) for each i € I}.

Assume  is a polytopic domain in R? or R? which is subdivided into elements F, where
E' is a triangle in 2D or a tetrahedron in 3D and the intersection of elements is either a
vertex, an edge, or a face. Let h be a maximum diameter of elements then we define the
set &), of the elements. Then

Ve C OE, VE € &, le| < hE ' < h®l.

Also, we suppose that the subdivision is quasi-uniform, which means there exists a
positive constant C' such that

h < Chg, VE € &.
In the end, we can introduce the broken Sobolev space
H? (&) ={v € La(Q) | VE € &, v|p € H¥(Q)}
with the broken Sobolev norm |- g+ (g, by
1/2
Wolll =g,y = Z V)| & (k)
Ecé&),
As a result, we have the following facts
H*(Q) € H%(E,) and H¥TY(E,) € H (&)

Let T'y, be the set of interior edges(2D) or faces(3D) of subdivision &,. Then for each
edge or face element e, we have a unit normal vector n.. If e C 012, n. is the outward
unit normal vector.

Definition Suppose two elements EY and ES share the common edge e and there is a
function v on EY and ES. Then we define an average and a jump for v by

(v|Eg) + (vlEg)
{v} = - 5

where the normal vector n. is oriented from Ef to E5. On the other hand, if e C 02
and e C OFEY

[v] = (v]Eg) — (v]mg)

{v} = [v] = (v]Eg).
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As following the above definition, we will introduce the jump operators of the function
values and the derivatives values by

et = Y o [l

eCl'p,Ul'p
where ag € R and fy is a positive constant depending on the dimension d.

Theorem 1.11. Inverse Polynomial Trace Theorem [39]
This theorem is an analogue of trace theorem with respect to each element E for polyno-
mials. The trace inequalities are given by

Vv € Pp(E), Ve COE, ||v] 1, < Cle['?|E|~/? 1ol 1y )

(B), Ye C OB, vl < Chp"* [0l 8

Vo € Pi(E), Ve C OE, Vv nell, @ < Clel2IE[72 Vol L,
Yo € Ph(E), Ve COE, |V nellpye < Chig* IV0ll,m -

where C' is a positive constant and is independent of hg but depending on the polynomials
degree k. It enables us to estimate trace norm of boundary values and boundary normal
derivatives for polynomials with the measures of edge and element or the diameter. We
shall use them to prove coercivity and continuity (with measures of edge and element)
and stability/error analysis (with diameters).

Theorem 1.12. Poincaré’s Inequality [35] 24]

In Theorem 1.5, Poincaré-Freidrichs inequality is introduced for H'(Q). For piecewise
H' functions, Poincaré-Friedrichs inequalities are given in [35]. Also, we can expand
this inequality onto the broken Sobolev space HY(Ey). A generalisation of the inequality
s given by

1/2
1
1 2 2
Vo € H' (&), [[vllry) <O IVollfoe,) + D e[/ 0] 20 )
eCl'p Ul'p
for some positive C. If Bo(d —1) > 1 and le| <1 fore C T, UTp,
1/2
1
Yo e H'(E), Iolliy) < C [ IVolliog) + D e o7, | - (14.10)
eCcl'p,Ul'p
Theorem 1.13. Inverse Inequality(or Markov Inequality) [24] 56]
For any E € &, there is a positive constant C such that
Vo € Pr(E), V70, m < Chi’ [0llpym), YO <5 <k (1.4.11)
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Remark We stated framework of DG and useful inequalities for a prior:i estimates. We
did not give any example of DGFEM at the moment. DGFEM for elliptic problems has
been studied in [24], 20]. In case of elasticity problems, DGFEM has been developed, see
e.g. [16, 15]. More applications of DGFEM are seen in [24] and references therein.

Summary
Chapter 1 provides preliminary works, for example some notations, mathematical back-
grounds, continuum mechanics, model problems and fundamental theory in finite element
methods. We follow the given introduction as well as many previous research results in
papers of finite element methods and/or viscoelasticity to solve linear viscoelastic prob-
lems in two ways; one is CGFEM and the other is DGFEM.
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Chapter 2

CGFEM to Simplified Scalar Wave
Equation with Memory

2.1 Model Problem

Hereafter, we will consider a simpler analogue of (|1.3.17))-(1.3.21]). Instead of dealing
with the vector-valued problem, the scalar wave equation with memory is our topic in

this chapter. Hence the model problem is given by
find w: [0, 7] x 2 +— R such that

pi—V-a=f in (0,7] x €, (2.1.1)
w=0 on [0,T]xTIp, (2.1.2)
c-n=gn on [0,T] xTp, (2.1.3)
u=1up on {0} xQ, (2.1.4)

w=wy on {0} x €, (2.1.5)

where the domain and its boundary follow as before we assume that 2 is bounded and
open, 0f) = I'p UT'y, the measure of I'p is of positive, and I'p and I'yy are disjoint.
Furthermore, we suppose that p is a positive constant and f € C(0,7;L2(Q2)) and
gn € CH0,T; Ly(T'y)). Here, the strain tensor £ becomes a gradient operator V. At
last, the definition of o determines either the displacement form or the velocity form as
shown in and .

In fact, this scalar analogue represents the viscoelastic materials subjected to an-
tiplane shear problem. Antiplane viscoelastic models in 3D reduce the vector-valued
problems to scalar wave equations in 2D (see e.g. [44] [45] [46]). To be specific, a strain
tensor is defined by Cauchy infinitesimal tensor as in (1.2.1). However, in case of anti-
plane problems, antiplane shear deformation leads the displacement vector to be defined
by u = (0,0, u) so that we have

0 0 luy
e(u) = 0 0 %uz



Thus, for any symmetric positive definite fourth order tensor D, we can express De(u)
by DVu where D is a matrix. In this manner, we can derive the above scalar model
problem.

2.1.1 Displacement Form

Recall (1.3.7)), E(t) = Ey + Z E;e /7. Let us define
=1
N‘P
E@t)=D | o+ > wge /™| = De(t)
q=1
NLP

where D = ZE >0, 9y =FE;/D>0forq=0,...,N,and 7, >0 for ¢ =1,..., N,.
=0
Then we have

Ny Ny
90(0):900‘1‘2‘:011—17 800—1_2‘:0q>07
q=1 q=1

and

pult — ) = 3 ot — ) Z Pq ,~(t—5)/74
Thus, can be written as
a(t) = DVu(t DV/ ws(t — s)u(s) ds. (2.1.6)

Set 1hy(t) = 22 fo e~ (t=9)/Tay (s ) ds for each ¢ =1,...,N,. Hence, the constitutive
equation is governed with {wq} 1 by

NS"
o(t) =DV |u(t) = > ty(t) | . (2.1.7)
q=1
By the definition of {wq} g—1» we can derive the following ODE
Ja(t) = P2ult) — (1) (2.1.5)
q q
with the zero initial condition, V¢ € {1,..., N,}. From these above results, our model

problem (2.1.1)) and (2.1.3) can be rewritten as

N‘P
pii—=V DV [u=> "ty | =f in (0,7]xQ, (2.1.9)
q=1
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N‘P
DV u—zwq ‘n=gn on [0,T]x Ty, (2.1.10)
q=1

respectively.
Now, we consider the variational formulation of (2.1.9) and so let us define the test
space V such that

V:{veHl(Q)]vzo onI'p}.

Then multiplying v € V' leads us to derive the following weak form,

No

(pii(1), ) L0y + alu(t),v) = > a(thy(t),v) = Fu(t;v), (2.1.11)

q=1
where the symmetric bilinear form a(-,-) and the linear form Fy(-) are defined by
a(w,v) =(DVw, Vo), q),
Fy(t;v) = (f(1),v) ) + (9N (1), 0) Ly y)-

It is easy to check that (2.1.11)) is the weak form of (2.1.1]) by integration by parts.

N, N,
—/v DV [u—=>) v, de:/DV u—Y 1y | - Vo dQ
@ q=1 q=1
N<P
—/ DV u—zwq n | v dl,
oN q=1
NHP
:/DV w—Y 1y | - Vv dQ
Q g=1
Nw
—/ DV [u=> 4| -n|vdl
I'p g=1
N<P
—/ DV u—zwq -n | vdl,
I'n =1

NSP
—/DV u— Y 1y -WdQ—/ gnv dl,

since the boundary condition ([2.1.10)) is imposed, Vv € V. Thus, multiplying v € V on
(2.1.9) and integrating it give ([2.1.11]). Furthermore, in a similar way, (2.1.8) implies

a(Tq¢q(t) + 14(t),v) = a(pqu(t),v) (2.1.12)
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for any v € V and ¢ = 1,..., N,. Therefore, we have the weak problem:

P1) Find u(t) and {,(¢ “" such that for all v € V
q =1

Ny
(pii(1), v) 10 + alu Z — Fy(t;),

qa(¢¢1(t)7v) +a(¢q( )’U) = Soqa(u( ),U) Vq € {17 .- '7Nso}a

with u(0) = ug, 4(0) = wg and 14(0) =0, Vg € {1,..., Ny}
Now, we shall consider a priori bound for (P1). Due to Lemma we have the
norm equivalence between H! norm and the energy norm, defined by

[v]|?, = a(v,v), Yv e V.
In other words, Vv € V
rllolFry < ol < Dol -

This result will be used to verify a priori bounds. To be specific, by Trace inequality
and coercivity,

0] Lya0) < Cllvlly - (2.1.13)

Lemma 2.1. Suppose the weak solution v € H?*(0,T; Ly(Q)) N HY(0,T;V). Then for
any 0 <t < T

0. 1 ! .
SO0 + 5 Nl =5 ol oy + 5 ol + | Fatt'sae)ya

+§; /0 a((t'), a(t"))dt’

Proof. Choosing v = u(t') € V in (2.1.11)) gives
N‘P

(pii(t'), (1)) 0y + alu(t),a(t") = aldy(t), a(t")) = Fa(t'silt")).

q=1
Note that by Leibniz’s integral rule, for any differentiable w we have

1d 1d
2 dt! H HLQ(Q 2 dt’ / wQ(t,) dq2,

=3 [,

:/Qw( Nw(t') d = (w(t), w(t)) ,q) -
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and similarly, §-& Hw(t’)HV = a(w(t"),w(t")). Hence it yields

NSO
pd . 2 1d 2 . :
5 35 1) Ly + 577 1wy = Fal; a) + ;a(wq(t’)7u(t’)).
Thus, from integration with respect to time from 0 to ¢ where t € [0, 7],

P 1 p [ ! :
2WMHZ@+2WWM3—NWﬂZ@+2WMW+Afwﬂwﬂﬂf

Ny 4
3 [ alwy(t).ade)de
>

where we used the initial data as in (2.1.4)) and (2.1.5). O

Lemma 2.2. For any q € {1,...,N,}, assume that yq4(t) € H'(0,T; V). Then for any
0<t<T,

/ZwaSWMW—MWMMm—1H¢@F—“/W¢w
0 q ’ - ’ g qu q 1% gpq 0 q
Proof. Set v = ¢q . Then (2.1.12) yields

MH%W)V+M%W%%W»=¢WWW%%W»

and so
2

o [Ba )} + 5 ot 2 = paalult), dalt):

2 dt’
Integration by parts yields

t
/0 Tq ”¢q(t/

a4 L @%u%—wmwwzlwwwwwmww
:<an(u(t)7 ¢q<t)) - wqa(u(O), g (0))
—Awwwwwwww

Since 14(0) = 0, we have

[l

and therefore,

2 1 t
) th'+§ gD = @qalult), tg(t)) — / pqalt(t’), vq(t"))dt’

[t a@nar = aute). ) - 5o gl - 2 [
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Theorem 2.1. If u(t) € H?(0,T;L2(Q) N HY0,T;V), ¢,(t) € HY0,T;V) Vq €
{1,..., Ny}, then we have the following stability bound: for anyt € [0,T]

Ny

Py . P ¥0
E NI ) + 22 NI 37 la(®)I2
q=

N + 2¢0pq

Ny oty
+ q/ t
;% )
t t
< (oo oll + [ IOy + [ N ey

Fllan @I + lon O, o) )

for some positive constant C which is independent of the weak solution but depends on
the domain, its boundary and exponential of time.

Proof. By applying Lemma [2.2] into Lemma
o
2 i) + 5 It |V+Z( ol + 2 [ oo )

=2 o+ 5 Il + [ Fatisat + ;aw(t), G, (21.14)
2
First, observe fo Fy(u)dt'. From the definition,
[ Bttt = [ (00000 0+ 00 o
= [ (00 oy + o) e 5
- [ty

(by integration by parts)

t
< [y 1y 8+ MO0 4O

t
F 198 O)] £y r ) w0l 2y () +/0 HgN(t/)HLz(FN) H“(t,)HLQ(FN) dt’

(by Cauchy-Schwarz inequality)

t
< [ a1y + N0 € )
t
o O,y C ol + [ )|y )]
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(by @.113))
t 1 2
sﬁ(yuwum+ i) ) €+ 5 U O

Ce C
+ S+ S lon Oy + 5 ol

c [ INIE: / 2 g
+2/0 lan gy 2 +2/0 u(t)|3 dt

(by Young’s inequality).
Take € = ¢o/(4C) > 0. Then
t . 1 [t 9 1 [t 9 4C* 9
/0 Fy(t';a(t'))dt 32/0 Hf(t/)HLQ(Q) dt’ + 2/ Hu(t/)HLz(Q) dt’ + 20 |\9N(t)||L2(FN)
0 C C
=@l + 3 llgn (0 Wiam) + 5 Hu0||v

_l’_
c [t 2
+24Hmwmwwww24uwwWw

On the other hand, in the same sense, Cauchy-Schwarz inequality and Young’s inequality

allow us to have

q—l

N, Ny
> alu(t), g() <D lu®lly Ilg(®)lly,
q=1

<qulu HV+Z Hlbq I

for positive constants {e,}. Choose €, = g + 55~ = >0 for each ¢g. Then

0
1—q216q1— ;%Jr‘f;
N‘P
since ) ¢, = 1. Also, for each ¢
q=0
111 1
20, 2 2pq 20+ w0/N,
_ SOO/Ngo
204(204 + 9o/ No)
20 > 0.

492N, + 2004
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Consequently, (2.1.14]) gives
) T,
2 i) 0 + 3 e ||V+Z< ol + 2 [ a

<& ool + 5 ol + /Hflm i+ 5 [Nt o

4C?

©0 C
+ e NN Ol Ly + 5 Tl + 5 ugN< Wiagen) + 5 luolly

/wNHMMﬁ+/w mw+zqu w+2 - a1

hence our choice of {¢;} implies

Ny
Py 2 $0 2 $0 2
5 lla(@)]l + < lu@®Ily + [4q (@)
2 L) 78 v q; 402N, + 2000 Y

+Z Ta / H%

1 1 [ 1 [t .
<L lhwoll? +§HU0||%/+* / 1@ 0 2 + 3 /0 a1}, 0 4

202
+ o @llzyey + NN Oy + 5 Tuoll?

/Hw mmww+/u (O} de

Finally, Gronwall’s inequality with respect to || (¢’ )HiQ(Q) and [[u(t')||3 implies

Ny
Py . 2 ®0 2 ¥0 2
— t — t
5 (D)7, + 75 >||V+q§:1: e L0

i%/ [t

t
2 . 2
§C<Hw0HiQ(Q)+HuOH%,+/O Hf(t/)HLgm)dtur/o HgN(t’)HL2(FN)dt/
Hlox Ol e + lox O e, ):

for some positive C. Indeed, this C increases exponentially in time but is independent
of solutions. O
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Theorem [2.1] states the boundedness of solutions by initial conditions, boundary con-
ditions and source terms. However, the bound constant C' in the theorem exponentially
grows in time by Gronwall’s inequality. It is understood that for large final time T, the
stability becomes meaningless in practice. However, instead of Lo estimation in time, it
is also able to obtain other stability bounds based on L., norm in time. Let us define
the norm for v € Lo(0,T;V)

v 1y =€ss sup ||v]|y -
ol oy = ess sup_ el

Therefore, we will prove the stability bound without using Grénwall’s inequality so that
we have a non-exponentially growing bound constant C' in time.

Theorem 2.2. Suppose u € WL (0,T;L2(Q)) N Loo(0,T5V), ¢y € HY(0,T;V), Vq €
{1,...,Ny,}. Then we have the stability bound for any t € [0,T], as

N

SDO 0 2
|| ||L<X,0TL2(Q) HUHLOOOTV +Z4@3N + 2000 l|1q(t )Hv
Tq By,
—|—Z H"L/Jq(t)
g=1 PaJo

§C<h%ﬁmm*WWM€+”ﬂﬁﬂﬂwﬂmVHmNﬁ““ﬂ“¢M)
. 2
+ HQNHLQ(O,T;Lz(FN)) ) ’

where C' is a positive constant independent of u and {wq}é\f;"l but depending on the final
time T'. C is increasing in time but not exponentially.

Proof. Recall the proof of Theorem In a similar way with (2.1.14)), for 0 <t < T

gllﬂ(t)ﬂiz ||u ||V+Z( @)l + - /qu )

N,
p 1 ! . -
£ lwoll 7, + 3 ol +/0 Fy('sa(t))dt +> " a(ult), tq(t)). (2.1.15)
q=1

On the other hand we can observe for any ¢ € [0, 7],

t t
. . ¢ 2
| Fattanar < [FON yan 16E) yioy & + 5 lav Ol e
Ce C C
+ 5 u®IF + 5 llan Ol e, + 5 luolly

+/0 HgN(t,)HLz(FN)CHu(t/)Hvdt/

34



(as follows the proof of Theorem with € > 0

and a positive constant C' from 2.1.13)
T
. 2
< [ gy 1502 + 5 o 1y
Ce C C
+ 5 lu®IF + 5 llan O ,e,) + 5 luolly

T
[ i)y € )]

(since 0 <t <T)

T
. C
< HUHLOO(O,T;LQ(Q)) /o Hf(tl)HLQ(Q) dt’ + 2% HgNH%oo(O,TQIQ(FN))

Ce 2 C 2
T lullz o) + 5 9N T (0,7 00(mn)) T+

!/

T
+C HuHLOO(O,T;V) /0 HgN(t/)HLQ(FN) dt

(by definition of the Lo, norm)

1 e,
<2 il oo + o ([ 1Oy ) + 5 ol

C 2 CG
+ 5 Nl orraeny T 5 HUHLOO o) T

2
C’eb C )
+ - ||UHLOO(0T vyt 2, </O HgN(t,)HLz(FN) dt,)

by Young s inequality for positive €, and €p)
T 9 C

2
% 19N % (0,752 (0 0 )

€ 2
ga [ s % A2 0,750 + 5 ol

C 2 CE 2
+ 5 HgNHLOO(O,T;LQ(FN)) T lullz.. 00

C’eb crT .
+ = HUHLOO(OT vyt 2% 1931 23 0,7522(0n)) 5

(by Cauchy—Schwarz inequality).

Note that we also have
Ny

> a(u(t <Z 2t ||V+Z - llea(®)

q=1

2
+ o 1N IT o (0.7:L0 (0 )

with €, = @4+ 55 > 0 for each ¢, Vt € [0, T]. Hence, the choice {¢;} qil and combining

(2.1.16) and (]2.1.17]) in (|2.1.15|) lead us to have

P2 <P0 Tq
5 1O, + 7 llult HV+Z4%N T 2p0p, Vet HV+Z /qu
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p 2 1 2 € 2 T
<5 llwollz, @) + 5 luolly + 5(1 lall7 o 0,mL00)) T %,
C€ 2 C

+ = ”UHLOO(O,T;V) )

|| f | | %2 (0,T;L2(Q2))

1 C
1+ - HQNHLOO (0,T:La(Tn)) T 5 HUOHV
Cﬁb 2 cTr . 2
+ = lullz o) + 2%, 9N 170 0,7 Lo (mn)) -

If we consider essential supremum with respect to ¢, then

P Y0
ess sup {f||u<t>|\i2<m+Z||u<t>u?v}
0<t<T

+Z N—|—29090 Iéat HV+ZTq/H%

p 2 2
<5 llwoll7, ) + 3 HUOHV + 5(1 el 7 07:200)) +

r 2

% 1AL 0,700
CE 2 C 1 2

+ HUHLOO(O,T;V) ) <1 + 6) IINIToc 075150 n))

Cﬁb cT . 2
+ = HUHLOO(OTV) + 2% N IT0 0,7 Lo (T n)) »

2
+ b} [|uolly,

since the right hand side is independent of ¢. Note that for any non-negative f(¢) and
g(t),

esssup{ f(t)} < esssup{f(t) +g(t)},

So if esssup{ f(t)+g(t)} is bounded, so is esssup{ f(¢)} by that of upper bounds. Turning
to the proof, by the property of essential supremum and the definition of L,, norm in
time, it is seen that for any ¢ € [0, 7]

N

P2 %0 2 %0 2
5 HUHLOO(O,T;LQ(Q)) + 1 HUHLOO(O,T;V) +Z4(qu T 200% g ()l

N‘P T t . 2

+ q/ Hzp || dt’
z_; ¥q Jo olt) 4
q_
P 2 1 2 | €a -2 r 2

<3 < [[wol|7, ) + B l[wolly, + 5(1 al|7 o (0,7 L202)) T %, 120,73 0202))

CE C 1 2 C 2

+ 5 HUHLOO 0.1v) T o L+ . 9N L e (01300 n)) T 5 l[wolly

C’eb cT
+

”uHLOO(OTV) + ||9N||L2 OTLQ(FN))>

In the end, if we set e, = p/6 > 0 and € = ¢, = ¢ /(24C) > 0,

No

P2 0 2 %0 2
1 all7 o 0,1:L0(0)) T ) lullz.. o) + Z FZN, + 29004 gy
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dt’

+Z Ta / H%

31+C 6T
2 ol oy + 2 ol + 151000

50 ASC! 36C%T
N G 9N 1% oo 0.7:20r)) +

. ||9N||L2(0,T;L2(FN)) :

Therefore, there exists positive C such that
Ny
SDO %0 2
|| ||Lo<, OTLQ(Q) ||u||Loo 0,T;V) +Z l|1q(t )Hv

4@3]\7 + 2¢00¢q
+ZT‘1 NG

§C< lwoll 7,0 + lluolly + 11T o070 () + NINNE o 0.2 Lo n)

+ HQNH%Q(O,T;LQ(FN)) ) )
O

In Theorem [2.1] and we can observe the stability bounds for the weak formulation
(P1). However, we can derive an alternative form of internal variables so we are going
to define the velocity form and take into account its stability bounds.

2.1.2 VeIocity Form
Recall {wq . Note that

¢q [* /
wnlt) = 22 [ e e a

Tq 0
¥ t '

_ ¥q (Tqu(t) - quit/Tq’U,() _ Tq/ e*(tft )/Tqu(t/) dt/>
Tq 0

t
= ¢, (u(t) — et Tayy — / e~ (=g (¢) dt’>
0

by integration by parts then we define

t
G(t) = / e (') dt
0

for each ¢ =1,..., N, so we can have



= pgu(t) — quc‘q(t) (2.1.18)

with ¢,(0) = 0.
Since 1,(t) = pqu(t) — pge~tTaug — ¢, (t) and

N, Ny
Y pg=wo+ > pg=1,
q=0 q=1

can be replaced by
Ny
pii(t) = V- DV | u(t) = > y(t) | =pii(t) — V- DVu(t)
qg=1
Ny
+V- DV(Z(@CJ“@) — pge " Trug — Cq(ﬂ))
q=1
N‘P
=pii(t) — V- DV (1 -y (pq> u(t)
q=1
N
—V-DV ( Z(‘Pq‘f—t/TqUO + Cq(t)))
q=1
—pii(t) — V - DV pou(t)
Ny
= VDV Y (pgeMrug + Gy(t))
q=1
=f(t)
and (2.1.7) yields
N, N,
DV | gou(t) + Y )+ Y e ™ug | -n = gn(t) on Ty. (2.1.19)
q=1 q=1
Thus we have the alternative weak formulation
Ny
(pii(t),v) 1, () + poa(u(t),v) + Z a(Cq(t),v) = Fy(t;v) (2.1.20)
q=1
for all v € V where
a(w,v) =(DVw, Vo)L, q),
No
Fy(t;0) = (f(1),v) 1y0) — Z pqe”Ta(ug, v) + (gN (£), V) Ly(ry)s
q=1
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but also we have for each ¢ =1,..., N,

a(yCy(t) + Co(t),v) = a(Typqu(t), v). (2.1.21)

Consequently, we obtain the weak problem of velocity form:

(P2) Find u and {(,}, “"1 such that for all v € V'

(pii(t),v) () + poalu(t),v) + Z a(q(t) Fy(t;v),

Tqa(éq(t)vv) + a((q(t),v) = chpqa(u(t),v), Vg=1,..., Ny,

with 1(0) = ug, ©(0) = wp and (4(0) =0, Vg=1,..., N,.

In a similar way with Theorem it is able to observe the stability bounds for
(P2). In other words, a weak solution for (P2) is bounded by given data such as initial
conditions and boundary conditions.

Lemma 2.3. Suppose the weak solution v € H?(0,T; L2(Q2)) N HY(0,T;V). Then it
holds

Ny .,
E )2 0 + S ) + > | atcuey.iyar

t
p .
=5l woll 7@ +7HUOHV /OFv(t’;U(t’))dt’

for any t € [0,T].
Proof. Put v = u(t') into (2.1.20). Then we have

(VRIS

d wo d
N2 ) + 222 ||V+Z G Fy(t5idt).
Integrating the equation from 0 to ¢ with respect to time, and using the initial condition,

PO ) + 2 lult) sz / (Gl#"), i)t

t
P 0 .
=Sl oy + Sl + [ B i)y
O

Lemma 2.4. For any q € {1,..., Ny}, assume that (; € H*(0,T;V). Then we have

2/ (Gl >dt—2 It HV+Z/

fort €10,T].

t)|5-dt’
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Proof. For each g, set v = (4(t') and substitute it into (2.1.21)), then it yields

5 dt,IICq( IV + 16t = mapqala(), C(t)).

Taking into account the integration of this equation, by zero initial condition,

TqHCq(t)H%/JF/ HCq(t/)H%/dt/:/ Tapqa(tn(t'), C(t'))dt!
:>Z/ a(Cq(t'), un(t Z< 1G4 (t) /0 quq

<mw0.

O]

Theorem 2.3. Assume u € H%(0;T; Lo()) N HY(0,T;V) and {; € HY(0,T;V), Vq €
{1,...,Ny}. Then a weak solution to (P2) has the stability bound such that for some
positive C

2 a(t)I ) + num+2 mam+2/ G

2 . 2
SCOWﬂZ@+WM@+AHﬂﬂmﬂwﬁ+AHm@N@@mﬁ/
+lax O e+ v Ol )

for any t € [0,T].

Proof. From Lemma [2.3 and [2.4] we have the equality such that

2 a(t)I ) + num+2 Ma%+2/l@lwt

t
HonL2 +7||UOHV /OFu(t’;ﬂ(t'))dt’- (2.1.22)

Recall the definition of F},. Then,
t t
| Fasanar = [ 1(0.0) )+ 03,0 raie)
N‘P
- Z goqe_t,/”fa(uo, u(t'))] dt’
q=1

:/0 (f@, u(t/))LQ(Q) dt' + (g (1), u(t) Lo(ry) b5
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- /0 (G (1), u(t')) oy

N«p / / ¢ NLP QO /
=" paet rafun, )= _/ S 28 e g, ()t
q=1 0 o= 7T

(by integration by parts),

t t
< L1 iy VO ey 0+ [ 10y IO 07

t No Ne
Pq —t' -

+ [ 2 ol () + 3 el )

0 g=1 q q=1

N‘P

2

+ Z@q luolly + lgn ()l Ly oy 1wl Ly y)

q=1

+ lgn (O] £y o) 1wl Ly
(by Cauchy-Schwarz inequality),

t t
S/o Hf(t/)HLQ(Q) Hi‘(t')HLQ(Q) dt/+/0 HQN(t/)HLQ(rN) H“(t/)HLQ(FN) dt’

t No

2 2

T /0 > £ ol )] -+ ol el -+ ol
q=1

+ HgN(t)HLQ(FN) Hu(t)||L2(rN) + ||9N(O)||L2(FN) ||U0HL2(FN) (2.1.23)
Ne

(since 0 < Zgoq <land 0<e ¥ <1, Vt>0,Vq€ {1,...,Ny}).
q=1

Moreover, by (2.1.13]) and Young’s inequality, we can obtain
t 1 [t ) 1 [t ) Ne oq [t )
/. - / / / / . / / /
/O Fy(t'sa(t))dt <2/0 £ Ly +2/0 ()], 0 ¢ +§:127q/0 luolly, dt
q:

N,
238 [+ S [ @l
e 274 Jo 1% 2 Jo Ly(T'w)

+ S [l + 5 ol + 5 o)1 + ol
0 €a

C Ce C C
+ 5 ||9N(t)||iQ(rN) T ()| + 5 ||9N(0)||%2(FN) ) luoll3 .

for any positive €, €, and for some positive C. If we choose € = ¢o/(4C) > 0 and
€qa = @o/4 > 0, then



Hence (2.1.22]) implies

("3 at’

5 1a(OZ, @) + 7 u(®) HV+Z ot llv+Z/

< ol + 2 ol + /Hf Wit + 3 /Hu Mo

n,a t
ﬁ 2 / ﬁ NI ’ g . NI ’
+q§;27q/0 o2 dt +q§;27q/0 ()2 dt' + 2/0 PG

c ; , C 1 2 C 2

# 5 I+ (14 S 5 ) Bl 4 5 o O
c C

+(5+ 5 ) IOl -

In the end, it is shown that
P 2 $0 2 - 1 [t 1
5 a7, + 5 @y + G () + / I1Go ()1t
9 La() T 4 1% ;2% a\")llv ; 0 TaPq q v
2 2 ! NI ’ ! 2 g ! NI
<0 ool oy + olfy + [ NNy '+ [ ol + [ o @) o

w2, + ng)uim)

with applying Gronwall’s inequality with respect to \|a||i2(m and Hu||%/ terms. Since ug
is independent of time variable t and t < T,

*IIU()HMQ (Pollu ”v+z IICq HV+Z/ IICq )yt

<C (o + ot} + [ 15O+ [ NowOI i,

w2, + HgNu)H%Q(rN))-

O]

In Theorem we use Gronwall’s inequality for the stability bound hence the pos-
itive constant C' increases exponentially in time. In a similar way with Theorem we
consider stability bounds in L, norm in time for (P2) so that we improve the constant
C such that even increases but not exponentially in time.
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Theorem 2.4. Suppose u € WL(0,T;L2(Q) N Loo(0,T5V) and {, € HY(0,T;V),
Vg e {1,...,N,}. Then we have the stability bound as for any t € [0,T]

Ny

P2 800
2 12 0.snaey) + 7 llZ 0.y +Z ||Cq HV+Z/

SC( lwollZ, () + luoll + HfHLQ(O,T;Lg(Q)) + 19N 130 7Laray + ”gN”Loo(O,T;Lg(FN)))'

t)|I5-dt’

Proof. As following the proof in Theorem recall (2.1.23)). Then we have for any
0<t<T

T T By PO P

/ Z*"q laolly lu(@)ly @2’ + luolly @)y + ol
=1

+ Cllgn Ol L,y ey + C llgn O L,y 1wolly

with positive constant C by (2.1.13). Taking into account L., norm in time and a
property of integration, it yields

¢ T
/0Fv(t/;'a(t/»dt/S”uHLOO(O,T;LQ(Q))A Hf(t/)HL2(Q)dt/
T
. / /
+CHU||LOO(O,T;V)/O HgN(t)HLQ(FN)dt

v T
¥ 2
+ Z ?q HUHLOO(O,T;V)/O Juolly- @t + [luolly- lull . .71y + lluolly-
g=1 1

+ Cllanll Lo 0.7:L000) 1l Lo 0,10y + C 9N Log (0.1 Lo (T )y 120l -

Then Young’s inequality allows us to obtain

t ) 1 2
/0 Fy(tu(t))dt’ EQHUHLOO 0T3L2() T 5 (/ | £ HLQ(Q) dt,)
C’eb C .
+ HUHLOO(OTV) + 2%, </0 HgN(tl)HLQ(FN) dt,)

AP

oo [ 1 5 € 2

n 2 pgal (2 luolly, + Eq HUHLOO(O,T;V)>
=1 11\

C’ed

2

1 2 | € 2
+ — lluolly, + = Il omvy + = HUHLOO(OT V)
2¢€. 2

C 1 2 C 2
+ S (14 D) vy + (1 + ) ol
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for positive €4, €p, €, € and {e;}. Recall (2.1.22]), we have

@0
P a0 + 22 N uv+Z e HV+Z / )2 dt’
1Y 2 ("2ly] 2 t
! . ! !
=5 ol + R ol + [ i ar,
hence
p
P )3y + 52 HV+Z I HV+Z / )|t

2
P 2 %o 2 | €a .2 1 / /
<5 lwollZy @) + 5 luolly + 5 IllZ oz + 5 ( /0 17z dt)

c 1 L © 2 C ! 2
1 — 2 % — in(t dt’
L R q—z; 2e, 7y ) 100+ 5 (/0 I Ollien >
C 1 2
+ Bl (1 + €d> HQNHLOO(O,T;Lz(FN))

Ce € Ce Te
o e d+z 1%
Tq

2
5 Hﬁhwwij

for any ¢ € [0,T]. Suppose
p

Ea:6>0’

eb:;;—oc>0

602%>0

ed—zj—oc>0

eq=24$3\%71>0 Yge{1,...,N,},
then it is able to observe that

Thus we have

2 ae) 13 0y + 2 e HV+Z -t HV+Z /

)13 dt’
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p 2 2
< DI - AT —_rq
=5 lwollZ, ) + | 1+ 5 T T %, + E 2eq 74 [[wolly
b ([ 1) + S ([ @)
2¢q \Jo La() 2ep, \ Jo gN Ly(T'N)
C

1 2 P2 ¥0 2
ta (1 + ed> 9N 1% 0,7 2ny) + 15 1l 0750 00)) + 15 1l 0,7v) -

Now, let us consider the essential supremums then we have

Py $o
S 1llZ 0 7200 + 5 lullZ owﬁz HCq HV+Z/ - 6 ()3t
Tq¥Pq

p 2 C  vo T ¢4 2
§3<2llwollL2(m+ 1+ +—+—+Z—f luoll},

2 268 26(1 Tq
1 r 2 C 2
T %, (/0 Hf(t/)Hh(ﬂ) dt/> + % </0 "QN(t/)"LQ(FN) dt’)

C 1 2 P o2
t5 (1 + Gd) 9N W7o 0,750 n)) T 12 Iall2 o 0,7;22(0)) + 12 ”“HLOO 0,13V)

Thus, by subtracting § ”uH%w(O,T;LQ(Q)) and % Hu||%oo(07T;V), there exists a positive con-

stant C such that
No

Py 0

Pl . oirizatay + 22 M0l o + Z 0 HV+Z /
) ) T 2 T

SC(”wo”LQ(Q)"‘HUOHV+</0 Hf(t/)HLQ(Q)dt/> +(/0 HgN(t/)HLQ(FN)dt/>

2
+ ||gN||Loo(0,T;L2(FN)) )

t)|3-dt’

2

SC( HUJOH%Q(Q) +[luoll} + T ”f”%g(O,T;LQ(Q)) +T HgNH%Q(O,T;LQ(FN))

2
T 9N 7 0751200 0)) )
(by Cauchy-Schwarz inequality)

2 2 2 . 2 2
SC( lwoll7, ) + lwollv: + 12, 0.7:202)) + 1IN Lo 0.7:1500)) T ”gN”LOO(O,T;LQ(FN)))'
]

Theorem and lead us to have stability bounds for (P2). In particular, The-
orem is proved without Gronwall’s inequality hence our weak solutions are bounded
by data with non-exponential increased in time.

For the both formulation, we are going to use CGFEM for spatial discretisation and
so we recall Chapter 1.4. In the next section, we introduce the semidiscrete formulations
and observe the stability bounds and error bounds.
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2.2  Semidiscrete Formulation for CGFEM

Let us define V" such that consists of continuous local basis functions with respect to
Lagrange finite elements[I1]. Hence we can define V" C V with its global basis functions

N,
{(I)i}z‘:vlh by

VP =span{®; | 1 <i < Nyn}NV

where ®; is a continuous piecewise polynomial of degree k € N, Vi € {1,..., Ny»}. In

this section, we approximate the solution wu(t) to (2.1.1)-(2.1.5) by wup(t) which belongs
to the finite dimensional space V" for all ¢ > 0. Also, we should consider the internal

variables.

2.2.1 Displacement Form

Using the global basis functions, for any function v € V", v can be expressed as

Ny
v(@) =Y vdi(),
=1

for v; € R, Vi € {1,...,Nyn}. In this sense, the approximate solution and internal

variables for the displacement form (P1) are given as

Nyn

up(,t) = Y ui(t)®i(x),

=1

NVh
¢hq(ma t) = Z ¢hq,i(t)@i($)a
=1

which satisfy

Ny

(Pin(0)0) 0y + ) = 35 ana(),0) = Falt0),

T4 (@Z}hq(t), v) +a(q(t),v) = @qa(up(t),v) Vg=1,...

a(up(0),v) = a(ug,v) ,

(@4 (0),v)py ) = (w0, v)py ()

for any v € V" and with ¢,,,(0) =0, Vg € {1,..., N,}.

(2.2.1)

(2.2.2)

(2.2.3)
(2.2.4)

In order to obtain the solutions, we should determine the degrees of freedom u and

g, for each ¢ where

N,

u(t) = (WO, Prg(t) = (nga(t)ny".
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Put v = ®; into (2.2.1) for i = 1,..., Nys. It implies the second order ODE system such
that

N‘P
pMi(t) + Au(t) — 3 Ay (t) = (), (225)
q=1
where the mass matrix M and the stiffness matrix A are defined by for ¢,5 = 1,..., Nyn

MU = (q)]7 QZ)[Q(Q) 9 AZ] = a(@ju q)l)a

and Fl(t) = Fd(t;q)i) for 1 <i< Ny
Remark Since V" C V, a(-,-) is coercive on V" by Lemma

Theorem 2.5. The mass matriz M and the stiffness matriz A are symmetric positive
definite. Thus, they are invertible.

Proof. Note that Ly inner product and the bilinear form a(-,-) are symmetric hence M
and A are symmetric.
Let v € R¥v". Then

N, N, N,

vh vh Vvh
yTMQ = Z UjMij'Ui = Z ’Uj (q)j, (I)Z)LQ(Q) Vi = Z (Uj(I’j,Ui(I)i)LQ(Q) = HUH%Q(Q) Z O,
ij=1 ij=1 ij=1
NVh
where v = ) v;®; € V. By the norm axiom, vTMv = 0 if and only if v = 0. Thus M
i=1

is symmetric positive definite and hence M is invertible.
On the other hand, a(-,-) is coercive, so

th th th
vT Ay = Z vjAiv; = Z vja(P®j, ®;)v; = Z a(vj®;,v;®;) = a(v,v) > /{||U||%{1(Q) >0
i,j=1 1,j=1 4,j=1

for some positive constant . It implies that also vTAv = 0 if and only if v = 0, therefore
A is symmetric positive definite and so invertible. O

Turning to the semidiscrete formula, and invertible A yield
Tang(t) + Png(t) = pqu(t) (2.2.6)
for each ¢ and and provide the initial condition by solving
Au(0) = Up, Mu(0) = Wy

where (Up)i = a (uo, ®;) and (Wo)i = (wo, ®i)p,(q) for i =1,..., Ny». Without dealing
with many details in terms of solving second order ODE system, since M and A are
invertible, and initial conditions are given, this system can be solved uniquely(e.g. see
[57] in detail for the theory of ODEs).
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Theorem 2.6. (Stability bound for the semidiscrete solution of (P1))
Let up, and {whq}é\f;"l be the semidiscrete solution of (P1). For anyt € [0,T], it holds

P . 2 2
S len 7,0 ||uh MY+ [¥nq(D)ly
2 2(2) Z < 4p2N, + 2004

Ny
+ qz:; 9%1 /0 H%q(t/)

t t
< (ol + Il + [ IO o+ [ N,

!/

Fllan @I + lon O, o) )

for some positive constant C' which is independent of the weak solutions but depends on
the domain, its boundary and the time.

Proof. Since V" C V., the proof of Theorem follows that of Theorem In the
proof of Theorem there is the initial condition such that u(0) = up and @(0) = wy
and so we use it. However, u(0) # ug and u5(0) # wo hence we cannot replace uy(0)
and u5,(0) by up and wy, respectively. Note that (2.2.3]) and (2.2.4)) imply that

[un (0[5 = a(un(0),un(0)) = a(ug, un(0)) < [luolly lun(0)]y

in(0)[1 7,y = ((0), @ (0)) 0y = (w0, @ (0)) 0y < lwoll 0y 16 (0] 0y

by Cauchy-Schwarz inequality with taking v = uy(0) and (0), respectively. Hence we
have [u (0]l < lluolly and n (0], q < lwol 1, gy Therefore,

P . 2 2
C a0z, @) + 5 Tt HV+Z g T pwend LU0l

+ZTq/ Hwhq

t t
gCO%@ﬁmﬁW%®%+AWWW;mW+AWWWMmMW

a2, 0y + |rgN(o>||i2(rN>>,
t t
2 . 2
§C<||wo||%2(9)+|’uo||%/+ LIS oyt + [ ot

w2, e+ HgN<o>HiZ<FN>)-
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Here, the constant C is given with using Gronwall’s inequality so that it increases
exponentially in time. We can improve this as shown in Theorem [2.2] with based on L
norm in time.

Theorem 2.7. Suppose up, and {whq}qu:“"l are the semidiscrete solution to (P1). In
addition, we assume that u, € WL (0,T; La(Q)) N Loo(0,T; V), and Yng € HY(0,T; %48}
Vg e {l,...,N,}. Then we have the stability bound as

No

Py 2 0 2 %0 2
1 HuhHLOO(O,T;Lg(Q)) + ) HuhHLoo(O,T;V) + qz 4%]\, [¥nq(B)]5-

+ 2004
- Tq Y /
+ 3 2 [ inatt)
gq=1 qJO

SC( lwollZ,0) + lwollyy + 11Ty 0.0y + NN NE e 0.7 Larw))

s 2
T 1IN Lo 0,712 00 > :
for any t € [0, 7.
Proof. As follows the proof of Theorem our claim is shown with the facts,

[an (0)]l Ly () < llwoll py ) and [[un(0)lly < fluolly -

In other words, we have for any ¢

P . 12 $0 2 $¥0 2
ZHuhHLm(o,T;Lg(m)+§HuhHLw(o,T;V)+g4¢3N 2000 [nq (D)l

N, ;

Tq i !

+ / H%Z)h (t)
q; Pq Jo I

C( ”uh(O)H%Q(Q) + [lun(0) 13, + HfH%Q(o,T;LQ(Q)) + HgNH%OO(O,T;Lz(FN))

.2
#1000 )
2 2 2 2
SC( ||w0||L2(Q) + |luolly, + ”fHLQ(o,T;LQ(Q)) + HgNHLOO(O,T;LQ(FN))

+ HQNH%Q(O,T;LZ(FN)) ) '
O

We proved the stability bounds for the semidiscrete formulation of the displacement
form with/without Groiiwall inequality. It is observed that our semidiscrete solution is
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bounded by the given data so that it is sufficient to show the existence and uniqueness
of the solution. In a similar way, we can derive error estimates. First of all, recall the
elliptic projection R in Chapter 1.4. Let us define notations as following

0 = u— Ru,
Vg = g — Ripg, Vg € {1,..., Ny},
X = up — Ru,

Sq = Ung — Ribg, Ya{1,..., Ny},
where R is the elliptic projection operator such that satisfies for w € V'
R:V = V" by a(Rw,v) = a(w,v), Yv e V"
By the elliptic orthogonality, a(f,v) = 0 and a(¥,,v) = 0, for each g, and Vv € V.

Lemma 2.5. For any w(t) € V and w(t) € V,

gt(Rw( t)) = Ruw(t).
Proof. Let w(t), w(t) € V. By definition of elliptic projection, for any v € V"
a(w,v) =a(Rw,v) and a (w,v) = a (Rw,v).

Consider time differentiation,

0
at”

a (w,v) /DVw Vo d)
= [ = (D . ds)
/Q 8t( Vw - Vo)
(by Leibniz’s integral rule)
0
=[ = (D -V dQ
/ﬂ o (DVw)- Vo
(since v is time independent)

—/Dvw-Vde
Q

(by Leibniz’s integral rule)
=a (w,v)
=a (Rw,v) .

On the other hand,
=D a(Ru,v)
0
/ 5 (DV RwVv) dS2,

pric a(w,v)
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(by Leibniz’s integral rule)
—/ Q(DVRU})V’U s,
o Ot
(since v is time independent)

_/ DV <8Rw> Vo df,
0 ot

(by Leibniz’s integral rule)

0
=a ((%Rw, U> .

0 . 0 .
a <atRw,v> =a(Rw,v) = a (me - Rw,v) =0.

Hence for any v € V*,

Moreover, %Rw, R € V" s0 %Rw — Rw € VP, Tt yields

2

ng — Rw

>0
ot -

Oza(aRw—Rw,aRw—Rw> > K
HY(Q)

ot ot

by coercivity. It implies %Rw — Rw = 0, therefore we can conclude

0 .
aRw = Ruw.

d

Lemma 2.6. Suppose u € H?(0,T; L2(Q))NWZL (0, T; H¥(Q)). We can observe that for
the semidiscrete formulation of (P1) with x(t) = up(t) — Ru(t),

10 oo 0.7 L)) + XN Lo 0,71y < CRR L)1

and if elliptic regqularity provided,

HX”LOO(O,T;LQ(Q)) + HXHLOO(O,T;V) < O pin (k+1,s)

where C is some positive constant.

Proof. By subtracting (2.1.11)) from (2.2.1)), we have for any v € V"

(p(iin(t) = @(t)), 0) () + alun(t) —ult),v) =D alvng(t) = vg(t),v) =

Since

un(t) —u(t)— = (un(t) — Ru(t)) — (u(t) — Ru(t)) = x(¢) - 0(t)



and

¢hq(t) - z?q(t) = (whq(t) - R¢q(t)) - (1/1q(t) - R¢q(t)) = gq(t) - ﬁq(t)y Vg=1,...

the equality yields

Ny
P (), 0) 1y ) + alx(D),0) = 3 alsy(t), )
q=1

Ny
—p (é)’(t), v) iy H(60)0) q; a(¥(t),v) (2.2.7)

for any v € V", In a similar way, from (2.2.2)), we can also have

a(TgSq + Sq V) — pqalx, v) = a(TqU5 + g, v) — pqa(0,v) (2.2.8)

for each ¢ and for any v € V. Put v = x(t) into - to get
N

P (R0, X(8)) 1,0 + alx (D) X(8) = Y alsq(t), X(2)

qg=1
NHP
= (H0), %), +alb(0),x(0) - > alta(0.X0)
Integrate with respect to time to obtain for 0 <t <T

Ny
2 (IO ) ~ KON 09) + 5 (IO = IOF) - > [ttty e

Ny
=2 (KO @) ~ KON 0)) + 5 (K@~ IxO)IF) - g

B /ot (p (é(t/)’ X(t,))Lg(Q) +a(0(t), X()) — Z a(dq(t), X(ﬂ))dt'- (2.2.9)

Next, if we choose v = ¢,(t) in (2.2.8]), we obtain

a(x(D), (1)) = —almaat) + sa(t), <g(8)) — —almyDy(t) + 0g(£),y(8)) + al6(2), (1))
Pq Pq
and integration over time gives

t / / / q / 1
/0 a(x(t'), & (t))dt / 6o (8|2 dt +2—%
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t 1 Y, /
[ (= St + 004,00 + b4, )
(2.2.10)

for each ¢q. Hence, substitution of (2.2.10)) into ( and Galerkin orthogonality imply
that

L IOl + 5 I HV+Z ol HV+Z / @)l d
N

@

=L IO}y + 5 IO + Za<<q<t>,x<t>> -3 als )+ Z* lsa(O)11%
q=1

q=1
t
o), x(t dt'.
+ [o(iriw),
More precisely, Galerkin orthogonality gives the following facts,
a(B(t'), X(t') = 0, a(¥(t'), X(t') = 0, a(rgdq(t') +9q(t'), (") = 0, a(B(t'), (1)) =0,

for any s, Vg € {1,..., N,}. Moreover, since ¢;(0) = ¢54(0) — Rt)¢(0) = 0 —0 = 0 for

each ¢ by initial conditions, we have

£ IO 0 + 3 (0 HV+Z o HV+Z/ )] at

=LIXO) B ) + 3 IO + Z ol x®)+ [ o (0)50),  ar.

Note that (2.2.3) and elliptic projection lead
a(ug,v) = a(up(0),v) and a(Rug,v) = a(ug,v) Yo € V"

so that
a(up(0),v) = a(Rug,v) and a(up(0) — Rug,v) = 0 Vv € V.

Thus,
IX(0)[I = a(un(0) — Rug, un(0) — Rug) =
since uy,(0) — Rug € V". On the other hand,

1%(0)17,() = (2 (0) = Ruwo, i (0) — Rwo) 1,
= (4n(0) = Rwo, wo — Rwo) () »

< [@n(0) = Ruwoll 1,0y [lwo — Ruwoll 1, ()
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= [X(0) ey ||910)]

i

Ly ()
since ({2.2.4) satisfied hence [[X(0)|1,q) < "Q(O)IILQ(Q). As a result we can obtain

No

3 IR0+ 5 X + 2 5 ) |rV+Z / © [t a

N,
2 i t ..
. /
0|, 0 * §qu alsy(8), x(8)) + /0 p(0.X), ot

With applying Cauchy-Schwarz inequality and Young’s inequality, we have

P IO,y + 5 I ||V+Z e ||v+Z / o)
s%”e‘(o)“ +Z€q\|x IIV+Z sl + /tp“é(t’)

s
<2llg
2

Q) X 1, 0 At

for positive constants {eq} forg=1,...,N,. In a similar way with the previous proofs,
choosing €; = ¢4 + 557~ prov1des
1 1
€q ¥0
= = = d——— ———————>0forqg=1,...,N,
2 L2 20 2¢, 42+ N,+ 0o 1 v

q=1

so that

L IR oy + 22 (1) HV+Z42+N — st HV+Z/ )l a

<G o+ [ ol

Taking into account the Lo, norm in time with Young’s inequality on right hand side,

o IO

Ny
P - ¥
2||x<t>||i2(m+j|rx<t>|r%+q24 e I HV+2/ ()]l d

6(0) ;(Q) + /Otp Hé(t’)

Lo (92
2 T 1/2 T .

! !
ot ) () o

o)’ o VT

L2 (Q

IN

) dt’ HXHLOO(O,T;Lz(Q))

) 1/2
) .
o) dt > XN o 0.7:20(02))

IN
NI NI NI
e
—
=

HXHLOO(O,T;LQ(Q))

Lo (0,T; Lo (Q
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=1 Cles—

L2(0,T;L2(2))

P
9 X Lo (0,1522()) -

with a positive constant e. If we set ¢ = % and consider the Lo, norm in time with
respect to [|X(t)[| 1,y and [|x(t)[| on the left hand side, it is given that

P2 800 0 2
1 HXHLOO(O,T;LQ(Q) ”XHL(><> 0,T;V) +Z490q _{_7]\, T 20 a1y
Ny 4 )
D A DI
=170 ¥a
3p H . 2
<2 ||éco)|| -+ 907 | ’ .
2 (0 L2(Q) P L2(0,T;L2(%2))

Consequently, ((1.4.8)) leads us to have

He(o)‘ HH‘ < Chmin(k—l—l,s)—l

Ly(Q) Lo(0,T;La () —

so we can conclude
Pyn2 800 %0 2
1 HXHLOQ(O,T;LQ(Q) HXHLOO 0,T;V) +Zm lsq@1ly

Ny t - )
+30 [ fete) ar
=170 Pa

SCh2(min (k+1,s)—1)

)

for some positive constant C'. Furthermore, if elliptic regularity is satisfied,

Ne
P2 900 0 2
ZHXHLN(O,T;LZ(Q) ”XHLOOOTV +Zm”§q(t)uv
No oo )
=30 [ e ar
SC'hZ(min(k+l,s))7
since . ) .
50 P =007,
La(Q) L2(0,T;L2(R))

Therefore, we can show that

X0 1. 032002 T IX ] Lo 0.0y < CRMIR BT
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and if elliptic regularity provided,

X1 2. (0,7 200 + XNl Lo 0.7y < CR® (k+1.9)

for some positive constant C'. U
Theorem 2.8. Suppose u € H2(0,T; Lo(2)) N WL (0,T; H(Q)). Then

< Chmin (k+1,8)—

. . in (k —
lu = unll o) < Yand i — il 10y < CHMEFLITL

Furthermore, if elliptic reqularity is given, we have

||U _ uh”LOO(O,T;LQ(Q)) < O pmin (k+1,s)_

Proof. By triangular inequality, we can derive

lw —wnllpo.rv) = llu = Ru— (un — Ru)|lp_orv) = 10 = Xl L 0.1v)

<101l oo,y + XN Lo 0,137
SChmin (k+1,8)—1

for some positive C' as following Lemma and (|1.4.8)). In this manner, we can also
obtain

=l o1y = = B = G = Rl oz = [0 4], _os

< HGHLOO(O,T;L2(Q)) + ||>‘<||LOO(O,T;L2(Q))

SChmin (k—l—l,s)—l’

and if elliptic regularity is satisfied, ((1.4.9) leads

HU N uhHLw(QT;LQ(Q)) SChmin (k+1,s)

for some positive C. O

For the finite dimensional space V", we can derive the semidiscrete solution for the
displacement form by solving the second order ODE system. By theory of ODEs and
the stability bounds for (P1), we solve the ODE system uniquely. Also, we can observe
the error between the exact solution and the semidiscrete solution in Lo estimates and
H'! estimates in space with using elliptic projection but without Gronwall’s inequality.
In this manner, we are going to deal with the velocity form.
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2.2.2 Velocity Form

In a similar way with the semidiscrete formulation for (P1), the semidiscrete formulation
for (P2) is as follows: Find uy(t) € V* and (py(t) € V" for hq = h1,h2,...,hN,, and
for 0 <t < T such that for all v € Vh,

N
(piin (1), v) 1, ) + poalun(t), v) +q§1 a(Cug(t),v) = Fy(tv),  (2.2.11)
@ (Gng(8),0) + alGral®)v) = Taspqa (in(2),0), (2:2.12)
a(up(0),v) = a(ug,v), (2.2.13)
(@r(0),0)y ) = (W0, )1, (2.2.14)

with (4(0) = 0. Hence our approximate solution uy(x,t) and {Chq}é\;“"l can be written
as

Uh(wat) = Z ui(t)q)i(m)a Chq Z, t Z Chqz

for each ¢ and we have u(t) = (ui(t))]\ivh and (pq(t) = (Chq,i(t))ij\i‘i for each ¢. From

these results, (2.2.11)-(2.2.14) yield the following second order ODE system

,OMil(t) + 9001411 + Z A(hq E )

quhq( ) + 7hq(t) = Tgpqti(t), for each g,
Au(0) = Uo,
Mu(0) = Wo,
Cng(0) = 0, for each g,

where (F(t)); = F,(t;®;), and with Cng(0) = 0, Vt. Note that we know the mass
matrix M and stiffness matrix A are invertible and the theory of second order ordinary
differential equations allows us to have the existence and uniqueness of the solutions [57].

Theorem 2.9. (Stability bound for the semidiscrete solution of (P2))
Let up, and {Chq}év;pl be the semidiscrete solution of (P2). For anyt € [0,T],

L im0l + 52 HV+Z - 1) HV+Z e

<(woll o+ boll + [ 15Oy + [ 1o O

v O, 00 + HgN(t)HiQ(FN))

for some positive constant C' which is independent of the weak solutions but depends on
the domain, its boundary and the final time T.
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Proof. The proof follows Theorem since V" C V but uy(0) and 1,(0) should be

dealt with more carefully here since up(0) # ug and uy,(0) # wy. Taking v = uy,(t) into
(2.2.11)). Then we have

Ny 4

Py - 2 .

Sl (Ol oy + Sun I+ [ ala(®).in(e)ar
q=1

t
Py . 1% .
= 5”1%(0)“%2(9) + ?OHUh(O)H%/ —I—/O Fy(t/;Uh(t,))dt, (2.2.15)

with integration. As following the proof of Theorem [2.3]in exactly same way but u and
(q are replaced by uj, and (pq for ¢ = 1,..., Ny, (2.2.15) yields

L lan (@)l 700 + 5 llun(®) HV+Z 161 (8) HV+Z / —Hchq )| dt

t
. 2 . 2
sc<uuh<o>uim)+Huh<o>r‘é+uuoua+ L IOyt + [ oI, o
Hlan Oy + lox O e, )
for some positive C. Recall the facts that

[2n (0} L, () < llwollzy ) and [lun(0)]ly < [luolly -

Therefore,
i ()1, o + 52 (0 ||V+Z - i) HV+Z / Gl e

2 . 2
gc(uwouizmﬁuuorr% / G / law @)
law O 2, o + lan Ol )

O]

In Theorem we used Gronwall’s inequality so that the constant C' increases ex-

ponentially in time. However, we can also obtain the stability bound without Gronwall’s
inequality.

Theorem 2.10. Suppose up, € WL (0,T; L2(Q)) N Loo(0,T5V) and (g € HY(0,T; V),
Vg € {1,..., Ny}, which are the semidiscrete solution to (P2). Then we have the sta-
bility bound as

P 12
1 [anll7 o (0,75 L2(2)) T+ HuhHLoo or1v) T Z ’Chq )|+ Z/ t)|3-dt’
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2 2 2 -2 2
SC( lwoll 7, + lwolly + 117, 0.7:00)) + 198175 0.7:00000)) F 1IN 0750000 )»
for any t € [0,T].
Proof. In a similar way with the proof of Theorem since

[2n(O)| Ly 0) < llwollz, (@) and [[un(0)]ly < lluolly

we have

Py 2
ZHuh”Lm(o,T;LQ(Q ||UhHLOO OTV)+Z ”Chq ’v+2/ ||<hq Hvdt

<O ( Nin )17, 0 + Nan ()1 + ol + 1F1Z 0752000 + 1331 Es 075200
+ ”gN”ioo(O,T;[Q(FN)) )
<O NlwollZy e + luolly + 112y 0,120 + 19N 1 Zo0.1:Lorny + 19817 0 1:Lo 0wy )-

O]

As shown in Theorem we proved the stability bounds for semidiscrete solution
to (P2) without Gronwall’s inequality hence also the constant C' in Theorem does
not exponentially grow in time.

In order to consider the error bounds for the semidiscrete formulation of (P2), we
shall define

0 =u — Ru,
vg=Ce— R(y, Vge{l,...,N,},
X = up — Ru,

Ty = Chg— R, Vge{l,..., Ny},
ep=u—up=0-—x,

where R is the elliptic projection operator.

Lemma 2.7. Suppose u € H?(0,T; L2(Q)) N WL (0,T; H*(Q)). Then we have
X012 0.7:2200)) + X0,y < ORI

and if elliptic regqularity provided,

Xz (0,T5L2(92)) + Xl OTV)<Chm1n(k+1s)

where C' is some positive constant.
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Proof. Subtracting (2.1.20) from ([2.2.11]) gives us for any v € V*

p(X(t),v) ()+<POG

=p (H(t), v) + poa (0

ﬁ;

s (2.2.16)
so if we take v = in m ) then
N
p(R(0), X(8)) 1) + 00 (X(1), X () + Y a (Xy(t), X(1))
q=1
. Ny ()
=0 (60 30),  + 00 00X+ D a((t).%(1).
q=1
—p (é(t), )'((t)>L2(Q) , (2.2.17)

because of Galerkin orthogonality,

a(0(t),v) =0, a(vy(t),v) =0, Vg e {1,...,N,},
for any v € V.
On the other hand, from the subtraction between (2.1.21)) and (2.2.12)), we have

raa (Tolt),v) +a (04(1),0) = 7pga (X(1),v)
= 74 (73(t), v) + @ (vg(8),v) = 700 (9(2).v)

for any v € V", Vg € {1,...,N,}. Set v = Y,(t) then

raa (Tg(0), Yy(8)) +a (Xy(t), To(1) = mypga (1), To(t))

=740 (24(), To(1)) + @ (v 1), V(1)) = Ty (08), To(1))
=0,

since

@ (24(8),0) = 0, a(vy(t),v) =0, a (B(),0) =0,
for any v € V* by Galerkin orthogonality. Hence we obtain
1

@ (040, %) = —-a (T4l Y1) +

OIS (2.2.18)
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Turning to the main proof, with integration of (2.2.17)) over time, using (2.2.18)) gives

t e/l Y / ! / Sy / oG tl v / / /
[ GO @ 40 [0 () 50)) 2 [ e (). 7o) a

N,
® t 1 5 .
M o LG

=3 (||><< Wy~ 5O iey) + 22 (I~ )17
+ 3 (ot - o)+ X [ L el

t .
- /0 (6. x(t)),
Note that and elliptic projection lead
a(up(0),v) = a(Rug,v) and a(up(0) — Rug,v) = 0, Yv € V.
so that
X113 = a(un(0) — Rug, un(0) — Rug) = 0.
Also, the initial condition (;(0) = 0 = (p4(0) implies
17403 =0, Vg € {1,..., N, }.
In addition,
1X(0)11Z,,0) = (A (0) = Ruwg, i, (0) — Ruo) (g

= (up(0) — Rwp, wy — RwO)Lg(Q) )

< [an(0) = Rwoll 0y lwo — Ruwoll 1, (q

= Ol |00,

since ((2.2.14) satisfied, then [[X(0)|1,(q)

applying Cauchy-Schwarz inequality and Young’s 1nequality, we can obtain

‘0 H . From these above results, with

Ny

R oy + 2 (1) HV+Z -1, ¢ ||V+Z /

T@M ) .

IO+ 5: [ O+ 5 [ IO
Sg Hé(o)‘ ;(Q) * 2¢ H9’ L2(0,T;L2()) * 2 HXH%‘”(O’T;LQ(Q))/O "
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(by Loo norm in time and for t < T)
<o,

-2
ET ||X||LOO(O,T;L2(Q)) ’

La() * o H ’LQ(O,T;LQ(Q))

for some positive €. Thus, if we take € = & and consider Lo, norm in time with respect
to [X()ll 1, ) and [[x(¢)[ly, on the left hand side, we can obtain

No
P 900
I o + 5 o + 3 Il HV+Z e 28
. 2
<7 o], + 907 ],
La () Loo(0,T;L2(92))

SChQ(min (k+1,s)—1) )

Therefore it is also true that

1N oo 0.7 L)) F 1] Lo 0,77y SCRP L)

If we assume elliptic regularity, we have

< Chmm (k+1,s)

Jéco) I

< Chmin(k—&-l,s)’ H ’

L2(Q)
for some positive C' and so

HX”LOO(QT;LQ(Q)) + HXHLOO(O,T;V) <Cpmin (k415

O]

From Lemma 2.7, we can show error estimates by using the properties of elliptic

projection (|1.4.8]) and (| -
Theorem 2.11. Suppose u € H?(0,T; Lo(Q)) N WL (0,T; H*(Q)) for s € N. Then

hmin (k+1,8)—1 k+1,5)—1

lu — uhHLoo(O,T;V) <C and || — uhHLm(O,T;Lz(Q)) < Chm

Moreover,
hmin (k+1,s)

e =l 010000 < C
if elliptic reqularity is satisfied.
Proof. Note that Lemma [2.7] gives us

HXHLOO(O,T;V) + HXHLOO(O,T;LQ(Q)) < O pin (k+1,s)—1

for some positive C.
By the definition and triangular inequality, we can derive

|u — uhHLoo(O,T;V) = ||u — Ru — (up — RU)HLOO(O,T;V) =0 — XHLOO(O,T;V)
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<18l o.m:vy + Xl L 0,70
<Chmin (k+1,s)—1

for some positive C by (1.4.8]) and Lemma In this same way, we can also obtain

= 7380y = i = R = (i = Rl o maiony = 04|, o

= HQHLDO(O,T;Lz(Q)) Il 07220

SChmin (k+1,5)—1

and if elliptic regularity is satisfied

HU - f[j’hHLoo(O,T;LQ(Q)) SChmin (k+1,s)

for some positive C' from (|1.4.9) and Lemma O

In order to solve the model problem numerically, it is necessary to introduce dis-
cretisation in time. For the next step, we are dealing with Crank-Nicolson finite dif-
ference method for time discretisation and so define fully discrete formulations for the
displacement form and the velocity form, respectively. In a similar way with semidiscrete
formulations, we will consider the stability and the error bounds.

2.3 Fully Discrete Formulation for CGFEM

We can obtain fully discrete forms when we apply finite difference methods in time to the
semidiscrete forms. A variety of finite difference schemes allow us to have various numer-
ical simulations with different convergence rates and stability conditions with respect to
time steps. Moreover, our numerical solution Uy, can be expressed as

th

Un(@,tn) = U = Y ul'®;(x),
=1

for t, = nAt, where At > 0 such that T'= NAt, N € N, forn =0, ..., N. With this in
mind, the fully discrete formulation is determined by Crank-Nicolson method. Suppose
W} denotes the approximation to first derivative in time at ¢ = ¢,, with the relation

w4 wp _ Ut —up
2 At )
Moreover, we will recall and use time average notation. For example,

f(tn+1) + f(tn) and % — gN(tn+1) + gN(tn)
2 gn = 92 )

(2.3.1)

F=
and for any v

- Fi(tns1;v) + Fy(tn;v)

F,(thaq; F,(ty;
FC?(U): 5 v( n+1a7}>+ v( n:'U)

and F'(v) = 5 .
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2.3.1 Displacement Form

(P1) Find u(t) and {¢,(t)}>% such that for all v € V

Ny

(pii(t), v) ) + alu(t),v) — Z a(y(t),v) = Fy(t;v),

q=1
Tga(tq(1),v) + a(thy(t), v) = pga(u(t),v) ¥g € {1,..., N},
with u(0) = ug, 4(0) = wg and 14(0) =0, Vg € {1,..., Ny}

With applying Crank-Nicolson method, the fully discrete formulation for (P1) can be
defined as follows:

Find Uy, Wy' and Vp € Vi forn = 0,...,N, Vg € {1,...,N,} such that for n =
0,...,N—1

Wn-‘rl —_Wn Un+1 Un N \I,n+1 + \I’ B
(R () S (),
t La(2) o

(2.3.2)
Pt -y p 4wy uptt oy
TqQ (thq,v +a qfq,v = pqa <h2h,v) , Vge{l,...,N,},
(2.3.3)
a(Up,v) = alug,v) , (2.3.4)
0
(Wh ’ U) La(Q) = (w(], 'U)LQ(Q) :
In a similar way with the semidiscrete formulation, we can derive
u’ = A7,
and if we set
Nyn
Wy = Z m?(bl(x)7 Z ‘Ith’L
i=1
we have
w' = MW,
Since A is invertible and Q?Lq =0,Vge{1,...,N,}, for n =0 (2.3.3) provides
1\ o1 u' +u°
—+ Uy, = . 2.3.6
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And (2.3.2)) implies

P 1 1 0
M —m)+ A Z CAY} = F + FY),

where (F™); = Fy(tn; ®;). From the relation ([2.3.1]), we have

_ A1 0y .0
= - -
and so (2.3.6]) yields
2
é (At(ul —uf) - 2m0> + A (u' +u)

(2.3.7)

(2.3.8)

and so
chp T, 1\ !

M R A u!

(At2 +2< 272 <At+2> > )u
N. -1

_2p 2p 1 SD‘Pq Tq 1 Lo 0

2P ar Bl /e (5 N & O (L R Al 2F 4+ F
=AM+ | Ap 2< qzlz Al T2 W G (E 4 EY).

Let us define the matrix A by

1 SR (T
A._2<1 ;2<At+2> A.

If the matrix At2 LM+ A is 1nvert1ble since w?, u® and F™ are known we can obtain u

1

Eventually, we can also derive ! and \Ilhq, Vg € {1,. w} by (2.3.8]) and - In
this manner, we can solve the following system for n = 1 , N —
2p |2 p
n+l __ M M M —
g <At2 * A) [At ot <At2 A)
N‘P

27, 1
7A‘lln - F7L+1 FTL
+q;27q+m *hq+2(f te )]

2
n+l _ n+1 n n
= — 1
" = t( —u") — 1
2At <27'q — At ©q

\Iln+1
2At

hq 27, + At

2
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(2.3.9)

(2.3.10)
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By ([2.3.9 m, our approximation solution can be computed. But we shall show the
matrlx M + A is invertible to solve 9) uniquely. In order to do that, we should
con81der the stability bounds. The resultlng linear system from - has the
existence and uniqueness of the solution by the stability bounds. It Would be dealt later
in detail.

From now on, we will consider the stability for —. In order to observe
the stability theorem, following lemmas should be introduced.

Lemma 2.8. For any m € N such that 1 <m < N,

m—1
PIWIM 3 L + ORI = W Ly + ORI + A8 > B (Wt + Wi
n=1
m—1 Ny
+ Z Za(\lﬂgf oy Ut — U,
n=0 g=1

Proof. Let v =W + W[ for 0 <n < m — 1. Then (2.3.2) yields

P n+1]|2 n2 1 n+1 n n+1 n
AL (HWh+ [P (1445 HL2(Q)> + Sa(Uy + U W™ 4+ W)
1Y
:Fé‘ (W}:LJFI—I-W}?) +§Za(\1!2;1 hqun+1+Wh)
q=1

By (2.3.1), we have

2
Wit W =

U = Up),

hence with multiplying At on both sides,
n 2 n||2 n 2 n||2
o (W11 — W1 ) + 035 = NOR I
NHD

=ALE} (Wit + Wit + > " a(Uptt + wp, Uptt — U,
q=1

Taking into account the summation from n =0 ton =m — 1,

o (IWi 70 = IWEI1 70 + 1031 = [[TR1

m—1 m—1 Ny
=AY Fp (WP Wi + )0 (Wt 4+ o, URT - U,
n=1 n=0 g=1

Thus,

m—1
PIWIr 3 + ORI = IWR e + ORI, + A8 Y F (Wit + W)

n=1
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[y

m—1 Ny

FY0 S alw g, U 0

n=0 g=1
U

Lemma 2.9. For any q € {1,...,N,}, it is satisfied that for any m € N such that
1<m<N,

m—1

2
> U = UL W3 + W) =200 W) — ZH‘P"“ 2
n=0 Pq

H‘I’ 2l
Proof. Put v = \I/Z;'l — U}, into (2.3.3). Then

H\Ijn-l—l n

mn (10 mn n n n
s ([ = 19m ) = Seapet + v vy - v
(2.3.12)
Since
a(U}?Jrl? \I’Z;rl - Zq) :CL(U;;L+1, \1,7}7;;1) - a(UI:,l7 Zq) + a(U;zl? Zq) - CL(U}?+1, ‘IJZq)v
—a(Up™, Wty —a(UR, W) — a(Up T = UF, O3,

and
a(UR, OpHt —Wp ) =a(Up Oy — a(Up Y Wity — a(UR, W7 ) + a(U, Ui,
=a(Upt, Opthy — a(UR, Wy,) — a(UpH = UF, U,
implies
i L W (o W LS
— (U U W )
=20 (Ut Wit = W) + a(UR, Wi - )
—¢4 (Q(Ug“, v — (U7, ;}q)) - %a(U;;H — UL U ).
It yields

2
alURH = U Wit W) =2 (U W) — (U, W) — ||y mll,

oo (= ol )
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Thus, with taking summation from n =0 to n = m — 1, we have

m—1
> aUptt - Uy, wp + UR)
n=0
m m 2Tq - n+l 0 (12
=2a(U}", W) - 20(UF), ¥,) z Hw (uw I = 1901
~2a(U7 V)~ 3t z A e A
since \Ilgq:O, Vge{l,...,N,}. O

By Lemma and a priori bound for (P1) can be observed.

Note that and implies
|URI[5 = a(Ug, UR) = a(uo, UF) < ||UR]}y, lluolly
and

W2

HLQ(Q) - (W]?’W]?)LQ(Q) = (wO’W/g)LQ(Q) = HWhHL2 |w0||L2

so that we have

10Ny < lluolly (2.3.13)

HWi?HL2(Q) < Jwoll £, - (2.3.14)

Theorem 2.12. For any m € N such that 1 < m < N, there exists a positive constant
C' such that

Ny
P my2 ¥0 m 2 ®o m (12
5 W3l + U+ ) s ¥
2 h 1 L2(Q) 4 h IV ;2@2*]\](,04_9011900 H thV
Ny m—1
27—(1 n+1 n
+30% e |nt v
q=1 n=0

<0/ ool oy + olfy + 1Ny +

m—1 tm
™ . 2
+ALY ||f HZQ(Q)JF/O lan 12, e dt'>.
n=0

Proof. Recall Lemma [2.8) and [2.9] then we have

N, Nyo m—1
1 27, 2
Wm 9 Um 9 L q H n+1 n
Iy + I+ 3 2 IRl 32 32 57 fally
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m—1 Ny
=0 [ WRIIS o + NURIIS, + A8 3 B (W + W) + Y 2a(Up, W),
n=0 qg=1

m—1 _
First of all, we will consider > FJ (W;""' + W}*). By the definition,
n=0

Atmf By (Wit 4 wp) :Atmi (W W) Lo
n=0 n=0
+ Atmijol (R Wi+ W) ey -
Since AW 4+ W) = 2(Up*t — Up) from [23.1),
Atﬂf By (Wit 4 wp) :Atmi (W W) Lo
n=0 n=0
+ 23_:: (98 U = UR) e -

Note that we can apply summation by parts to our equations, which is an discrete
analogue of integration by parts. This can yield

—_

m

> (kU - U) Lyrn) = (_xfl»UZLﬂ)Lg(rN) - (§9V7U£)L2(FN)

n=0
1

- Z (g% _g]r\L[ilan?)Lz(rN)'

3
—

Here, since gy is differentiable in time, we can obtain

tnt1) — 9N (tn— 1 [t
gy — gyt = ) Zonllont) 2Tt

tn—1
and then we have by Leibniz’s integral rule,
m—1 1 m—1 tni1
_ _n—1 . / !/
D@ =8 L UR) Ly =5 2 /t (v (E), UR) Ly 4"
n=1 n=1 “tn-1

Hence we have

m—1
ALY Fp (Wt +wy)

n=0
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m—1

=At Z (frwptt 4 Wi?)LQ(Q) +2 (g5 ", Uﬁn)LQ(FN)

n=0
0 770 = [ / /
—2(9N’Uh)L2<pN>—Z/t Uy
n=1 n—

By applying Cauchy-Schwarz inequality and ([2.1.13)),
m—1
ALY Fp (Wt +wy)
n=0
m—1

<ALY Py VR + Wl ) + 20 198 | e 1T v
n=0

m—1 trnait
+20H§9v||L2(rN) HU’?HVJFCZ/t HgN(t/>HL2(rN> U2y dt', (2.3.15)
n=1"tn-1

where C' is a positive constant from (2.1.13). Note that U;! is independent of time so
Cauchy-Schwarz inequality gives

et ; / n / bt . "2 bt n|2 g4/ 2
/tn— H9N<t)HL2(FN) ||UhHth < /t_ HgN(t)HLQ(FN)l ”UhHth

1 n—1 n—1

tn+1 1/2 1/2
=</ !!gzv(t’)I!iQ(pN)dt’) (atiopiz)

Then Young’s inequality and the triangular inequality allow us to obtain
m—1
ALY Fp (Wt 4wy
n=0
m—1 m—1

<At Z HJMHLQ(Q) HW}?+1HL2(Q) + At Z HJMHLQ(Q) HWI?HLQ(Q)
n=0

n=0

+ 20 (1957 ooy WO Iy + 28 8% Ly ORI

m—1 trni1 1/2 1/2
oy ( [ ot e, dt’) (280 1071%)
n=1 n

—1

m—2

<A o VR Moy + A1) IWE o)

n=0

m—1

ALY anHLQ(Q) Wil a0 +2C Hglr\rlb_lHLQ(FN) U NIy
n=0

+2C |38 | o) 10N
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1/2
nt 1/2
+CZ(/ Jaxte >Hi2<rN>dt’> (atuni?)
" At ' n _
e S L e

At o eerm At n At n
- Wi, ||L2(Q Z 1£ HLQ T Z W ”iz(ﬂ)
n=0 n=0

+= Hgﬁc*ui ey TR+ C a7, oy + C ORI

m—1

+c/ lan (|, ot + CAE S U7
n=1
mn s At m—11|2
<AtZHf [Fay + 88 D IWEIL, @) + Syl A PIES
n=0

Ata C i .
W2, ) + o 195 ey + Cen IUTI

+c>|gNHL2(FN+cHUhHV+c/ G RNy B

n=1
- Atea
At + Py Z |f HL y At Z Wy ”LQ(Q Wy ”L2(Q
n=0
+- Héﬁ‘lHLz ey + O U+ C a2,y + € ITRI
+C/ lan )12, 1, +CAtZ oz
with positive €, and €.
N,
Secondly, let us observe f 2a(U", ¥ ). In a similar way with the above result,
q=1

Ny N N 1
S 20U W) <3 e 10 + 30— w5
q=1 q=1 q=1 a

by Cauchy-Schwarz inequality and Young’s inequality with positive ¢, for each g.
Finally, as tidying up the results, if we take €, = p/At > 0, ¢, = po/(4C) > 0 and
€g = ©q + v0/(2N,) > 0 for each ¢, since

Ne
©0 1 1 ©0
1—5 eg— Cep = —, — — —=——-"" for each g,
g=1 4 Pq €q 2902Ns0 + Vg0
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we can obtain

p 800 2
5””’?”%(9 U HerZmH‘P%HV

P35 2 g zu
p ot Atp, 9y
_ _ 2
<pHWhHL2m (L+o) Ul + H N 1HL2<FN>+CHg?vHLQ(FN)

AP\ S Ly
+ <At+ 2) Z |7 HiQ(Q) +C/ HQN(t’)HiQ(rN) dt'

+ At Z W37, ) + CAt Z U3 -
n=0 n=0

Consequently, with applying discrete Gronwall’s inequality, we can derive

Ny

p 2 %0 2 %0 2
5 W L) + - MU + D oo [V
) 2() Ty ;2@3]\7@4‘8%900 H qHV

N -l 2, 2

q +1
+ZZAt<p H Thg — Phy
q=1 n=0

(18I + IR+ 18 ey + 1
O W Ly A I A

<C (ool ey + Il + 151 ey + 180,
O S L AT dt'),

since 2]l < lluolly and W], ) < ol by €313 and E313)

O]

In Theorem [2.12] we used discrete Gronwall’s inequality to prove the stability so the
constant C is increasing exponentially with respect to time. However, we can improve the
stability bound without discrete Gronwall’s inequality. We will introduce the maximum

with respect to time steps which is a discrete analogue of Lo, norm.

Theorem 2.13. There exists a positive constant C such that
P max Ik + %% max [tk +Z H\I/m||2
2 0<n<N | L) 4 o<n<n IV « 2p2N,, +<p @o I Mally
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27’q H\I,nJrl n H

SC( HWOH%Q(Q) + ol + 1117 o 0.7 220y + 1981100720 (0n)

2
+ HgNHLOO(O,T;LQ(FN)) >’

foranym =1,... N. Here, C is independent of At and numerical solutions but depends
on the final time T, indeed C o< T?.

Proof. Recall ([2.3.15)) in the proof of Theorem such that

m—1
ALY FF (Wit + W)
n=0

<AtZHf"HL2 Wt + Wl e + 2C 138 ey 10 Iy

m—1 tnt1
#20 ey 1081+ € 3 [ i e 10
n—1

Triangular inequality, Cauchy-Schwarz inequality and Young’s inequality lead us to ob-
tain

m—1
At Fp (Wt + Wy
n=0

. Atea it 1|2 At —_—
I T A S [T FFARE S o 1 8

Atey e 2 c [t 2 = n|2
+—3 Z Wil + %/0 HgN(t,)HLZ(FN) dt' + CAtey Zo UL I

o 0112
+ Ce |UL" HVJFCHUth H 1HL2(FN)+CHQ?VHL2(FN)

At'" = 2 ny 2 C [ g2 /
e E:O 1771700y + Atea 231 IWH T, @) + eb/o [N GOl i

m—1
Ata Ata
+CAtey YUY + = W33 ) + Can U5 + =2 [[WE1 2, 0
n=0
1112 02
+C ol + HgN Neawwy T C lanllzy ey -

for positive €, and €,. Due to the positive definite and the property of maximum, it
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implies for any m

m—1
At Z Er(wWitt+wi)

n=0
Athl _ N-1 . C T .
<2 I+ Bt X I+ S [ 19 0,
@ n=0 n=1
el Ate Ate
+CAte, Y R + = Wi 17 0y + Ceo TR I + =52 (1WR 1 )
n=0

C 1112 _
+C ORI+ 198 ey + C M9 oy

At N-—1 ) N— C
r 2 . 2

< ZO 171 ) + Atea Y max [WiEIT, ) + ol LA PR HOS)
n= j=1 - =

Ate,
T 0<n <N||Wh”L +C€1’T N ||Uh||v+06b max, U711
Atea C o
HWhHLz(Q) + Rl + <€b + C) o HgN”LQ(FN) ;

At - C.. .2
Z Hf HL Q) + TE“ maX Wy ”L2(Q ; HgNHL2(01T;L2(FN))

Atea

+Ce(T +1) ma ORI+ =52 WL, ) + CI0R]

C —n 12
" <6b - C) 012X TNz oy -

since T'= NAt. Hence from the proof of Theorem we have

ZQa Uy, o) <Z€q||Uh ||v+z H\I' HV’

with €, = ¢4 + ¢0/(2N,) > 0 for each ¢, so that it yields

PIWE Ly + HUh ||V+Z [%hally

* 207N, + ©q0

Ny m—1

9 2
+ZZA;Z H Z‘—IH_ ha 1%

Ate, At n
§<1~I- >HWhHL2( +(1+0C) HUhHV Z Hf HLQ(Q
n=0

C.. 9 C 12
—+ ; HgNHL2(07T;L2(FN)) + (61) + C) ngnga]zf(—l HgNHLQ(FN)
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n|(2 n(2
+Teq oax, Wi 1Ty + Ca(T + 1) oax, ORIy

for any m. Then by the property of supremum (here in a discrete case, supremum is
equivalent to maximum) with respect to m we can derive

No
SO %0 2
max ||[W™|? + — max U + — ||’
'00< <NH h”Lg(Q) 0<n | h||v q§:1: 2903N<p+§0q900 ” hq”v
N m-1 27, 2
q n+l __ qn
\I/
25 e e

<( (1425 ) W8 + 1+ ©) »vhuwfz 17710

C C c _n 2
HgNHLQ(O T;La(T'n)) + 0<mEN 1 TN NZarp)

2
Ty e (W71, o)+ CeoT + 1) ma, (U7 )

If we take
P

6T

2

deg=-—r0
M= or 1)

€q —

it can be concluded that

p 2
5 omax [WEI 0+ 77 max U7+ ZQ%N oo 1¥Rly
N¢7n ! 2T, 1 2
q
+zzm |wier =g,
) ) N-1 o
SO( HWi?HLQ(Q) + HUi(l)HV + At Z anHLQ(Q) + ||9N||%2(07T§L2(FN))
n=0
b 1881 )
N-1

) )
éC( lwoll 7 + luolly + At D> 17l 0 + 198107520 0))
n=0

_n 112
+ ogl%afv{—l HgNHLQ(FN) )’

by (2.3.13)) and (2.3.14) for some positive C, ¥Ym € {1,..., N}. Additionally, Cauchy-
Schwarz inequalities and definition of L., norm in time lead us to obtain

N A Nl
ALY 177117, @) = D I tngr) + FENZ 0
n=0 n=0
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N-1

<A (1F )y + I E)IE )

n=0
2
<2AtN JJax, 1 )70

2
<2T HfHLOO(O,T;LQ(Q)) ’

In a similar way, we can replace the maximum term of Neumann boundary by

—n 12 2
o IAX | 1IN Torn) < 2987 07520 (0w ) -

As a consequence, we have

n| 2 %0 m |2
5 omax IWillhy@ + 7 jmax [URI + Z F2N, +<p 2 Vially
Nem=l o
q n+1 n
+ZZ Aty H hally,
qg=1 n=0

SC( lwoll 7,0y + lwolly + 1 F17 o om0 () + 198117507200

2
+ 9N 17 (0,7 220 n)) )

d

In Theorem C has increased but not exponentially, as the final time T grows.
However, Theorem shows exponentially increasing C in time, which means C
exp(T).

From the stability bounds in Theorem [2.12] and [2.13] the fully discrete solutions are
bounded by the data such as boundary condltlons, initial conditions and source terms.
It means that if the data is given by zero data, the solution must be zero.

Recall the concept of linear algebra,

Az = b is solved uniquely,

T
Az =0, only if x = 0.

Note that solving the fully discrete formulation is equivalent to solve the linear system
—. In the above, x represents our solution and b is defined by the given
data. Therefore, if the data is given by 0 then the solution should be also zero so that
the linear system is solved uniquely. Furthermore, the matrix -2 M + A is invertible
hence it is able to obtain the solution numerically.

At2
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In order to see the error bounds for fully discrete formulations, we will follow the
proof of error bounds for semidiscrete formulations. At first let us define
0 :=u — Ru,

X" :=U; — Ru",

w" =Wy — Ru",

Vg 1= g — Ry Vg,

g = Wh, — Ry Vg,
where u” = u(ty).

Lemma 2.10. Suppose u € H*(0,T; H*(Q)) N WL (0,T; H*(S2)). Then

max [l ) + max ]y < CmmEREIT 4 AL),

If we also assume elliptic regularity,

o (|||, )+ max [y < COmmEED 4 Ag),

Proof. Recall (2.1.9)) and (2.3.2). We have

MHZ

g(ﬂ"+1+u ), o T a(”“~|—u”,v)—2 a (it + 97 v)
q=1
=Fj(v),
Ny
n n 1 n n n
(Wi = Witv) o) + 5a (U 4+ Ufl ) Z (it + w0
=F7 (v)

for any v € V". By subtracting the two equations, it yields

(B(un—l-l_'_un)_i

1 n n n n
5 At( +§a((u Ry )—(UhH—FUh),U)

WEH W),

N,
1 P
_§Za< n—i—l_'_d}n) (\I]Z;1+\p2q)’v>
q=1
=0,
and so
1 1%
4 +1 +1 +1
Kt(w" —w",v)Lz(Q)+§a( X" X" ) - 5 1 a (g 46 v)
q:
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:L (én—H on 9n+1 " _1 1977,—&—1 9"
At ’U)LQ(Q)+ a (040" 0) gq:1a( a +Ugv)
N <un+1 4 i B unJrl —un v)

2 At LQ(Q)’
1 &
=2 (0 = 0mw) (0T 0 ) — o a (0 40y 0)
2 2 2 o

_P (int1 _ 4jn n
At (9 0 ’”)m(m P EL V)10

forn =0,..., N—1 by the property of elliptic projections such as Galerkin orthogonality,

where it A () a(t+ AL — a(t)

E(t
Note that by (2.3.1))
Xn—i—l _ Xn Un+l —_yn Run—i—l — Ru™
At At At
wrtt 4+ wn Ryt — Ru®
- 2 - At
Wt W RaMt + Ra” N Ri"*!' + Ri"  Ru™*! — Ru"
B 2 2 2 At
o+ Ru + Ri* Ru™! — Ru®
- 2 * 2 a At
wn—H 4 o Ran—&—l + Ru™ Run—H — Ru™ un+1 —um un+1 —um
T2 + 2 - At A T T A
wn+1 4 o™ Run+1 + Ru™ 0n+1 — " unJrl —un
T2 * 2 AT T T N
wn—H 4 " Ran—&—l 4+ Ra™ 0n+1 —_ " un—i—l —um
T2 2 At At
N ,L'Ln-i-l + " B un—&-l + "
2 2
an + o gntl _ gn én—‘rl + 971 utl antl 4
T2 AT T 2 T T A T
n+1 n
:# s (2.3.16)
where
Ex() = O(t+ At)+0(t)  6(t+ At) —0(t)
S 2 At ’
w(t+ At) —u(t) ot + At) + u(t)
Es(t) = Ar - 5 :
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With taking into account v = Xni;"n with (2.3.16)), we can derive

n+l _ . n 1 n+l _ .n
N (wn+1 o X X ) 41, (XnJrl L X X >

At At )@ 2 At
N
B 1 P . §n+1 N gn Xn+1 _ Xn
2"\ T A )
1 n
_i n+1 n "t tw o L n+l __n ¢on
T At <w T Loy A (=" = =" &) o)
1 n
_L n+l __ _n eon 1 n+1 n Xn+ X
At (’W ’ 3)L2(Q)+2a’<x +X ) At
N
1 - n+1 n X Xn
_2q1a< “q’T ’

P (o . . o
T 2AL (Hw JrlHL2(Q) o ”%2(9)> At ("t — ", &)

P 1
T At (@~ wnvgg)LQ(Q) BEYN (HXnHHV I n”v)
N

L2(Q)

1
—oag 2o (TGN =X)L
q=1
P jn+1 mo . —n+1 n P (jnt1_ jn oen
2At (9 —0hET +w )LQ(Q) At (0 o ’52>L2(Q)
n m o en Pron _n n n eon
Sap () T ) )

p(&F 75:?)1:2(9) )

n n 1 , .
S (Hw U~ 1) + 55 (I = 1)
n n X X"
_,Z ( +1+<q,At>,

zg%t <9n+1 — 0", "+ wn) L@ At (9n+1 o, gél) L2(Q)

n—+1 m en P n n+1 n n en
S () e E ST ) g o B

n n IO n n n n n n
p (&, E5 )LQ(Q) +Kt (w H—w ’82)L2(Q) Jth (w Hew ’53)L2(Q)'

Moreover, when we apply summation for n = 0,...,m — 1 where m < N to (2.3.17)), it
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is observed that

m—1 Ny

Sl ey + 5 I - 21&2:%2 G =),

:2%75 1= |0 + 2At Ix°lly + 2’&7:_: <én+1 —on @ wﬂ)er(m
LS -ia), - A5 (-,
+g§(5n ot 4 o )1, @ pg (&1 EN Ly — pg(&a%)m(ﬂ)
+Apt::: (@ =" £, mZ e ) e (2319

In a similar way, let us consider internal variables and - ) for each ¢

q/}n+1 + wn gntl _ gn 1
40 ( q g T hg hq,’U + —g (( n+1 +¢q) (\IJZ(—IH + ‘l/Zq),v)

2 At 2

=a (@™ +u") = (U 4 UR), )

so using elliptic projection gives

Ta (Cgﬂ—gg,v)—i-la("ﬂ-i—gq, )—%a( ntl v)

At B
o n n n n © . .
o)+ o5 )~
in+l 4 in n+1

+ 140 <¢q 2+ wq _ - wq U)
=Tqa (E:;)v)

by Galerkin orthogonality, where for each ¢

Pt + AL) +1g(t) Wyt + AL) — 9y (t)
2 At '

Eq(t) =

Sq | —Sg .
Here, let us set v = ;% and take summation for n =0,...,m — 1 then we have

MZH a1+ o (2~ S22 ) - mi;a(n“w )

m—1

T mn n n
:thz a (Ey.s +1_<q)'

n=0

80



In addition, we will apply summation by parts then

m—1 m—1 m—1
a (X =) = D e (TG =)+ D a (g =)
n=0 n=0 n=0
m—1
=a(X".g") —a(x% ) = D a (X" = X" <)
n=0
m—1
+a(X" ") —a(x’q) = D a (X" =" g™
n=0
m—1
=20 (X" 5") =20 (X" s5) = D_ a (X" =X )
=0
m—1 !
20 (", 5") — 3 a (" - Xt )
n=0
and
m—1 m—2
DByt =) =a(Bpqt) —a(B)qg) = Y a (Bt - B
n=0 n=0
m—1
—a (E;n—l7§;n) Z a (En+1 En n+1)
n=0
since gg =0, Vg€ {1,...,N,}. Thus these imply
Pq = @
TAth“(XnH X", ggﬂ""gq) Aqta( ’gq At2 Z H n+1_§q”v
n=0
2At ng HV At (Em 1’gq)
- m—2
_ th a (E;LJrl En n+1) )
n=0

As following this result, (2.3.18)) can be rewritten as

Ny m—1 Ny

P m 1 m 1 1 T, n 2

m”w H%Q( 2At ” HV 2Atzi H q HV At2 nz;);soq H +1 quV
m—1
_L 0(|2 - 0 p m+1 _ gn n+1 n
=57 17" ) + 2At Il + 20t ; (9 7" +w >L2(Q)
m—1 m—1
. i m+1 _ Agn en _ L m+1l _ An en
At &~ (9 0 752>L2(Q) At 7;) (0 o ’53)L2(Q)
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n=0 n=0 n=0
p m—1 p m—1
+ E (wn+1 wnjgzn)LQ(Q) + E Z (wnJrl n 53)L2(Q)
n=0 n=0
1 e 1 e, )
i m -m . s m— m
- tqz:;a(x Sq )+At;%a(Eq sqt)
1 T2
— A o e (BT - B,
n=0 g=1 Pq

and multiplying it by At allows us to have

P mi2 1 mn2 1 Ne m—1 Ny Tq gq
5”“ HL2(9)+5HX Hv+§z HCq HV+AtZZ
q= 1 n=0 q= 1 1%

=P Honz + 1 HXOH2 P mzzl <0n+1 gn, ot 4 w")

2 L2(92) © 2 v 2 &~ La(Q)

_ pmz:l (én+1 _ 971 gn) —p i: (énJrl _ en 5")

= "2 ) Ly(9) — "3 ) Lo
m—1 m—1 m—1

p n n n n n n n
+ 54t Y (e +w ) L) — PA D (EMED) ) — PAL Y (EFE) Ly @)

n=0 n=0 n=0
m—1 Ny,
3 () g 0 5 (7 )+ D ()
n=0 q=1
Ny m—2 Ny
+3 e (Bt -y Z D90 (B2 — B Y (2.3.19)
q=1 Soq n=0 g=1 SOq

Now, we will consider each component of (2.3.19) on the right hand side.
0112
o || HLQ(Q)

2
HwOHLQ(Q) = (W — Rwo, Wy, — RwO)LQ(Q)
= (wo — Rwo, Wy, — Rwo)
(.- since (wo,v) ) = (W;?,’U)LQ(Q), Yo e V1)

- (907 wo) L2(9)

(. since 6° = wy — Ruwy)
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—H g P

‘" by Cauchy-Schwarz inequality)

S0,
0(12 0
= HL2 <H9 ‘m(ﬂ)
o XI5
(Uha v) = a(ug,v), Yo e Vh,
a (Rug,v) = a (ug,v), Yo € V",
hence
a (Up — Rug,v) =0, Yo € V",
and
HXOHi = a (U} — Ruo, Uy — Rug) = 0.
m—1
<9n+1 0", "t + wn>
n=0 LQ(Q)
m—1
(0”4—1 o" wn—i—l n)
n=0 ’ La(2)
m—1 tnt1
=3 [ et a
n=0 “In La(2)
m—1 tnt1 ) . , il . ,
Sn:o /tn o(t') [+ ||, 0

(‘ * by Cauchy—Schwarz inequality)

n+1
26a nz: /

(". by Young s inequality for some positive €,)

t/

1 ¢ m—1 )
20 Js He LA DI R PR
n=0
(o ||l=™tt + w"HLQ(Q) is independent of s)
1 [ty 2 , m—1 e
SE He(t) La(@) dt’ +2€5 ) O%%VHW HLQ(Q) At
n=0 "7
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52 [Tl

’
)dt



2 112
(. Hw”“+w”HL2< <27 + 2 1= 150 <4OI§IIJ.E£§VHWJHL2(Q))
N—-1 o
§£ H9 (t) )dt,+2€a;o%%}§v”wjuh(ﬂ) At
(-m<N)
1 .12
—— 4] +2¢,T max ||’
2€q L2(0,T3L2(R)) 0<j<N
m—1

IS (i), S (g

In the same sense as the above,

m-1 ' I
_ 7;) <9n+1 _ 9",8§)L2(Q) =— Z /tn (9(15’)’551)@(9) at'

n=0

Ly ()

m—1
1

/ / n| 2

§2/ He )0+ 5 nz:% €512, 0 At

.. T .

ngG’ + = max Hé’g‘ )

2 L2(0,T;L2(R)) 2 0<j<N-1 La()
Also,

m—1
B nzo (9n+1 B an’g:?)Lg(Q) S% HQ‘

2 T
+ — max ‘
L2(0,T;L2(R)) 2 0<j<N-1

m—1

o At 20 (&, @™t + w")Lz(Q)

m—1

At Z (&F, w4 w")Lz(Q)
n=0

At L At T2 )
<3g 2 et L@ + =5~ 2 =" + =" |y q)
n=0 n=0
(. .

by Cauchy—Schwarz inequality and Young’s inequality for some positive €)

m—1
Z €7 HL ) T 2eAt Z oS RX | HL2(Q)
—0

112
C Hw”“+w"I!L2< <2} g + 205" ) <4 max =], q)
12 9
“2% OSI;'HS%{—IHE‘{HLQ(Q)_‘_2EI)T max [|=7[[,

0<j<N
(- m<N, T=NAY)
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m—1 m—1
—At Z:O (5?7551)L2(Q) , —At Z:O (5?75§1)L2(Q)

m—1 m—
At LA .
—ALY (E15E3) 1,0 ) S5 Z IETNZ 00 t3 Z 1€3 HQLQ(Q)
! At g
+
L2(Q) 2 = 00<]<N 1

T
2

g’
H 2Ly

<— max HE{
0<j<N-1

ilI2 ilI2
max H51’ & L)

+ max H ’
Ly () 0<j<N-1

In the same way,

m—1 12 2

T
—At Z (€15 &) 1,0 <5 oI Hgf‘

n=

g Hgé Ly(Q)

max
0<j<N-1

Lo(Q)

n=0

- (w"Hv &7 - 52n)L2(Q)

= (@™, M) _ (wo 50) B /tn+1 (wn+1 gz(t’)) dat’
1€2 ) Ly(Q) 192 ) Ly() . ’ L2(9)
§|rwmrrL2<Q)+ 1€5° 170 \\wo\\L2(Q)+ 1€311, 0
tm o
ed Z H n+1HL At+ / ng(t’)
1 2

2
dt’
Lo2(Q)

311,
Lo()

<5 max 1], 0 +

1
1 112 €dm 12
L j €d j

+ 20§§%\}/{—1H(€2HL2(Q) Ty ;Og%v”w HLQ(Q) At

dt’
L2(Q)
€ - 1 12
Sl PSR - 1 Y (4
—2 olgnj%v | HL2(Q) * 2¢. 0<Ijn<az\}/(f1 & Lo() + 2
1

+ — max HE H + S max H H2 +
20<<N-111 2Ly 27 0<j<N L) T ¢,

Ea(t')

T

L2(Q)

2

85

2l a0z (92))



for positive ¢, and €4. In this manner,

m—1
> (@ - %" &) L0
n=0
€c 1 j 2
S?o%%v“ HL2 Zec 0<§‘n<%{—1H53‘L2(Q)+§H )LQ(Q)
1 112 1 2
+ 505 8] * 5T o5 1 o * g Iy
N, Ne
¢ X o (). X e ()
Ny
S a (< <Z = uxmuwszw
q=1
for some positive {¢;}. And,
Ny
E Em < Tq 611 Em 1 +
;% (q ’gq Z H HV ZgoT HQHV’
for some positive {&;}.
—2 Ny
« -'% }j oha (Bt - By ot
n=0 g=
m—2 Ny
_ Z Z Tq En+1 En n+1)
n=0 g= 1

Ny - m—2 tnt1 )
:_Zqz/ a (B(t),sptt) at
q=1 #aq n=0 In
No
Simq/tm HEq (t) dt +Z Z [l [N
q:1<Pq20 “pg28q =TV
<Z Ty Gq ‘ . ‘

for some positive {&;}.

Ny
Tq T o
LQ(OTV)+; 26 OI<ny<NH HV

Hereafter, let us recall the finite difference method in time, that is Crank-Nicolson
method(e.g. see [40] in detail). Since we suppose u € H*(0,T; H*(f2)), Crank-Nicolson
method provides

sn41 + i un+1 —un

IET| = < CA#?

2 At
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for some positive constant C', Vn. Hence it implies

165130 = [ 1€512 a0
Q
</ C?At*dQ
Q
=C?|0|Att = oAt

for any n so that

max HS{

< CA#.
0<j<N-1 Q)

Indeed, [[€1(t)] 1, () < CA#? for any t. Similarly, it is also true that

< CAt?,
Lo ()

< CAt.
Ly(Q)

max Hc‘fg

max HSJ
(Q) 0<]<N 1

0<j<N-1

max [\

and max Hé’]’
La(Q) T 0<j<N-1

0<j<N-1
Moreover,
2

|

. Due to Leibniz’s integral rule, we can obtain
L2(0,T;L2(2))

T
< / CAtdt = CT At
La(0,T5L2(2) ~ Jo

ans so is H83‘

max || El||,, < CAL, ‘Eq‘ < CAP?
0<j<N-1 4 L2(0,T;V)
for any q.
For our sake, we should set coefficients for Young’s inequalities. Set
1 1 1 1
6(l: 76b: 7€C: 76d:77
16(3+ N,)T 16(3+ N,)T 8(3+ N,) 8(3+ N,)T
then

€c | €d P
T+eT+ < —T)zi.
'0(6“ talt oty 13+ N,)

2
Additionally, put €; = ¢4 + 2‘07(; and €; = W%;wmoq) for each ¢. So, we have
1
€ _ %o
2 2 2 4
q=1
and
Ny 1 Ny 1 Ny 1 Ny ©0 Ny ©o
- L Tqg L _
qz:l 20, qzl 2¢, qzl ©q 2¢q qzl 492N, + 2¢00q Z « 83Ny, + 4o
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N

—Z -
* 8pi Ny, + 4o

T 82 Np+4
furthermore we suppose é; = (3 + N, )T; W for each g.

In the end, as tidying the results up with -, we can obtain that m 2.3.19) yields

P 2 <P0
5 17" oy + ||xm||v+Z&OQN e WA

m—1 Ny

—l—AtZZ

n=0 g= 18011

2
n+1 n
§q

Ny
P ¥0

§4(3+N¢) OISIE’EgV JHL? +q_§:123+N 802N, + dpowq O<]<N”3HV

+ C(hZ(min(kJrl,s)f )+ At4) (2320)

for some positive C. With taking into account the maximum with respect to [|@™ |,
Ix™|;, and Hg}f”v on the left hand side of (2.3.20) it is able to claim that
N
p J||? ¥0 J||? ¥0 j
3 o (170 + 7 gmax Iy + Z 82N, + dpogy 025N x [lsally

m—1 Ny 2

+AtZZT

anl

n+1 _
§q

p (2 1 ©0 112
§(3 + Nso) <4(3 + N@) 0%%}3\! Hw]HLg(Q) + ; 2(3 + N{p) 8@3]\7@ + 49009% 02}2}5\, H%HV

+C(h2(min (k+1,5)—1) +At4)>

for m =1,..., N. Thus, we can also say that

N

P . ©o0 12 %0 112
HHHZN il

m—1 Ny 2

+AtZZT

n=0 q= 1
Sc(h(mln(k+1,s) )+At2),

n
q

v

therefore, we have

o2 (|| ) + max [y < CmmEhI=hg A,
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If elliptic regularity estimates is satisfied, using gives us that ( m 2.3.19) yields

14 2 900
§||wm”L2(Q HXm”V—FZ&qu T 4900, H Sq HV
+ At K
n=0 q= 190‘1 1%

p 112 1 ©0 12
<———— max ||&’ + max ||¢J
4(3 4 Ny) 0<j<N | HLz(Q) q:Zl 2(3 + Ny) 802N, + dpopy 0<j<N I HV
+ C(h2min(l€+1,s) + At4) (2321)
hence we can conclude that

e (|| 0 + max 37, < OB 1 Ar),

O]

In Lemma [2.10, we do not use Grénwall’s inequality so that the constant C' depends
on the final time 7" but not increasing exponentially in time. As seen in semidiscrete
problems, Lemma [2.10] implies the following error estimates.

Theorem 2.14. Suppose u € H*(0,T; H*(Q)) N WL (0,T; H*(Q)). Then we have

N 777 < min (k+1,s)—1 2
Orgr;eg\f”u(t]) UhHV_C(h + At?)

and

< C(hmin(k—l-l,s)—l +At2)

max Hu(tj) - W,{) (@)

0<j<N

where k 1s a degree of polynomial basis, for some positive C. With elliptic reqularity, it
15 also observed that

max Hu(t]) - W}JL‘

< C(hmin(k+1,s) + At?)
0<j<N

L2(Q)

for some positive C.

Proof. From Lemma it is provided that

02jEN i INCR 05)SN 7y, < CrmnETLI=E 4 Ag?)

for some positive C. Hence we have for any 0 <n < N
lexlly = 110" — X"y
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< 16"y +Ix"[lv
SC(hmin(k+1’s)_1+At2)

for some positive C' by (1.4.8). Since n is arbitrary, it is true that

max Heng Sc(hmin(kJrl,s)fl +At2).
0<j<N Vv

In this same sense, we can derive

C(hmin(k-i-l,s)—l +At2)
La(Q)

max Héil‘
0<j<N

for some positive C. However, elliptic regularity allows us to have

max ijHLQ(Q) < C(hmin(k+1,5) +At2) and Oma}g\] HQ]‘ < Chmin(k+1’5).

0<j<N <j< L2(2)
Thus,
max Hé’%‘ < max ijHL o) T max ’93‘
0<j<N Lao(Q) ~ 0<j<N 2 o< 7 L)
§C(hmin(k+l’8) —i—AtZ)
for some positive C. O

Corollary 2.1. Under same conditions as Theorem[2.14], there exists a positive constant
C such that

< C(hmin(k—i-l,s)—l —|—At2).

max Hu(t]) - Ui‘ (@)

0<j<N

If elliptic reqularity is given, it shows

< C(hmin(k+1,s) + AtQ)

max Hu(tj) - U}Jl‘ o) =

0<j<N

Proof. In a similar way with the proof of Theorem

[u(tn) = U llL,0) = llenll Ly
<101 2y 0) + X" Loy »
for any 0 < n < N. Note that
I agey < Iy < = I
X MLy S IX llHY Q) = NG X v
by coercivity. Hence (1.4.8) and Theorem m give us
lu(tn) = Upll Ly 10" 0) + IX" 100
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<|le"

1 n
I Ly@) + N X"y
SChmin(k+1,s)71 _’_C(hmin(k+1,s)71 —I-AtQ)

Sc(hmin(k+1,s)—1 +At2),
for some positive C'. Since n is arbitrary, it is concluded that

< C(hmin(k+1,s)71 + AtQ)
Ly ()

ma u(t; —Uj’
ma [|u(t;) - U

for some positive C'. Moreover, if elliptic regularity is satisfied,
1071,y <CH™ (01,
||Xn”v Sc(hmin(k—l-l,s) +At2),

Vn, therefore,

< C(hmin (k+1,s) —|—At2)
L2(2)

for some positive C. O

max|u(ty) U]

As shown in Theorem and Corollary we have Lo estimates and energy
estimates of Uy and Wy, for the displacement form. Here, the energy norm is equivalent
to H! norm and hence we have also H' estimates for the numerical solutions.

In a similar way with the displacement form, we can seek a fully discrete formulation
for (P2) and show stability bounds and error bounds without Gronwall’s inequality.

2.3.2 Velocity Form

(P2) Find u and {Cq}fl\f:"’l such that for all v € V

NHO
(pii(t), v) 1,0 + Poalu(t),v) + Y a(ly(t),v) = Fy(t;v),
q=1

Tqa@q(t)W) + a((y(t),v) = Tgpqali(t),v), Vg =1,..., Ny,

with u(0) = ug, ©(0) = wp and (4(0) =0, Vg =1,..., N,.

The fully discrete formulation for (P2) is introduced with Crank-Nicolson method as
find U7, W}! and S};‘q eVhforn=0,...,N,Vqe {1,..., Ny} such that for any v € Vvh
forn=0,...,N —1,

W}:H‘l o W}';L ) <Un+1 + Uh > Ny (STL+1 + S;qu )
ph—Th + poa + Z v
( At L2(9)
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= F'(v), (2.3.22)
and forn=0,...,N —1,
TqQ (S;L‘;FIA; Sgl(},v) +a (ngl; Sgc],v) = TqPq (W}?H;_ Wﬁa”) Vg, (2.3.23)
a(UP,v) = alugp,v) , (2.3.24)
(Wi ) @) = (W0, 0)1y0) (2.3.25)
with the relation where we have

N, N, N,

vh vh vh
Up = Z up @i, Wi = Z ;'®;, and S, = Z Shq.i®i for each ¢
=1 i=1 i=1

From (2.3.24) and (2.3.25), u’ and w? is obtained. Then we can have the linear system
which is equivalent to ([2.3.22))-((2.3.25|). Let us recall

(En)z = Fy(tn; ®i),

fore=1,...,Nyn and n=0,..., N — 1. Note that we haveﬁgq =0, Vge{l,...,N,}.
Then (2.3.1)) and (2.3.24)) provide
2
"t = E(g”“ —u") — ", (2.3.26)
and this yields

—1 -1
it _ (Ta LY TaPa et gy (Ta LY (T LY ey
Sha —(At+2> 5 (o +m)+<At+2> <At 5 ) Sha 0
T, 1 _17'g0 T, N\ "t/ 1
=L 4] Lhyntl_yn L4 T I 2.3.27
(At+2> At (u u)+<At+2> (At 2>’“1’ @ )

respectively. As a result, (2.3.22) implies

No

P 2 1 ¥0 n+1 n Tq¥Pq n+1 n
M =@ —u") — 2" Z AW 979 Ayt —
At <At(u ") — 2 >+ 5 Al +u)+;2Tq+At (u u”)

NS"
274 1 ~n+1  =n
— 1 AS? = —(F F).
+q§2¢q+m =ha 2(* )
Let us set a matrix by

NHP

TqP

B = qY'q

27, + At



Then we have

2p %o 1_2p 2p %0
M A By =" M — M — A B|u"
<At2 + - )u A M+ (X +B)|u

N,
ki 27‘ AS 1 (Fn—l—l + Fn)
27'q + At Zhq T 2 =7

and hence

nt1 P ©o | 2p P ©o n
ut = (At2M+ A+B> [AtMm (At2M A+B)u
Ny

27, n+1 ~n
Yy T EY|. 2.3.2
Z2Tq+At Sha ¥ 2( s )] (2.3.28)

In the end the linear system ([2.3.26)), (2.3.27) and can be solved uniquely for
n =20,..., N —1 if there exist stability bounds. Thus, we shall show the stability bounds
for the fully discrete formula of (P2).

Note that a linear form F,, consists of only data such as initial data, boundary data

and f.

Lemma 2.11. For any m € N such that 1 <m < N,

m 1 Nn,a
PIWE I oy + 20 IR+ 5 S0 D" alSps ! +Sp Wit + WR)
n=0 g=1
m—1
= [WRI 0 + 20 (ORI + D2 AtED (Wit + W)
n=0

Proof. Let v = W,?H + W for 0 <n <m — 1 and put it into (2.3.22). Then we have

% (“W£L+l“iz(g) - HWﬁL\@Q(Q)) + %G(U}?H +Up, Wit + W
% %: a(Sptt + S Wit + Wiy = F (Wit W)
=1
By the relation (2.3.1)),
LWy — W) + 22 (O 5~ 1071

N,
1 _
+5 > a(SpEt 4+ Sp, Wit Wi = Fy (Wt W)
=1
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With taking into account summation from n = 0 to n = m — 1 and multiplication by
At, it yields

m 1 NLp

PIWE T 00 + %0 UG + Z > a(Sptt+ S, Wit + W
n=0 g=1

=0 [WRll7, 0 + 0o ORI + MBS (Wit i)

Lemma 2.12. For each q and for any m € N such that 1 <m < N,

m—1 2
> AWyt Wi 87 = sl + Z |l s,

n=0

Proof. 1t is easy to check Lemma Consider v = S,TLL; ! + Spy for 0 < n < m—1 with

(12.3.23]). We have

2 (o - hswl) + 5]

Summing with respect to n,

= LW WSS,

Sptt + Shq L=

m—1

m—1
T 2 1 2 TqP
L ispally + 30 5 st sn| = S0 a4 Wi Sp 4 g,
since S? = 0 for any ¢, thus it is observed that

hq

= +1 +1 n+1 2
n mn n mn n

> a(Wirtt Wi Spt 4 S = At ISl + z ] St + S|
n=0

O]

Theorem 2.15. For any m € N such that 1 < m < N, there exists a positive constant
C such that

Wy + 2 O HV+Z \%HﬁZZ\

2
Sn-‘,—l +Sn
hq v

§O< lwollZ, () + luollf + At Z HJMH;(Q) + H%”G‘W!lm
n=0

02 o
e+ [ IOl )
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Proof. Combining Lemma [2.11] and 2.12] we can have for m =1,...,N

Ny m—1 9
p Wy HL2 + o U Hv"‘z HsthV-FZZ 27@ ‘32;—14—8}% v
q=1 n=0
A L +g00HUhHV+ZAtF" (Wt + ) (2.3.29)

n=0

m—1
Now, let us consider At Y E (VV,?Jrl + W}?) By the definition,
n=0

m—1
At Z Er (Wit + W)

n=0
m—1 m—1
—At S (W + W) @ + At S (@, Wit + Wi L)
n=0 n=0
m—1 Ny e~ tn 1/7 tn/T
+AtZZ<pq + q+6 q (uO,W,:L—H‘}‘W}?),
n=0 g=1
and so by
m—1
ALY ER (Wt W)
n=0
m—1 B m—1
=At Z (fnv Wf?ﬂ + WI?)LQ(Q) +2 Z (gxf’ UI?H - UZLL)LQ(FN)
n=0 n=0
m—1 Ny o—tni1/7 + —tn/T.
23S e (o, U - UR)
n=0 g=1
m—1
=At> (frowptt W), o +2 Z g, Ut — UR) Lot
n=0

m—1
+ 22% Z (Rpuo, Uy — Uy,
q=1 =0

where Rg = (e~tn+1/Ta 4 ¢7tn/7a) /2. By summation by parts, this yields, with the
definition of integration,
m—1
At E (Wit W)
n=0
m—1

=AtY (W W) o) 2 (08U

L>(T'n)
n=0
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m—1

tnt1
_z(g?V,U,?)LQ(FN)— Z/t 1 (G (), UR) oy 4t

n=1
© - N, -
+2 Z Pqa (Rgn_luo, U,:”) -2 Z Pqa (Rguo, U,?)
q=1
NSO m— tn _t//
_ZQDQZ/ - ( TquO,U;,jL) dt'.
q=1 n=1Ytn-1

In the same sense in the proof of Theorem [2.12] we will apply Cauchy-Schwarz inequality

and (2.1.13)) as

m—1

ALY (Wt Wy

v
n=0

<AL‘ZHf”HL2 (AL P +AtZI|f”HL2 IWE Ly

+ 20 HgN 1HL2(FN) Ul +2C HQNHLQ(FN) TRy,

m—1 tna1 Ny B
+OY / lov )]y ||Uﬁ||vdt’+2zsoqR2H luolly 10771l

e_t/ q

TRy dt’
v

Uuo

tn
+2Z<qua ug, UP) +Z%Z/t 1
n= n—1

SAtZHf”I|L2 L P +AtZHf"HL2 y IR L, 0

+2C (|95 M 1y o) IUfTHv+2CH9NHL2 e 102l

+cz/ 195 () oy 107y e+ 2 ol Ty + 2 |[O2)

+zwqmz [

n=1Ytn-1

eft /Tq

1T dt’
14

m—2

=AFH o) W oy + At Z 17y 1R

7]
Tq

m—1

+ ALY ey Wil oy + 2C a8y ey 1UR Iy
n=0

m—1 b1
#2018l +€ X2 [ v @l 1071 2
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e~ t'/ma
+2 fuolly U7 ||v+2HUhHV+Zsoq Z / w|| ORIy df, (2:3.30)
1%
for a positive constant C', since
7}
IR7[, |7/ <1, ¥n, Vg e {1,... N}, ¥t >0, Y <1,
and implies
a(uo, UY) = a (U, UR) = |UR];.-
Hence with Young’s inequalities we have
m—1
AL FEr (Wit wy)
n=0
_ Ate At
SE 1/ 1HL2(Q) — Wi 12, 0) + Z anHL2(Q
AL e At At '3 -
- Z IWE e + 5 Z 17" ey + 5 Z W a0
n=0 n=0
R e+ Can ORI + € gl + ORI
m—1
+C / ()13 0y @2 + CAE S NORIE + = lually + e IR + 2[RI
n=0
Ne tm | —t'/7q Ne m—1
+Z§q/ — ‘ |ruou2vdt'+z%mz IRl
=1 n=0
- Atea s
At+ 5 Z | HL2 Wi 1y )—i—AtZ Wy ”L2(Q)
n=0
+— Hé%“HLQ ry + Ca IR+ C %7 o) + C IR
+C/ o (#1210 +0AtZ ORI + = ol + e IR + 2|81

Ne 5  At'g 2
+Zf||uo“v+72||Uh||v,

— 4Tq —

q_l n=0

for positive €4, €, and €.. Note that
Ne
D ea<l,
qg=1
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and for each ¢ and any positive %,,

2
e_t//Tq

tm
dt —m2/7| ' =tm
/0 Tq 27'q =0
_L(l —th/’rq)
274
1
274

In the end, if we take €, = £; > 0, & = 7% and e, = 7, (2.3.29) yields

W oy + 2 O ||V+Z H%HwZ Z e |

2
Sn+1 Sr H
+ Opq v

4 1
<P VRl + (C+2 ORI + (% + 47(]) ol I
q=1

A\ Lo AC% o o112
G D L PR el Y e
m—1 m—1

£ [T I ey 8+ 80 3 IV iy + (O 1280 X 107
n=0

Finally, Gronwall’s inequality allows us to have for some positive C

m—1
AWl @) + 5 103" ||V+Z H%HwZZ

2
S”“ + 8
hq v

O(IWEI2 0+ ORI + ol + 505 Hf”HZ(Q)
n=0

—m—1112 _0 112 b
T PR Y PRy A T ) )
Furthermore, we also know

[Ty < lluolly and ||

Iy

by and therefore we have
m—1
AWy @ + S IUR G + Z - Isially + Z Z

HLQ(Q) < llwoll (0

2
Sn-‘,—l +Sn
hq v

§C< lwollZ, () + luoll + At Z HJMH;(Q) + H%”G’W!iwm
n=0
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R+ [ IOl )
U

Similarly, it is able to show the stability based on maximum valued without using
Gronwall’s inequality.

Theorem 2.16. There exists a positive constant C such that

P
B o W oy + % mas 1URI + z sl

Ny m—1

+q§::1n§::

SC( lwollZ, e + lluolly + 117 e 0.2 ae)) + 19N1Ts 0.7 Lo(m )

2
Sn—l-l Sn
H + Ohg 1%

2Tqapq

. 2
+ 9N T 0,7 L5(0n)) )7

form=1,...,N.

Proof. Recall (2.3.29)) and (2.3.30)) from the proof of Theorem Forany 1 <m < N,
applying Young’s inequality leads us to have

2
pIWEIF ) + 20 U ||V+Z \sthV+ZZ—HS”“+SﬁqHV
At n Atea
<P IWRl ey + (C+ 2 ORI + Z 17717 0 Wi oo
n=0
m—1
+ e D Wl + R ey + € IR
Ny 1
ST Nl gy o+ (Cat S AtZHUhHV L3 ) ol
g=1 ~1°¢

+(Cep +e) U3

for any positive €, €, €., €5 and €. where C is a positive constant from (2.1.13)). Also,
by the property of maximum and the positive definiteness of norms,

Ny m—1

PIWIIE @ +900HUhHV+Z Hshquv+zz H8"+1+3hq

qi n=

99



2 At - Atea
< [WRl 1y + €+ 2 OBy + Z 1717 WA Loy
n=0
N-1 o ,
|2 —m—
+ Ateq 2:0 HWhHLz( H 1HLQ(FN +CH NHL2 oy T Ed/ HQN )HL2(FN)dt/
n=
m—1
+(Caat 5)A 3 IV + +Z )l + (Con + ec) U3
2 At n
<p[WR 5y + (€ +2) TR + Z 17170
n=0
c —n |2 . 2 1 ke 1 2
5 +C 0B 198 2o ry) + CeallIN Ty 010000y + (ZC + 2 4Tq€e) l|uolly

1 €
+ AtGa <N -+ 2) maX HWh HLQ(Q (CGb + €c + CTﬁd + Té) ma‘<XN ||Uf:LHV .

If we consider the property of maximum, then we have
N

poina&XNHWh HL2 +<P0 max ||Uh\|v+z;% HS;LZH?/
q=

Ny m—1

i Z Z 27'6180

AR
zs(puwsuiz( R R ol
n=0

2
Sn+1 +Sn
hq v

N
1 11

C —n 12 .2
+ <€b + C) Ogglgajif(—l HQN”LQ(FN) + Ceq HQN”LQ(o,T;LQ(rN)) + (:C + Argee

) luoll

g=1

1 n|2 €e n||2
+ Ate, (N + 2) pax, Wil 7,0 + (Ceb +e.+CTeq+ T;) pmax, WUy )

Set €4, €, €, €g and €. by
14 _ 14

= = > 0,
‘T AU6N +3) 6T + 3At
%0 _ %o _ Yo
€ = 24C>O 63—24>0, 24C’T>0 and €, = —12T>0

then
3Ate, (N4 1) =2
€a 2) " 2
3

Yo , Yo , ¥o

3(Cep+ €.+ CTeqg+Tee/2) = (244_%4_%_‘_24)_%_
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Thus we have a positive constant C such that

P 2 2
B ngaSXN HWITLLHLQ(Q ? ogla<XN Uy HV + Z ‘S%HV
N«p m—1
n+1
DI I oo S5+
g=1 n=0

N-1

2 2 n

C( HW’?HLQ(Q) + ORIl + At D | f HiQ(Q) 0<mEN_1 IR 1 0
n=0

. 2 2
10N 12, oz + Huouv)-

Therefore, it is concluded that

B max H h”Lz(Q)—'_ max HUh”V—'_Z ’SIT{;Hi'

2 0<n<N 2 0<n<N
Ny m—1
8n+1 8
STkl

§C< HWOH%Q(Q) + [luoll} + Hf”%oo(O,T;Lg(Q)) + HgNH%OO(O,T;Lz(FN))

. 2
+ HQNHLQ(O,T;M(FN)) )’

when we use Ly, norms of f and gy in time and initial conditions,

1Ry < ol and W] ) < lwoll ey -

O]

Theorem and provide the stability bounds for fully discrete formula of
(P2) in terms of data so that the governing linear system (12.3.26)-(12.3.28)) can be solved

uniquely.

In a similar way with Theorem error estimates for (P2) would be introduced

and shown. First of all, let us define the following notations,
0 := u — Ru, X" = U} — Ru", w" =Wy — Ru",
vy = (g — R(y, Yy = 8p, — R, Vg e {1,..., Ny},

where u” = u(ty).
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Lemma 2.13. Suppose u € H*(0,T; H*(2)) N WL (0,T; H*(2)). Then there exists a
positive constant C such that

0SIEN 1=\ e + QDX x|, <C(RmnEFL=1 4 A2,

Furthermore, if our domain fulfils the condition of elliptic reqularity, we have

oax, 17|l 10 + pmax, x|, <O(Rmn Lo 1 Ag?),

Proof. This proof will follow the similar steps with those of Lemma and By
subtraction of (2.2.11)) from (2.3.22), we have for any v € V"

p(+ Wit -y ) ‘o (* Uy + U )
- ) 0 - 9
2
Lo2(Q)

At 2 2
Ny +1 n n+1 n
<Z; +Cq Shq +Shq
_ -0

,dn—l—l — WTL+1 —_Wnr un—l—l 4oy U“—H L yr

:>p< A A poa T
L2(Q2)
+§ia< G S S v) _p(u”“ —an @t v)
2 2 2 At 2 @)
So adding zeros leads
N,
p(n+1_ n ) _’_900 (n+1+n )+1i (Tn+1+Tn )
E w w ,v L () ?CL X X ,v 5 a q q,?}
q=1
14 ©o 1 o
=i 72 000) g+ e O 00 153 0 (T )
q=1
P ogn
+ At( 17/U)L2(Q)
_ P (i1 _gn n
At (9 ’U>L2(Q) TP E V)

for any v € V", where & (t) := ﬁ(HA;)M(t) — MHAAtg_u(t)

gives

, since Galerkin orthogonality
a(f,v) =0and a(vy,v) =0, Vg {1,...,N,}.

Xn+1 _Xn

If we put v = &—x;*~ with (2.3.16) here, we can obtain

n+1 n n+l _ . n
4 <wn+1_wn7w +w > +@a <Xn+1_|_Xn’X X >
La(92)

2 2 At
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+1 n
n+1 n X - X
T3 “(T ”q’m>

1Y n n n .
(s P P I N (N N

N,
1 - n+1 n . n+l n
+2At;a(Tq —|—Tq,x —X)
n-+1 L0 n+1 n B n n+1 n
2At (9 0 a +w >L2(Q)+ 2 (817w +w )LQ(Q)
n+1 moen _ P n+1 _gn eon
At (9 —0 ’52>L2(Q) At (0 0 ’53)L2(Q)
=P (&1 ) ) — PET E) () s (2.3.31)
where
Ex(t) — O(t+At)+6(t)  6(t+ At) —6(1)
A 2 At ’
u(t + At) —u(t)  u(t+ At) + u(t)
&ll) = At - 2 '

On the other hand, (2.1.21)) and (2.3.23) yield for any v € V"

‘nd1 - n+l +1 n+1
740 (C;”‘ 2+<3 - S i Sﬁq,“) o (Cg S +qu’”)

A 2 2

@ty gr Uptt - up
~Tavad > A Y

for any ¢ hence

L (= Tg0) (T ) = B (- )
T, 1 ©
*Aqta( i —V:;,U) 2a( n+1+u v) thqa(H”H —9",1})

+ 7qa (Eq7 ) Tapqa (€3, )
=Tq0Q (Eq,v) — Tgpqa (€5, v)

where for each ¢

Gyt + A0+ G(t) Gt + A0 = ()

Eqlt) = 2 At

. T”+1+T”
Here, we will set v = —+——2, then

ALt (=X Tt 4 1) ~2Aty, (HTqHHV - HTqu> 27404 gt +r HV
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- —a (B}, X0+ 7)) + a (&3, ot + 7).

Q‘Pq
(2.3.32)
By substitution of ([2.3.32) into (2.3.31]) and multiplication by At, it implies
p na12 n ¥ n+1|2 n
o Ui P A e S (G P )
N,
1 - 1 n 2 n n n
+§Z;<HTH1HV—\\Tq\\2)+AtZ ol VAR Al
g=1"1
_p ym+1 n n+1 n P n+1 n
2 (9 —Oh W e >L2(Q)+§At (&, ="+ ") Lo
m+1l _ An en m+1l _ gn eon _ n en
p(0m—oneg), p(e 0" E5) | o)~ PAEN ED e
n en At n n+1 n At o n n+1 n
—pAt(El,g?))LQ(Q)—I-?ZSOq a (B Tyt 4+ 15) = 5 D a (8.0 4+ 1)
q=1 q=1
(2.3.33)

Consider the summation of (2.3.33)) for n =0,1,...,m —1 when 1 <m < N. Then we
have

N, m—1 N
1Y m ®0 m 1 - m - 1 n n
5 =" ) + 75 X |r2v+2;HT Hv+At;Jquw e+ 3L
p 1 Ny pm
2 m " n n
=L ey + G I+ 52 T8I+ 5 3 (0 -t )
q= 1 n=0
m—1 m—1
P n _n+l n yn+1 Mmoo en
+2At;)(51’w THw )Lzm)_p; (4 6 752)@(9)
m—1 m—1
-p Z (QnH 0" 53) Lo(9) — pAt Z (5?7£§)L2(Q) — pAt Z (5?75§)L2(Q)
n=0 n=0 n=0
At ey ted
A Ly - A YeEmteon. e
n=0 g=1 n=0 g=1

As following the proof of Lemma[2.10 we can consider each component of the right hand
side of ([2.3.34). Let » = min(k + 1, s).

° HWOHLQ(Q) .
||,y = O™ ).

¢l O
Il =
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o HTSHV for each ¢

|9][,, = 0 by initial condition.

. mZ:I (9’”“ _én’wn+1 —l—w”)

n=0 La2(£2)
m-1 . 1 19 .
(9n+1 _ en,wn-‘rl + w”) < 0‘ + 2¢,T max HwJHL @
n=0 L2(Q) ~ 2¢€q Lo(0,T;L2(9)) 0<j<N 2
1 2(7"—1) j 2
SEOUL )+ 26aT0I§I;a§)§V Hw HLQ(Q)
for any positive ¢,.
m—1 1
n n n
. At ng() (51 » & tw )Lz(Q)
m—1 T ) 2
n n+1 n < j ;
At nz_;] (=" + ") 1,0 =06, 0<JEN—1 Hgl HL2(Q) + 26bTOI§njag§v |= HL2(Q)

T -
STE[,O(A#) + 2¢, T Ogaé)?\[ HwJHLQ(Q)

for any positive €.

E (), )

L2 (Q Lo(Q)
[ . 14102 T 12
S 1), S o
o La(Q) — 2 L2(0,T;La2()) 2 0<j<N-1 La(Q)
SO(h2(T_1) —|—At4),
and
m—1
. . 14102 T 12
S 1), S o
o La(Q)) — 2 L2(0,T;L2()) 2 0<j<N-1 La(Q)
<O(h*r=1 4 Ath).
m—1 m—1
o« —AUY (61 L) —At L (L E L)
m—1
n on Z 7 2 Z 7 2
—al ;:0 (E1565) 1y0) = 2 0<jeN -1 Hgl‘ La(Q) *3 0<FEN -1 HgQ‘ La(@)
<0(AtY),
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and

Atm—l en gn <T gj 2 T gj 92
_ 7;) ( 1-,¢3 )Lz(ﬂ) —5 ngjngaﬁfiil H 1 La(Q) 5 Ogrjngaﬁfifl H 3 Lo () )
<O(Ath).
m—1 N<,0 1 1 m—1 th )
©AtD 250 (EP, Y0+ 4+ 7)), —At > Zla(gg’Tng +17)
n=0 qg= n=0 q=
m—1 Ny m—1 Ny
At Z Z—a (B2, 4+ 17 <At Z Z 1 HEnHV et )
n=0 g= 1 n=0 q= 1

(by Cauchy-Schwarz inequality)
m—1 Ny

<At Z Z 2%1 H q HV

n=0 g=1
m—1 Ny ¢ N
+AtY > St gl
n=0 g=1
(by Young’s inequality)

N—1 Ny
<MY S o)
n=0 g= 1
m—1 Ny c )
+ary > S+ Tl
n=0 q=1
(.- m < N for the first term)
N‘P
<y L Lo
— ¥Pq “€q
m—1 Ny
Ay S A+
n=0 ¢g=1
o Bl = O(ar).
In the same sense
m—1 Ny
ALY > a (B0 ) <TZ O(Ath
n=0 g=1
m—1 Ny ¢ )
+Aary S et gl
n=0 g=1

(o 1By, = O(At?).
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While we choose €, = 5k, € = 547 and ¢, = ﬁ for each ¢, (2.3.34]) yields

1 N‘P m—1 N<p 1
Sl e + S+ 5 30 S I+ 80 Y S0 o+ Tl
q=1 n=0 g=1
P m—1 Ny 1
<1302 1= oy + A0 Zi [T+ rn|[3 + O(R2 Y + At
T n=0 ¢=1
so that
1 N‘/’ m—1 N«p
Sl ey + I+ 5 30 I+ 8 S0 oy Tl
q=1 n=0 ¢g=1
p

<15 gax, ]I, q) + OBV + At).

Taking into account maximum

N
© 112 1 1 2
5 max [0+ ;Og%\\x]\\v+2qzl%\\l’?\\v
m— lN‘P 1
1
A S T

p 12 .
=3 (12 051N HWJHLQ(Q) +O(R*) + At4)) :

Then we have

N,
P 12 © ) 1 £ 1 2
s I e+ 5 IR+ 3 30 el
m—1 Ny 1
+ At HT"+1+T”H
;;47'@ 4
<O(R2=1 1 AtY),
therefore,
O%%%VHWJ'HLQ(Q)-i-O%i%VHX |, <C(RUD + AL),

for some positive C.

Additionally, if we have elliptic regularity, (1.4.9) allows us to obtain

|
L

< Chn"

o) I Ly (0,130 () —
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for some positive C', thus

Ogljzg\/ ij”Lz(Q) +0r§%}§\7 HXij <C(h" + At?),

for some positive C. 0

From this lemma, we can observe Ly estimates of the velocity and energy estimates
of the displacement in a similar way with Theorem

Theorem 2.17. Suppose u € H*(0,T; H*(Q)) N Loo (0, T; H*(Q)). Then we have

N _717J < min (k+1,s)—1 2
Og%vuu(t]) UhHV < C(h +AR)

and

< C(hmin(k—l-l,s)—l +At2)

max Hu(tj) — W,{) ()

0<j<N

for some positive C'. In addition,

< C(hmin(k+1,s) + AtQ)

max Hu(tj) — W,JL‘ (@)

0<j<N

if elliptic reqularity is provided.
Proof. From Lemma [2.13] it is provided that

o (15 [0 o gmax [l < Cmm o=t 4 Ar)

for some positive C. Hence, as following the proof of Theorem [2.14] it is given that

max
0<j<N

‘u(tj) - U}’jLHV Sc(hmin(lﬁrl,s)fl +At2)
and

<C(hrnin (k+1,s)—1 + AtZ)
L2 ()

nes —Wj’
og%vHu(]) h

for some positive C'. Also,

SC(hmin (k+1,s) + At2)

max Hu(tj) — W}JL‘ (@)

0<j<N

with elliptic regularity. Thus our claim is shown. O

Corollary 2.2. Under same conditions as Theorem there exists a positive constant
C' such that

< C(hmin(k+1,s)—1 —l—AtQ).

max Hu(tj) - Ui‘ (@)

0<j<N

1If elliptic reqularity is given, it shows

max Hu(tj) - U,Jl‘

< C(hmin(k+1,s) —|—At2).
0<j<N

La(Q)
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Proof. The proof parallels to that of Corollary but instead of using the result from
Theorem here Theorem is applied. O

By Theorem and Corollary we can observe the error estimates of the dis-
placement and the velocity for (P2) with respect to Ls norm as well as the energy norm
in space. Indeed, since the energy norm is equivalent to H' norm in space, we gain H'
error estimates too.

Regardless of the form of internal variables, error estimation theorems for (P1) and
(P2) describe same error convergence rates. Hence we will check this result by numerical
experiments.

2.4  Numerical Experiments
Before carrying out our experiments, let the exact solution u be
u(z,y,t) = e ' sin(zy)

on the unit square (z,y) € [0,1] x [0,1] and ¢ € [0, 7] where T' = 1. Hence our domain §2
satisfies the condition for elliptic regularity since €2 is a polytopic domain [11] so elliptic
regularity is given on our domain. The Dirichlet boundary condition is given by

u=0ifx=0o0ry =0, Vt.
While we set

Yo = 05) Y1 = 017 P2 = 04)
71 = 0.5, ™9 = 1.5,

and we suppose p = 1 and D = 1, internal variables 1, and ¢, for ¢ = 1,2, the source
term f and the Neumann boundary condition g, are governed by the our primal problem.
Then our exact solutions satisfy all conditions for stability bounds and error bounds.
In other words, our exact solutions are sufficiently smooth in time and with respect
to the domain €. Furthermore, our domain, the unit square, gives elliptic regularity.
Finally, the code implementation is constructed by the finite element library FEniCS
which allows us to get the powerful and useful computing platform.

(Test 1) As a first stage, we shall check the exactness for our code implementation.
Let us define

e, = u(ty) — U} and €y = u(t,) — Wy

where N € N, At = T/N and t,, = nAt for n = 0,..., N. Regardless of V", if we set
u = x + y + t> without internal variables, that is wg = 0,Vq = 1,2, the error should
be zero since our error estimates theorems indicate more than first order accuracy with
respect to the spatial mesh size h and second order accuracy in time step At. As shown
in Table the errors are sufficiently small even if h and At are quite large so that we
can conclude that our codes are equipped with exactness.
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Cho A ey ] e e | e e |
1/2 172 || 4.3147 x 1071 | 5.3779 x 10~ [ 2.0207 x 10~
1/4 1/4 | 8.2422 x 10714 | 9.2163 x 10714 | 3.7541 x 10~ 14
1/8 1/8 | 3.9651 x 10713 | 2.8720 x 10713 | 1.7180 x 10713

Table 2.1: Errors at k =1 for u = x + y + t2

(Test 2) If we set u = e !(x + y) with ¢ = 0.1 and s = 0.4, due to the exactness the
errors should have second order convergence rate in time steps but it is also independent
of h. This can be observed in Table and More precisely, in Table the
errors has decreased to quarter when At has halved, which implies the convergence
order is 2. On the other hand, though h becomes smaller, the convergence of error
is not shown. Table indicates that even if the time step is significantly small, the

domain mesh size has no effect on the errors.

Therefore in this case we can conclude

that [leif [yl 1, apsllen ], ) = O(AE).
b A eIl [P lea 1)
1/4 || 3.7885 x 1073 8.8124 x 1073 1.6380 x 10~
1/4  1/8 | 1.0240 x 1073 (1.89) | 2.2092 x 1073  (2.00) | 4.4722 x 10~* (1.87)
1/16 || 2.6274 x 104 (1.96) | 5.5361 x 10~* (2.00) | 1.1278 x 10~* (1.99)
1/4 || 3.8149 x 1073 8.8375 x 1073 1.6187 x 1073
1/8 1/8 || 1.0173 x 1073 (1.91) | 2.2033 x 103  (2.00) | 4.4155 x 10~% (1.87)
1/16 || 2.5549 x 1074 (1.99) | 5.5225 x 10~* (2.00) | 1.1278 x 10~* (1.99)
1/4 || 3.8474 x 1073 8.8428 x 107° 1.6138 x 1073
1/16  1/8 || 1.0252 x 1072 (1.91) | 2.2021 x 10~%  (2.00) | 4.4015 x 10~*  (1.87)
1/16 || 2.5661 x 10+ (2.00) | 5.5081 x 10~* (2.00) | 1.1240 x 10~* (1.99)

Table 2.2: Errors at k =1 for u = e !(z + y)

L Tl len oy [ lenlliue |
1/4 || 6.9856 x 1078 | 1.4221 x 10~" | 3.0189 x 10~°
1/8 || 6.8304 x 1078 | 1.4207 x 10~7 | 2.9703 x 1078
1/16 || 6.7354 x 1078 | 1.4179 x 10~" | 2.9581 x 1078
1/32 || 6.7048 x 1078 | 1.4162 x 1077 | 2.9573 x 1078

Table 2.3: Errors at k=1 and At = 1/1000 for u = e~ '(x + y)

(Test 3) However, when we consider u = tsin(xy) without internal variables, the error
convergent rates depend only on h. For example, as following the theorems, e}]y HV =
O(h), HéhNHLQ(Q) = O(h?) and HG;LVHLQ%: O(h?) where k = 1. The numerical con-

vergence order of h is shown in Table But it is not seen that the errors has been
reduced as At has changed. To be specific, if we suppose h is sufficiently smaller than
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At, the error convergence is not observed with respect to change of At in Table

As a result the error estimates are given as HehNHV = O(h HehNHLQ(Q = O(h?) and

HehNHLQ(Q) for v = tsin(zy) where k = 1. Furthermore, if we do not assume ¢, = 0,
errors regarding time steps occur. By the definition of internal variables, integration of
exponential functions is included so that it is required to use numerical approximations
for calculation of these exponential functions. In other words, it loses the exactness for
this case. It can be seen in Table For HehN HV, since h is not negligible, it is not clear

to find the convergence with respect to At, however the second order convergent rates

are observed for Heh HL and Heh HL on Table
LAt ] eIy [N le |y |
1/4 ]} 1.2029 x 107! 1.0202 x 102 7.1642 x 1073
1/4 1/8 || 6.0817 x 1072 (0.98) | 2.7633 x 1073 (1.88) | 1.8611 x 1073 (1.94)
1/16 || 3.0509 x 10=2  (1.00) | 7.0892 x 10~* (1.96) | 4.7085 x 10~* (1.98)
1/4 || 1.2027 x 107! 9.8821 x 1072 7.1406 x 1073
1/8 1/8 || 6.0817 x 1072 (0.98) | 2.6471 x 1073 (1.90) | 1.8726 x 1073 (1.93)
1/16 || 3.0509 x 1072  (1.00) | 6.8225 x 10~*  (1.96) | 4.7460 x 10~* (1.98)
1/4 || 1.2026 x 107! 9.8599 x 1073 7.1117 x 1073
1/8 1/8 || 6.0816 x 1072 (0.98) | 2.5786 x 10~3 (1.90) | 1.8694 x 103 (1.93)
1/16 || 3.0509 x 1072  (1.00) | 6.6630 x 10~* (1.96) | 4.7497 x 10~* (1.98)

Table 2.4: Errors at k = 1 for u = tsin(zy)

LA ey len Tpue | Nen Nl |
1/4 || 1.5275 x 1073 | 1.7893 x 10=¢ | 1.1830 x 10~°
1/8 || 1.5275 x 1073 | 1.7342 x 1075 | 1.1929 x 10~¢
1/16 || 1.5275 x 1073 | 1.6955 x 1076 | 1.1944 x 10~¢
1/32 || 1.5275 x 1073 | 1.6794 x 1076 | 1.1945 x 10~

Table 2.5: Errors at kK =1 and h = 1/320 for u = ¢sin(zy) without internal variables

| At e 1l [ e ], o) |
1/2 || 2.6616 x 10~3 2.0240 x 1073 9.9014 x 10~*
1/4 || 1.0350 x 103 (1.36) | 5.2150 x 10~* (1.96) | 2.8293 x 10~* (1.81)
1/8 || 7.8432 x 107* (0.40) | 1.3114 x 10~*  (1.99) | 7.3287 x 10™° (1.95)
1/16 || 7.6509 x 10~ (0.04) | 3.3054 x 1075 (1.99) | 1.8603 x 1075 (1.98)

Table 2.6: Errors at k =1 and h = 1/640 for u = ¢sin(zy) with internal variables

Turning to the main experiment, let us consider u(z,y,t) = e~

the above experiments and the theorems, }eh HV, He ‘

sin(zy). As following
Lo(Q) and Heh HLQ(Q become
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O(h* + At?), O(h**1 + At?) and O(RF*1 + A#?) respectively, since s = co. As analysed
the following Tables and the convergent orders are given as

en]],, = O(h+ At?), |jey = O(h? + A#?), and [|ef) ||, o) = O(B® + A),

Iz
for the both formulations. On the other hand, if we assume our test function space such
that be a set of piecewise quadratic polynomials then the orders of the convergence rates
would increase with respect to h but the orders for At are same as 2. As seen in Tables
and the diagonals indicate the second order convergent rates. To see higher
order in space, a significantly small At allows us to observe that

Heiszv = 0(h?), ’é;lVHLQ(Q) = O(h%), HehNHLQ(Q) = O(h%),
on Tables [2.9] and With combining all results, we have
len’ ||, = O(h* + At?), \éhNHLQ(Q) =O(h* + At?), }ehN}|L2(Q) = O(h® + At?),
for k = 2.

In conclusion, our two formulations (P1) and (P2) provide appropriate numerical
results with respect to error estimates theorems. To be described in details, the energy
estimates are given by O(hmin(””l’s)_1 + At?) and Lo estimates with elliptic regular-
ity follow O(h™n(+15) 1 A¢2). All numerical experiments are important evidence and

examples of Theorem Corollary and

lex’ v

N 1/4 1/8 1/16 1/32
1/10 | 1.8081 x 1072 1.7944 x 1072 1.7936 x 1072 1.7935 x 102
1/20 | 9.2785 x 1073 9.0035 x 1072  8.9854 x 1073 8.9844 x 1073
1/40 | 5.0622 x 1073 4.5348 x 1073 4.4971 x 1073 4.4948 x 1073
1/80 | 3.2388 x 1073 2.3279 x 1073  2.2528 x 1073  2.2480 x 1073
1/160 | 2.5893 x 1073  1.2772 x 1073 1.1342 x 1073 1.1245 x 103

SN
Heh HLQ(Q)

b At 1/4 1/8 1/16 1/32
1/10 | 4.3081 x 1073 1.7857 x 1072 1.1475 x 1073 9.9722 x 10~*
1/20 | 3.6276 x 1073 1.0830 x 1073  4.4689 x 10~* 2.8818 x 10~*
1/40 | 3.4599 x 1073 9.0966 x 10~* 2.7070 x 10~* 1.1158 x 10~*
1/80 | 3.4182x 1073 8.6689 x 1074 2.2749 x 10~* 6.7658 x 107>
1/160 | 3.4078 x 1073 8.5625 x 10~ 2.1681 x 10~* 5.6878 x 10~°
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HehNHLg(Q)

2 1/4 1/8 1/16 1/32
1/10 | 4.7709 x 10~*  3.6395 x 10~* 5.1613 x 10~* 5.5879 x 10~*
1/20 | 8.0626 x 107* 1.3246 x 107*  9.0652 x 107° 1.2971 x 1074
1/40 | 9.0416 x 107*  2.1667 x 107*  3.3979 x 107° 2.2650 x 10~°
1/80 | 9.2915 x 107*  2.4084 x 107* 5.5125 x 107°  8.5486 x 1076
1/160 | 9.3543 x 107 2.4695 x 10~* 6.1149 x 107° 1.3841 x 10~°

Table 2.7: Numerical errors of (P1); u(z,y,t) = e 'sin(xy) where k = 1

el

N 1/4 1/8 1/16 1/32
1/10 | 2.3664 x 1073 7.2192 x 10~%  4.1995 x 10~* 3.9285 x 10~*
1/20 | 23351 x107% 6.1532 x 10~* 1.8307 x 10~* 1.0735 x 10~*
1/40 | 23330 x 1072 6.0759 x 107*  1.5525 x 10~*  4.6005 x 10~°
1/80 | 2.3329x 107 6.0708 x 107*  1.5330 x 10~*  3.8900 x 10~°
1/160 | 2.3329 x 107®  6.0705 x 10~* 1.5317 x 10~*  3.8406 x 10~°

N
Heh HLQ(Q)

S 1/4 1/8 1/16 1/32
1/10 | 3.4051 x 1073 8.5355 x 10~% 2.1414 x 10~* 5.4382 x 1077
1/20 | 3.4044 x 1073 8.5276 x 107* 2.1332 x 107* 5.3381 x 107°
1/40 | 3.4043 x 1073 8.5271 x 10~* 2.1327 x 10~* 5.3329 x 107°
1/80 | 3.4043 x 1073 8.5271 x 1074 2.1327 x 107* 5.3326 x 10~°
1/160 | 3.4043 x 1073  8.5271 x 10~* 2.1327 x 10~* 5.3325 x 10~°

N
leR HLQ(Q)

2 1/4 1/8 1/16 1/32
1/10 | 9.3703 x 10~%  2.4859 x 10~%  6.2878 x 107> 1.6085 x 10~°
1/20 | 9.3750 x 107*  2.4901 x 10~* 6.3163 x 107° 1.5837 x 10~°
1/40 | 9.3753 x 107%  2.4904 x 10*  6.3190 x 107> 1.5854 x 107>
1/80 | 9.3753 x 107%  2.4904 x 10~* 6.3191 x 107° 1.5856 x 10~°
1/160 | 9.3753 x 107%  2.4904 x 10~* 6.3191 x 10~° 1.5856 x 107>

Table 2.8: Numerical errors of (P1); u(z,y,t) = e 'sin(zy) where k = 2
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N N N
h en Hv & HL2(Q) en HLQ(Q)
1/4 || 2.2557 x 103 8.1101 x 107 6.9417 x 107
1/8 || 6.0301 x 10~* (1.90) | 1.0491 x 10~® (2.95) | 9.2260 x 10=¢ (2.91)
1/16 || 1.5566 x 10~*  (1.95) | 1.2803 x 1075 (3.00) | 1.1954 x 1076  (2.95)
1/32 || 3.9526 x 107> (1.98) | 1.6466 x 107 (3.00) | 1.5241 x 10=7 (2.97)
Table 2.9: Numerical errors of (P1); u(z,y,t) = e !sin(zy) where k = 2 and At =
1/1200
N
e[l
S 1/4 1/8 1/16 1/32
1/10 | 1.8442 x 1072 1.7990 x 10~2  1.7939 x 10~2 1.7936 x 102
1/20 | 1.0000 x 1072 9.0901 x 107>  8.9912 x 103  8.9847 x 1073
1/40 | 6.3006 x 107*  4.7033 x 107  4.5091 x 103 4.4955 x 10~
1/80 | 4.9599 x 107*  2.6410 x 1073  2.2769 x 107% 2.2495 x 10~*
1/160 | 4.5635 x 1072 1.7852 x 10™*  1.1815 x 103  1.1277 x 10~3
SN
I HLg(Q)
2 1/4 1/8 1/16 1/32
1/10 | 1.1624 x 10~2  3.6501 x 1073 1.6242 x 10~3 1.1075 x 1073
1/20 | 1.0928 x 1072 2.9619 x 1072  9.1773 x 10~* 4.0630 x 10~*
1/40 | 1.0756 x 1072 2.7927 x 1072 7.4330 x 107%  2.2934 x 10~
1/80 | 1.0714 x 1072 2.7507 x 1072  7.0032 x 10~* 1.8590 x 10~*
1/160 | 1.0703 x 1072 2.7402 x 1073 6.8964 x 10~ 1.7518 x 10~*
N
Heh HLQ(Q)
S 1/4 1/8 1/16 1/32
1/10 | 1.0124 x 1073 24818 x 10~%  4.4425 x 10~*  5.3869 x 10~*
1/20 | 1.4149 x 1073  4.1863 x 107*  6.2463 x 107> 1.1092 x 10~*
1/40 | 1.5225 x 1073 5.1433 x 107*  1.1584 x 10~* 1.5761 x 107°
1/80 | 1.5497 x 1073 5.3921 x 107* 1.3961 x 107* 2.9672 x 10~°
1/160 | 1.5566 x 1073 5.4548 x 10~* 1.4574 x 10~* 3.5603 x 10~°

Table 2.10: Numerical errors of (P2); u(z,y,t) = e !sin(xy) where k = 1
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lea v

N 1/4 1/8 1/16 1/32
1/10 | 4.4414 x 1073 1.4420 x 1073 5.3452 x 10~* 4.0173 x 10~*
1/20 | 4.4246 x 1072 1.3908 x 1072  3.7811 x 10~% 1.3620 x 10~*
1/40 | 4.4235 x 1073 1.3874 x 1073 3.6542 x 107*  9.5601 x 10~°
1/80 | 4.4234 x 1072 1.3871 x 1072 3.6459 x 10™% 9.2395 x 107°
1/160 | 4.4234 x 1073 1.3871 x 1073  3.6454 x 10~* 9.2188 x 10~°

SN
I HLQ(Q)

NS 1/4 1/8 1/16 1/32
1/10 | 1.0700 x 1072 2.7375 x 10~3  6.8693 x 10~* 1.7252 x 10~*
1/20 | 1.0699 x 1072 2.7367 x 1072 6.8614 x 10~* 1.7168 x 10~*
1/40 | 1.0699 x 1072 2.7367 x 1072  6.8609 x 107* 1.7163 x 10~°
1/80 | 1.0699 x 1072 2.7367 x 1072  6.8608 x 10~* 1.7163 x 107°
1/160 | 1.0699 x 1072 2.7367 x 1072  6.8608 x 10~* 1.7163 x 10~°

N
en HLQ(Q)

S 1/4 1/8 1/16 1/32
1/10 | 1.5582 x 1073  5.4708 x 10~* 1.4738 x 10~* 3.7453 x 107°
1/20 | 1.5588 x 1073 5.4754 x 107*  1.4777 x 107*  3.7617 x 107
1/40 | 1.5588 x 1073 5.4757 x 107*  1.4780 x 10~* 3.7641 x 107°
1/80 | 1.5588 x 1073  5.4757 x 107%  1.4780 x 10™*  3.7643 x 10~°
1/160 | 1.5588 x 1073 5.4757 x 10~* 1.4780 x 10~* 3.7643 x 10~°

Table 2.11: Numerical errors of (P2); u(z,y,t) = e tsin(xy) where k = 2

N SN N
h BN I HLg(Q) len HLg(Q)

1/4 || 2.2557 x 1073 8.1098 x 10~° 6.9419 x 10~

1/8 || 6.0301 x 10~* (1.90) | 1.0489 x 10~° (2.95) | 9.2266 x 1076 (2.91)

1/16 || 1.5566 x 10~* (1.95) | 1.2794 x 1075 (3.04) | 1.1957 x 1076  (2.95)

1/32 || 3.9526 x 107> (1.98) | 1.6269 x 107 (2.98) | 1.5226 x 107 (2.97)
Table 2.12: Numerical errors of (P2); u(z,y,t) = e 'sin(zy) where k = 2 and At =
1/1200

Summary

In this chapter, we used CGFEM for scalar wave equations with two types of internal
variables; (P1) and (P2). The semidiscrete formulations and the fully discrete formu-
lations have been introduced, and the existence and uniqueness of the solutions have
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been shown by stability bounds. In particular, using the concept of Lo, norm in time
and maximum with respect to time rather than using Gronwall’s inequality, we have the
constant bounds increasing in the final time but not exponentially. In the error estim-
ates theorems, we can observe Ly estimates and H!(or energy) estimates with respect
to the mesh size h and the time step At. It is also verified in a number of numerical
experiments. The convergence rates of time are fixed as At?> whence Crank-Nicolson
finite difference method is applied to time discretisation. On the other hand, elliptic
projection leads us to have the optimal error convergence rates with respect to the spa-
tial mesh size. Hereafter, we will use DGFEM for spatial discretisation. Most techniques
are almost same as CGFEM to prove stability bounds and error bounds but details are
slightly different.
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Chapter 3

DGFEM to Scalar Wave Equation with
Memory

3.1 Model Problems with DGFEM

In the previous chapter, we have focused on CGFEM to solve the wave equation with
internal variables in two ways. From now on, we are going to deal with the same model
problems but use DGFEM. In the same sense with CGFEM, we will define variational
problems with respect to the displacement form and the velocity form and derive semi-
discrete formulations and fully discrete formulation, respectively. At the same time,
stability bounds and error estimates would be also introduced and proven.

For a variational form, let us suppose s > 3/2 for s € N and &, is a quasi-uniform
subdivision of §2. Then we can define DG bilinear forms a. : H*(&) x H*(&,) — R by
for any v,w € H*(&p,)

ae (v,w) = Z /EDVU -Vw dE — Z {DVv - n.}wlde

Ecé&), ecTpUl'p V€

+e > [{DVw-n}plde+ JgO (v, w),

eCcl'pUl'p €
interior penalty jump penalty
where € € {—1,0,1} and JEOP (v, w) = 3 |eol‘go [ [v][w]de. If € = —1, the bilinear

eCl'p Ul'p
form is symmetric called SIPG, otherwise, it is nonsymmetric which is called NIPG for

e =1 or IIPG for e = 0. Then we can denote a;(-,-), ao(+,-), and a_1(-,-), respectively.

Remark In 1970s, Wheeler [20] introduced SIPG with large enough «y for stability. We
refer to estimation of penalty parameters in [58]. NIPG was used for elliptic problems
in [2I]. More applications of NIPG for hyperbolic problems were seen in [23]. On the
other hand, we can observe IIPG for transport equation by Dawson, Sun and Wheeler
[59]. For unified analysis of DG, see [60].
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3.1.1 Displacement Form

Recall the model problem (12.1.1)-(2.1.5) and (2.1.7)).

pi—V.-o=f in (0,7] x Q,
u = on [0,T] x I'p,
g-n=gnN on [0,7] x I'n,
U = U on {0} x Q,
U = wo on {0} x €,
and
N‘P
c=DV [u=>) v,
q=1

We assume the strong solution satisfies
u € H?(0,T; Ly(Q)) N HY0,T; C%()).
We will use DG bilinear forms to derive the variational formula corresponding to (2.1.1)).
Also, the linear form will be given as
Fy(tv) = / fwae+ 3 [vgn(t) de
Q eCl'n €

for any v € H*(&). Then we could obtain the following variational problem. When we
suppose

Tgha(t) 4 y(t) = u(t), ¥e(0) = 0,Yg € {1,...,N,}, Vt,

the weak problem is given by:
(Q1) Find u and {v, L]]V:“"l such that for all v € H*(&p)

NW
(Pii(t), v) ) + a1 (u(t),v) — Za_l (q(t),v) + ngo,ﬁo (u(t),v) = Fy(t;v), (3.1.1)
q=1

a1 (rgtha() + $a(8),v) = pga_1 (u(t),v), (3.1.2)
u(0) = wo, (3.1.3)
(0) = wy, (3.1.4)

where 1)4(0) = 0,Vq € {1,..., N,}. In order to verify our claim, let us prove that (Q1)
is the variational problem of (2.1.1)-(2.1.5).
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Theorem 3.1. Let s > 3/2 for s € N. Suppose u( ) and {14t ) *, are the solution

satisfying (2.1.9), (2.1.2)), (2.1.10), (2.1.4) and ( which belong to H*(&) for any
t. Then the solution satisfies (3.1.1))-(3.1.4)).

N
Proof. Let z(t) = u(t) — > 94(t). For an element E € &, it satisfies
=1

—(V - DVz(t),v)1,p) = (DV2(t), VV) 1y(E) — Z /UDVZ t) - ne de.
eCOE"”*®

IfecC Iy,
/vDVz(t) ‘ne de = /vgN(t) de.

For faced elements Iy and Fy with common side e 2 and the normal vector TNy from
E1 to EQ,

—/ V-DVz(t)v dE = DVz(t) - Vv dE + DVz(t) - Vv dE
F1UE> F1 Eo
— Z /UDVZ -1 de
eCI(E1UE?)

—/ v|p, DV2(t) - ne, , de

€1,2

- / ol DV=(t) - (— e, ) de
€1,2

= [ DVz(t)- Vv dE + DVz(t) - Vv dE
E1q Es

_ Z /vDVz M de—/ [v]DV2(t) - ne, , de

eca F1 UEQ €1,2

by the definition of jump. Moreover, note that for continuous u on £ U FEy with common
side e,

[ul(x) = (u|p)(®) — (u]p,)(x) =0 forx € e
and

(@) = UE)D U@ _ ) () for a € e

Since u(t) € C*(Q), so is 1y(t) Vg € {1,..., Ny}, Vt. This yields

—/ V-DVz(t)v dE = | DVz(t)- Vv dE + DVz(t) - Vv dE
F1UFE> FE1 Fs
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- Z vDVz(t) - ne de
eCO(E1UE,) "~ ¢

- / W{DV(t) - 00, } de

e1,2

+ / (O{DVv 0, } de

N¢
* Z [Vg(){DVv - ne, ,} de,
q=1

e1,2
since
{DVz(t) - 1te, , } = DV2(t) - ne, , and [u(t)] = 0 = [1he()], Vg € {1,..., Ny},
for any « € e1 2. As reminding the definition of I'y, it is indicated that
0 UE =0Q=IpuUly,
Eeé&y,

and the set of common side elements is I';,. From the above results, (2.1.9) can be
rewritten as, by multiplying by v and integrating,

(Pii(t), v) 1) + Z /EDVz(t) -Vv dE — Z vDVz(t) - ne de

Ec&y, ecI'p 7€
— Z /vDVz(t) ‘ne de — Z {DV2z(t) - ne}tv] de
eCly “ ¢ eclp V€
= (pii(t),v) ) + Z / DVz(t) - Vv dE — Z vDVz(t) - ne de
Ecé&y, E ec'p V€
- > /vDVz(t)-ne de — Y /{sz(t)-ne}[u] de+ Y [[u®){DVv-nc} de
eC'y V€ ecly, V€ eCTy "€
N
+3°3 WDV} de

q=1 eCl'y, €

(o [u@®)] =0, [1q(t)] = 0, Vq)
= (pii(8), ) oy + 3 /E DVa(t) Vo dE— 3 [{DVa(t) - nc}fe] de

E€Ep 0
_ Z /vgN(t) de — Z /{DVz(t)-ne}[v] de + Z [w(t)]{DVo - n.} de
eCly “ € eIy, € T, e
A%
£33 [ gDV - 1} de

g=1eCl'y, €
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("." definition of jump and average on I'p and DV z(t) - ne = gn(t) on e C I'y)

= (pii(t), U)L2(Q) + Z /EDVZ(t) -Vov dE

Eet&y,

- Z/vg]v(t) de— 3 [(DVe(t) n.}o] de

eCl'y eCTpUl'p V€

Ny
+ Y [u®UDVv-ntde+d " Y [[g(t){DVv-nc} de

eCl'pUl'p € q=1eCl',Ul'p €

(". Dirichlet boundary condition.)
= (f(t), U)LQ(Q) :

So, we obtain

(Pi(t),0) i + 3 /E DV:(t) Vo dE— Y / (DV(t) - o} o] de

Ec&;, eCl'pyUI'p €
Ny
+ Y / wOHDVe-ny de+Y S [[aH{DVo - 0.} de
ecT,Ul'p V€ g=1ecT,uUl'p V€

- (f(t)v U)LQ(Q) + (gN(t), U)I‘N :

Furthermore, by the definition of the jump penalty operators,

T = 3 o [ de <o,

eCl',Ul'p

J[‘))‘OﬁO(Z(t),v) = Z ’;Tgo /[z(t)][v] de =0,

eCl'p,Ul'p

since u(t), z(t) and Vz(t) are continuous on € and so [u(t)], [z(¢t)] =0 on Ve C T, UTp,
[DVz(t) - ne] = 0 on Ve C I'j,. Therefore we have

Ny
(pii(t),0) 1) + a1 (u(t),v) = Y a1 (P(t),v) + I3 (alt), v)
q=1

= (pii(t), v) i) + Y /E DVz(t) Vo dE— ) / {DVz(t) - ne}[v] de

Ecé&;, ecTUl'p V€
NW
. / DV 0} de+Y S [ (O{DVY 0.} de
eCTUl'p V€ g=1ecTUI'p V€

+ J§OP (a(t), v) + T (2(t), v)
= (f (1), U)LQ(Q) + (gn (1), U)FN = Fy(t;v).

Hence (3.1.1)) is satisfied.
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On the other hand, since a_j (-, -) is a well-defined bilinear form if u; = ug
a—1 (uy,v) = a—q (ug,v), Yo € H*(E).
By the definition of v, (2.1.8) always holds for each ¢ so that it is also true that

a1 (rqtha(t) + (1), v) = a1 (pqu(t), v).
OJ

(3.1.1) is the main equation to solve the variational problem (Q1) but (3.1.2) is an
auxiliary equation which is governed by the definition of displacement internal variables.

Note that DG bilinear form deals with only discontinuity of u and internal variables, i.e.
we cannot control discontinuity of @ over interior edges. However, use of jump penalty of
1 resolves this issue and will manage non-symmetric part of the bilinear form for stability
and error bounds later. Also, we consider NIPG for u and SIPG for internal variables.
This imposes challenging difficulty on our weak problems such as non-symmetry. Indeed,
using SIPG and the strong form of auxiliary ODEs allows us to show stability and error
analysis more easily but we restrict ourselves to prove it in a more difficult manner.

3.1.2 Velocity Form
We can also introduce an alternative formulation of (Q1) by using (, as

qu(t) = @qu(t) - Soqe_t/TqUO - <q(t)7 Vge{l,... 7Nap}-

Note that the definition of ¢, gives 7,{,(t) + (4 (t) = pq7,u(t) by integration by parts.
Replacing 14 by (g4, the velocity form is given as
(Q2) Find u and {Cq}flvz“"l such that for all v € H*(&p)

N
(pii(1),v) 1, () + woar (u(t),v) + Za,1 (Cq(t),v) + ngo,b’o (u(t),v) = Fy(t;v), (3.1.5)
q=1

a1 (7aalt) + Go(0),0) = ay (rapqit), o) (3.1.6)
u(0) = up, (3.1.7)
(0) = wp, (3.1.8)
where (4(0) =0,Vq € {1,...,N,} and
Ny
Fy(t;0) = (f(1),0) 0y + (98 (), 0)py — D @ge”™ar (uo, v).
q=1

It is easy to check (Q2) is the weak problem for our primal problem. By replacing 1,
by (4 for all ¢ in the strong form, we have

N

pii(t) = V- DV | pou(t) + > (pqeTrug + (1)) | = f(2)
q=1
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so that

N, N,
pii(t) — V- DV [ pou(t) + > ¢(t) | = f(t)+ > V- DVipge™ /. (3.1.9)
q=1 q=1

Theorem 3.2. Let s > 3/2. Suppose u(t) and {(4(t) é\f:“’l are the solutions which fulfil
(2.1.9), (2.1.2)), (2.1.10), (2.1.4) and (2.1.5) belonging to H*(Ey) for any t with

Bq(t) = pqu(t) — pge™Mug — (4 (t), Va.

Then the solution satisfies (3.1.5)-(3.1.8)).

Proof. As shown in Theorem (3.1} we can use integration by parts on (3.1.9) with respect
to the spatial domain and adding zeros, which (3.1.9)) implies (3.1.5). On the other hand,

since

Tqéq(t) + ((t) = pgrqu(t), Vg € {1,..., Ny}

for any v € H*%(&,), a—1 (Tqéq(t) + (4(1), v) = a_1 (u(t),v) Vq. Hence our claim holds.
O

From the both formulations (Q1) and (Q2), we define the DG bilinear form and the
linear form so that we can consider the variational problems instead of the given wave
equation. However, the existence and uniqueness of solution is not seen here. In order
to show it, it is required to have coercivity on the bilinear form and continuity on the
bilinear form and the linear form. In the next section, we will take our test space as the
finite dimensional space D (). Then we can obtain the semidiscrete formulations with
respect to the displacement form and the velocity form. Furthermore, we will observe
the stability bounds and error bounds.

3.2 Semidiscrete Formulation for DGFEM

Consider a finite dimensional space of polynomials of degree of k Dy(E,) as our test
space Dy (&) C H*(Ep). Since Dy (&) is the finite dimensional space, we can denote the
set of global basis functions by {¢F | 1 <4 < Njoe, E € &} where Njo. is the number of
local basis functions on each element. To compute and consider it easily, the set of global
basis functions can be rewritten as {¢; | 1 < j < NjpcNei} where N is the number of
elements. Then our semidiscrete solution can be expressed as

Nloc

vt € (0,7, Vo € Q, up(z,t) = > > uf(t)oF (),
E€&), i=1
Nlochl

= D u();(x).

J=1
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Without loss of generality, let us define
th :NIOCN617

and so for any v € D(&) we can denote

Nyn

v(x) = Z vipi(x) for v; € R, Vi.

i=1

We will observe our DG bilinear forms to be equipped with coercivity and continuity.
Let ||-||,, be a norm defined by for any v € H*(&)

1/2

oy = Z/DV@ Vo dE + Jo5 (v, v)
Ecéy

It is easy to show ||-||,, is a norm since

o3 = HDWW Z |BO o) -

Ee&y RUT

Moreover, let us denote Lo, norm in time with respect to the norm ||-||,, by
[0l Lo,y = €ss sup_ [lo(t)], .
0<t<T

Theorem 3.3. The bilinear form ac (-,-) is coercive on Dy(E). That is, there exists a
positive constant k > 0 such that

ac (v,v) > K |Jvll3,, Vv € Dy(Er)

under certain conditions such as fo(d — 1) > 1 and large enough «q if €¢ = 0,—1. Since
h is bounded above by hq, without loss of generality, we assume h < 1.

Proof. By the definition, for any v € Dy (&),

ZHD1/2VU‘L2 + Y |60 Rl

E€é&, CcrpUlp
(e—1) Z /{DVU ne o]
eCT',Ul'p ¥ €
For e = 1, it gives clearly
2
ac (v, v) = ||v[f3; -

For other cases, we consider

3 /{DWne}[v]des S Do 0l 1ol

eCl',Ul'p V€ eCTpUl'p
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by Cauchy-Schwarz inequality. For faced elements E; and Fy with shared edge e, we
have

1 1
DV 1)l = 5OV nel + 5D m0)

La(e)

1 1
<5 IDVv 1)y + 5 1DV - ne)lB Ly e

by triangular inequality. By inverse polynomial trace theorem, this yields

D
+ 5 ||(VU 'ﬂe)|E2HL2(€)

1/2 1/2
<c O v P +O W10 Ly ()

D
Do 2 gfn(w-ne)mlnw

1
SCD ( El/ HV/UHLQ(EI) + hEQ/ HVUHLQ(E2)> I
for some positive constant C'. Since

Ve C OF, VE € &, le| < hGt < hd71,

1
/{DVU -netvlde < ||[v]]l 1, W’dﬁoﬂ I{DVv - netr, e

—12
<CD el aalel™” (190 g
—1/2
1) 190l ge )
1 Bo(d—1)/2-1/2
<CD i Mol (42 V0l

4 piold-D/2 1/2||W||L2<E2>>-

Here, we want to introduce discrete Cauchy-Schwarz inequality, also known as Cauchy-
Buniakowsky-Schwarz inequality, such that for positive real numbers it holds

(af+ a3+ +a2) (O] + b3+ - +b2) > (arby + agbo + -+ + anby)”.

When we apply this to our result, we have
1/2
d—1 d—1)—1
/e {DVv- nefelde <CDzs ,B 75 1012, (h%? A ) (nwu%m

1/2
2
. \\wL2<E2>) |
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If 5y satisfies Bo(d — 1) > 1 and we assume h < 1, we have

1 1/2
J(DVe-nejilde <CD vl (HvU||i2<E1> - ||w||%2(E2)> .

With using Young’s inequality, for ¢, > 0, we can obtain

III1Z, o)

/{DVU ne tvlde <CD |1

PE
(quh gy + D2V )

Ifec TpNoE,

I{DVwv - Ee}HLz(e) =||DVuv - EeHLg(e)
<CDh |1Vl 1y 1

and so

—1/2
{DVo - ne}olde <CD [l ) = lel/2h5" 0]l
le ‘ﬂo/

1
SCDHWMM@]T%EMVMMAQ

ce i
(0112, + O .

<CD
=7 2, |e]50

Thus, the summation over I', and I'p allows us to have

> [ipve-ndplae <cps= Sl

a

eCl'p,Ul'p ecl'p,Ul'p
+03 ‘p)VQVU( .

Hence, it gives
Qo 2
al) 2 Y [07290 = Il e
2 1P 2, e Mo
Ea 1/2 1 1 2
- ZHD w\ O S bl )
eCl'pUl'p

z@—u—dcz)giﬂwﬂvqh@)

1
) O Sl
eCl'pUl'p

+<1—H—dCD
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If we take ¢, as

0< CD|1 — € e <
et e S s
20 “ T O ¢
and we have sufficiently large aq as
C?D|1 — ¢?
f < oy,

there exists a positive constant s such that

Z ‘50 ||L2(€)

La( UL

ae (v,v) >K Z HDI/QVZ}‘
E

2
=K ”UHV

where

K:min<1—|1—e|C’ 1—|1—€|CD >>0.
Eaao
O

Remark As shown in the proof for the coercivity, we can observe the boundedness of

> [{DVv-nc}vlde Vv € Dy(En)
eCl',UI'p
if Bp(d —1) > 1. In a similar way, we have for any v, w € Dy(E,)

1
3 /{Dw neYwlde| <C <ea 3 HDWV ’L2<E> > W\\[w]lliz(@

eCI'y,U'p Ecé&y, eCI'pyUl'p )

for some positive constant C' and for any positive €¢,. Hence, taking ¢, = 1/\/ag > 0
yields

> /{DW ne }w]de

eCl'p,Ul'p

<<z (3 e

PR S

eCl'pyuUl'p
(3.2.1)

thus,

/{Dw ne}wlde + /{Dw ne}[vlde

eCl'pyUI'p eCl'p,Ul'p

(ZHDl/ZVv‘LQ( +€FZF
+E§hH g )

|6|50 HLz(e)
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1 2 2
<C——= . 2.2
<O (IolFy + el (322

Note that C is a positive constant independent of any function in Dy (&p,).

Theorem 3.4. For ag > 0 and fo(d — 1) > 1, ac(-,-) is continuous on Dy(E) with

respect to the norm |-||,,. Thus there exists a positive constant K such that for any
v, W € Dk(gh)

ac (v, w) < K [vlly, [lwlly, -
Proof. Let v,w € Dg(&,). Then, since |e| <1

lae (v,w) | < Z HDI/QVU‘
Eegy,

Lo(E) )

+ Y DV ncHlp, o Il

eCl'pUl'p

3 HDVe e Il
eCl'p Ul'p

+ Y ‘|50 10l £ (e 0]l 2y e
eCl'pUl'p

by Cauchy-Schwarz inequality. As shown in the proof of Theorem [3.3]
~1/2 ~1/2
DV - 0y < € (R *IDY2V0l ey + by * 1DV 0] 1y ) )

for faced elements Fy and Ey with the shared edge e. Then, using discrete Cauchy-
Schwarz inequality, we obtain
o)

lae (v,w) | < Z HD1/2V2}

|e|o/2
+ > H{DPVY-ne}iL, @ [e[fol2 1wl Ly e
eCcl'p,Ul'p

e
Py H{Dw'ne}nh(e:;%/g (G
ecl',Ul'p
+ Z HBO Wl ) MWl Ly e
eCcl',Ul'p

S<Z Dl/zV”H;(E>+ Y IH{DVv-ne}z, e lel®

Eegy, eCl'p,Ul'p
1/2
Sl o )
eCl'p,Ul'p eCl'p,Ul'p

+ > WO 1B+ >
(EZ; le/szHL . Z {DVw - 2, lel
h

CI'pUl'p
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+ > ||5OH Nise + D

eCl'p,Ul'p eCFhUFD

1/2
Sl )

(" by discrete Cauchy-Schwarz inequality)

(o5l o0 X [l B

1/2
b Y et X S )

eCFhUFD eCFhUFD

2
X( > HD1/2Vw‘ Lo(E)
Eeé&y,
1/2
b Y it Y Sl )

SCFhUFD eCFhUFD

|e|:80

Lo(E)

|e|60

+CE%; HD1/2Vw‘ ;(E) hg

(" by inverse polynomial trace theorem for some positive
C' independent of hp)

(3 el e X [,
-\ i, L2(B) ECE) L(B)  hg
1/2
b Y bt X Sl )
eCl',Ul'p eCI',Ul'p
DI I HEC) oY T i
pee, Ly(E) E Lx(E) hg
1/2
bl Y Sl )
eCT,Ulp eCTLUTp
(. lel <RLIVE € &,)
é( > P o+ C 2 [P o
1/2
b Y bl X Sl )
eCT,UlD eCTLUTp

Lo(E Ly (E)

(2 o,
Eeé&y,

> HD1/2Vw‘ ’
) Ee&y

1/2
bl Y Sl )

GCFhUF eCFhUFD
(. Bo(d—1)>1and hgy <1, VE € &,).
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Therefore, there exists a positive constant K such that

1/2
<K(ZHD1/2W\L2( + Fz; ‘ﬁo Ifw ||L26))
eCly
Qg 2 12
(; > 2 Ml o )

=K HvHv HWHV

K = max (C, 1) + 1.

|ae (v, w)

FUF

where

O

Theorem 3.5. Under same conditions for continuity of the bilinear form ae (-,-), there
exists a positive constant C' such that

Vo,w € Dy(En), ac (v,w) < Ch[loll 0 ol

Proof. Let v,w € Dg(&,). By the continuity of the bilinear form

|ae (v, w) | <K [|vfly, lwlly,

1/2

1/2
=K Z HD / VU‘ La(E + Z ‘50 ||L2(€) ||w”v
Eeé&y, cT,UTp

(1.4.11)), inverse polynomial trace theorem and the quasi-uniform subdivision imply

1/2
_ a _
oc o) | <K | 30 Che ol ym + 3 RO Dl | Il
Ee&y, eCl'pUl'p
1/2
<Ch™H D0 ollTmy + D olliam | lwlhy
Ee&y, Eeé&y,

<Ch ™ [[0l| e ol
OJ

Hereafter we suppose fp(d — 1) > 1 and we will introduce a skew symmetric bilinear
form in NIPG such that

(v, w) Z/DVU VwdE - ) /{DVU neYw

Eeg&), eCl'p,Ul'p

+ Z {DVw - nc}v]de + cho,ﬁo (v, w)
ecT,Ul'p V€
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—Z/DVw VodE— ) /{va ne}w

Ecé&, eCT',Ulp

+ Z /{DVw ne v ]de+J°‘°’B°( v)

eCl'p Ul'p

=y /DVw Vo dE — /{DVw ne}vlde

Ee&y eCl',Ul'p

+ > /{DVU ne}wlde + J§P0 (w, v)

eCl',Ul'p

_9 /{DVU ne}w)de — /{DVw ne}lv]de

eCl'p,Ul'p eCl',Ul'p

=a; (w,v) =2 > /{Dw ne}wlde — > /{DVw ne }v]

CCFhUFD ECFhUFD
=ay (w,v) + B(v,w). (3.2.3)
Furthermore, (3.2.2) allows us to obtain

1
Bw,w)| < O (ol + wly) , Yo,we V! (3.2.4)

for some positive C' depending only on the domain Q and D (). Note that by the
definition of B(v,w) we have

ay (v, w) Z / DVv - Vuw dE+Ja0”8°(v w) + B(v w).
Eegy,

Thus,

|ax (v, w) [ < lvfly [Jwlly, +

In a similar way, (3.2.2)) implies
C 2 2
a_1 (v,w)| <||v w —i——(v + ||w >7
a1 (v, w) | <[Jolly, [lwlly oo [vlly + llwlly

C
e (Il + llwly).

ao(v,w)| <|lv wlly + — < ||y + ||lw ) ,
|ao( ) < Hlolly [[wlly oo [v[[§ + [[wlly,

hence for any e = 1,0, —1,

2 2
lac (v,w) | < Ilolly lwlly + —= (Iloll} + lwl}) (3.2.5)

C
v
for some positive C.

Remark For any v € D (&),
loll? = a1 (v0,0) < K loll}, and & ul}} < ay (v,0) < K o]}

with positive £ and K.
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3.2.1 Displacement Form

Now, we can derive the semidiscrete formulation of (Q1) as
Find wu(t) and {whq(t)}évz“"l in Dy (&) such that for all v € Dy(Ep)

(piin(t), ), ) + a1 (un(t Za 1 (Vng(t),v) + Jao’ﬁo (tip,v) = Fy(t;v), (3.2.6)
(rqwhqu) il v) = st (pqult),v)., Va, (3.2.7)

ay (up(0),v) = a; (ug,v), (3.2.8)

(4r(0),0) () = (W0, V) Ly(q) » (3.2.9)

where 9pq(0) = 0,Vq € {1,...,N,}, Vt. Then our approximate solutions can be ex-
pressed by

Ny n

up(x,t) = Z u; () gi(x),
i=1

¢hq T, t Z ¢hq i d)z

By choosing v = ¢; in , we have a second order ODE system such that

pMii(t) + Ault ZA*W )+ Ju(t) = E(1) (3.2.10)

where for i,7 =1,..., Ny

Mij = (05; ¢i) 1,0)» Aij = a1(@y, ¢4), Ajj = a—1(¢j,04), Tij = 0B (g, )

and
Fi(t) = Fy(t; &) fori=1,...,Ny»

In a similar way, initial conditions yield the following system of ODEs

Au(0) =U, (3.2.11)
M1(0) =Wo, (3.2.12)

where (Uo)i = a1 (uo, ¢i) and (Wo)i = (wo, ¢i)p,q) for ¢ = 1,...,Nyn. To see the
existence and uniqueness of solutions, we shall show that the matrices are invertible. As
seen in Theorem we can prove M, A* and J are symmetric positive definite. Hence,

(3.2.7)) implies straight-forwardly

TgPhg(t) + Yng(t) = @gu(t) (3.2.13)
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with 9pe(0) = 0,Vq € {1,...,N,}. However, it is not obvious A is invertible but we
already show that the bilinear form a; is coercive on Dg(&},). Then we can obtain the
invertibility of A and the theory of ODE allows us to solve the system uniquely. However,
as seen in CGFEM if stability bounds are given by data we would also have the existence
and uniqueness.

Lemma 3.1. Suppose u, € H(0,T; Ly(2)) N HY(0,T; Dk(&)) and
Yng € HY(0,T; D(En)), Vg € {1,...,N,}. Then we have for any 0 <t <T

_/(; a—i (whq(t/)y uh(tl)) dt/ ::0-2 0 a—1 (¢hq(t/)7 ¢hq(t1)) dt/ + 230qa_1 (whq(t)ﬂ whq(t))

—a-1 (uh(t)a whq(t)) .
Proof. Put v = ¢hq(t’) for any 0 < s <t < T into (3.2.7). Then we have

Tql—1 (%q(tl),%q(t/)) +a-1 (%q(t/) ¢hq(t/))

—rgas (tng(t). gl / DVig(t) - Vg ()AE + TP (a (#), ()
E'Ggh
. / (D) - 0} g (O)de — 3 / (DVtong (1) - 1} g ()] de
eCl'y,Ul'p eCl'pUl'p

=Ta0-1 <¢hq(t/), ¢hq(t/>> + %%a—l (Vng(t), ng(t"))

=01 <¢hq ('), uh(t/)>

by the Leibniz integral rule and the symmetric DG bilinear form. Then, integration over
time gives

t : . 1 ¢ ;
a /0 a1 (Pna(®), Ungt)) A + Sas Wng(8), Ung(t)) = 4 / a1 (ng(t),un(t')) dt',
0
since ¥pq(0) =0, Vg € {1,..., N,}. Integration by parts provides that

/Ot a—_1 (¢hq(t/),uh(t/)> dt = a_q (zphq(t),uh(t)) — /Ot a_1 (¢hq(t/),uh(t/)) dt'.

This leads us to have
t

2 [ s (g, nalt)) a1+ 51 () ng8)) =ar () (1)
- [ s gt inte)
so that

_/0 a—1 (¢hq(t/)7 Qlh(t/)) dt’ :;(2/0 a—1 (Qj)hq(t/)a ’(th(t/)) dt’ + 2()100’1 (d)hq(t)a whq(t))

q
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— a1 (un(t), ng(t)) -

Theorem 3.6. Assume
up, € H*(0,T; Lo(Q)) N WL (0, T; Di(&r)),
VYng € WL (0,T;Di(Er)), Vg € {1,..., Ny}

If Bo(d—1) > 1 and ag is large enough, then there exists a positive constant C' such that
depends on T, Q and Dy (&) but is independent of the solutions and hg, YE € &, with
satisfying

2
dt
1%

N, N,
2 7 © t

/2. H 2 2 H L

o2 gy Ptz + 2 O, + 3 | [nate)
t
+ /0 JSOP (a(t), a(t))dt!
2
§C< le/QwOHLQ(Q) + ||u0||]2} + ||f||%2(0,T;L2(Q)) + h_l ||gN||%oo(0,T;L2(FN))

_ . 2
+ht HQNHLQ(O,T;M(FN)) >’

and so

) Ny No t . 2
[ 2ane)], g, + w1+ 2 I+ 3 [ onate]
g=1 q=1

t
+ /0 TP (at'), a(t'))dt
2
sc( o720l g + N0l + 1Ao7 atey + ™ Mo oracrny

+ B IGN T 0.7 Lo (T x) >,

for ¥t € [0,T).

Proof. Let us consider ([3.2.6) whence v = 1w (¢') for 0 < s <t < T.
No

(piin(t), ﬂh(t'))M(Q) + ay (up(t'), ap(t')) — Z a—y (Png(t), an (1)) + J§OP (an (), an (1)
q=1

= Fy(t';up(t)).

With applying Leibniz’s integral rule, we have
N e et pd .2
(puh(t )7uh(t ))LQ(Q) = 5@ Huh(t )HLQ(Q)
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and

(uh Z/DVuh Vi (t)dE — Z /{DVuh ) - ne }an ()] de

Ee€&y, eCl',Ul'p
. / (DVin(t') - meHun(#)]de + T3 (un (), i (¢)
eCl',Ul'p
=g o a2 C;Sr /{DVuh e} lan(t')]de
- /{DVuh ) - ne Yun ()] de
eCl',Ul'p
Hence
th/ H h )Hig(ﬁ) th/ H h Hv Za 1 whq (/))+JgO7ﬁ0(uh(t/)7ﬂh(t/))
—Fy(t (1)) + / (DVun(t)) - noYin(t)de
eCcl'pul'p
= > [PV e e,
eCTpUl'p V€

then integrating over time gives

2 () ) + 5 lun O — Z / ot (ot i)+ [0 a6, )

= i O) ey + 3 O + [ Fuldsin( )
0

/ Z /{Dvuh e Hup ()] dedt!

ecl',Ul'p

/ > / {DVun(t') - ne}Hun(t')dedt'.

eCl'yUl'p

By Lemma we have

guahmnz( ||uh ||V+Z 1 (©hg(t), ng(£))

=2 [ (dhal whq(t')) i+ [ ) in )t

qlq

t No
=L Oy + 5 Fan O+ [ Falts in)a + 3 as (ngl0) )

q=1
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+ /Ot > [{DVur(t) - ne}in(t')]dedt!

eCl'p,Ul'p €

_/Ot > [{DVun(t) - ne}un(t)]dedt,

ecT,Ul'p V€

and note that by the definition of SIPG

a1 (Yng(t), Ung(t) = [Ung@)I5 =2 D [ {DVng(t) - ne}[tong(t)]de.

eclUlp €

Moreover, the coercivity of SIPG implies

2
dt’
Vv

Ny Ny ¢
Pl (£)]12 1 2 1 2 KTq / b (¥
5 il + 5 1@+ InaOI + 322 | et
t
[ e
0
P 2 1 2 ! e
3‘2 [an(O)Z,0) + 5 lun(O)ly +/O Fy(t'sin(t))dt' + " ay (Yng(t), un(t))
q=1

+ /0 > {DVup(t') - ne}in(t))dedt’

ecTpUl'p V€

_/Ot Z {DVin(t') - ne}un(t')]dedt!

ecl',UI'p €

N,
+ Z_: i Z {Dv¢hq(t) : ﬂe}[th(t)]de

q=1 Pa eclpUl'p €

Consider fg Fy(t';up(t"))dt’. By Cauchy-Schwarz inequality and integration by parts,

[ attsinenae| <| [ 1Oy lin @l oy + 5 [ avteyunterae

eCl'ny €
t
-> / gn (0)up(0)de — > / / g (t)up (t)dedt!
eCl'n € eCl'n 0 e
t
S/O 1N e 8@ ) @+ D Mg @)l ey lun(® 1y
eCl'y
+ > v (O ey l1un(0)l 15 )
eCl'ny
t
+ 5 [Olly lun @)
eCl'n 0
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Taking into account Young’s inequality and L., norm, for positive €,, €, we have

t . €a . 1 ! ’
/OFd(t';Uh(t'))dt' SzHuhHim(o,T;Lg(Q))+</ [Cl dt,)

1 eb
+ ||gN||LOO(0TL2 FN Z ||Uh ||L2

eCFN

2h HQNHLOOOTLQ T'n)) Z |2 (O HL2
GCFN

1S Sl LG P T

eCl'n

where Ch < hg < h, VE € &,. Note that Theorem provides

[|un (' HL2 @ < < Chg 1/2 [|un(t , Vs €[0,T]

My
hence clearly

S ), < 0 Chit un(®)]7, 5

eCl'y Eeé‘h

<Ch~! H“h(t/)HL(Q) g

and ([1.4.10)) gives

DI ACH! el (TACHI W

eCl'y

Tidying up the results, for positive .

t ' €a 1
/(]Fd(t/§uh(t/))dt/‘ §||Uh”L000TL2 2(/ 1) HLQ(Q >

1 2 -1
t 5 9N 12070000y T 5Ch lunl?.. 0.0

2 2
op 9N IEco.mizamy) + 5 ez, @)

2
€c 1 2 1 ¢ .
+ ECh HuhHLoo(O,T;V) + 2760 <A HgN(t/)HLQ(FN) dt/) .

On the other hand, use of (3.2.5)) yields

C
oz (g I, + e ()1R)
§<ﬁ + 2 lna(®)I5, + <ﬂ +3

—1 (ng(t), un () | <[[¥ng(@)ly, [lun(®)lly, +

) lun )3
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for any positive ¢;, ¢ € {1,..., Ny} by Young’s inequality. Additionally, integration by
parts and (3.2.1]) lead us to have

/ 2 /{Dvuh e}t [un(t)]dedt!

eCl',Ul'p
{DVU ) - netu {DVU ) - e }Hup(0)]
w0 [0vue) o @jdear
eCl'pyUl'p
s%uumui ruuh )2+ / Z JADTunt) - neYlin (¥ et

In this sense, by (3.2.1)
/ Z /{DVuh e Hup (t)]dedt!

eCFhUFD
1/2 / C ! B / / /
D /2N up( +/Ja°’°ut,ut dt
/OE;H e A CILCD)

SC/ ||uh(t’)Hth +/ JO0P0 (¢, (') dt!

< Nl i + = | I8 00, (.
and
No o o
) - e }[Wong ()]de| < ———= |[wng ()]}, -
€CFhUFD q=1 (Pq @0
Consequently, we have
 linOl o+ | £ CXet D526}y e
2 h L2(Q) 2 ao q:1 2 h y
Y11 O+ gy
Pq KTq
(1 o+ 3575 [
;(M e~ o) g0l Z [
C t
+ (1 - ao) /0 JSOP (a8, u(t'))dt!
P . 1 €a . 1
<L i Oy + IO+ S 1l oo + o ([ Dy )
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€p C
+ (55 + 37 ) 19 comsaceny + 2OV Nunll oy + 5 16000

€c o _ 1 b 2 C
+ §Ch ! HuhH%w(O,T;V) + 2. </0 HgN(t/)HLg(FN) dt,) + NeT H“h(o)Hiz(Q)
cT

2
\/7—0 HuhHLoo(O,T;V)
T

P . 2 1 2 | €a - 12 2
<5 [2n(0) |7, () + 3 [[un(0)[I5; + ga a7 0.7:100)) + %, 112 0.7:L002))

_|_

1 1 2 €b 1 2 C 2
+ (2% + Qh) 9N 1T 0, 7izarny + 5 CF lunlls o) + 5 [un(0)2, )

T C
c — 2 . 2 2
+5Ch Hlunll7 o) + % 19N T 0,7:0000)) T+ Ve [un ()7,

CcT 9
\/7—0 ||Uh||Lo<,(0,T;V)

by Cauchy-Schwarz inequality. Here we suppose for our sake the coefficients of Young’s
inequalities,

+

N,
1 C(Ny+1) 7iiq>0
2 v/ Q0 =1 2 ’

1 1 ca
L el Yge{l,...,N,}.
20, 2¢ ©gv/a0

Let us take €, = (¢4 + 2“’70%) > 0 for each ¢ then we have

1 Ny
Zeq_wo
E_q:15_1>0

1 1 ©o
P — >0, Vge{1,...,N,}.
20,  2¢ 4N<pg0621 + 20094 ¢

Considering Ly, norm on the left hand side gives

. po  C(Nep+1)
5 HuhH%m(O,T;LQ(Q)) + (4 - # [

C(1+ ¢q) KTq /
+Z<4N soq+2soos0q Pqv/@0 >H¢ H"+Z / H%‘? £)

C
+(1- — / JE0P0 (Y, a(t))dt!
(1= =) [ secacerace
Py 2 1+C¢ C 2, €. 2
§3(2 [ (O 7, (0) + (2 +\/070> Huh(o)Hv+§HuhHLm(o,T;b(Q))

/
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T 1

1
||f”L2(0TL2(Q)) + + oh ||9N||Loo (0,T;L(T'x))

€p —|— € T
————=Ch~! ”UhHLOo 01:v) T 50 HQNHL2 (0,7;La(Tn))

; i s 2 )
\/Oéi() h Lo (0,T5V) |-

If we take b
P - %0
€q = 6>0 € = 60—724C>0
we can obtain
P . 12 ©o C'(N +1+ 3T) 9
Nl o.rima) + (8 - @\/070 lunllz o 0,m0)
C(1+ @q)) KTq /
+ Ung ()13 + [9na®)
Z <4N 02+ 2000,  Pgy/a 91O Z !
C ¢ Ozo,,@o . / . / /
(1) [ i
3p 2 3 =+ 30 30 2 9T 2
<L 1O+ (5 + T ) O+ = 10000y
36C 3 ) 36CT
+ ol +op ) lanlzcomizamay + ool NN 17 0.7 La(rn)) -

Therefore a sufficiently large penalty coefficient «g leads us to have

!/

N, N,
9 ® ©  prt
1/2, 2 2 A
%],y + Pt + LIl + 3 | [nate)
t
_|_/ J’g‘OvBO(u(t/)’u(t/))dtl
0

<c( [l ol

2 2 -1 2
+ [un Oy + 1ALy 0,20y 17 9N (0,720 0))
1. n2
+h HQNHLZ(O,T;LQ(FN))>7
for some positive constant C such that depends on final time 7', the domain € and

Di(&r). As following (3.2.8)) and (3.2.9) with Cauchy-Schwarz inequality, we can con-
clude that

!/

N, N,
9 ® v ot
1/2,; 2 2 o
Hp uhHLoo(o,T;Lz(Q)) +llzaory qzl oty = qz:l/o Hwhq(t )
t
_|_/ Jgo’ﬁo(ﬂ(t,),u(t/))dt,
0
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2
sc(Hfﬂwﬂtﬂm+|ma@+|Uﬂa@¢wﬂm>+h—meﬁmmIiﬂmm

_ . 2
+h! HQNHLQ(O,T;M(FN)) )’

and
) , Ny ) Ne t . 2
le/Quh(t)HLg(Q) +lun @15 + ) [eng ()13 + Z/O Hwhq(t’) th/
q=1 q=1
t
+/Jy%wwxmwMﬂ
0
2
SC( Hp1/2w0HL2(Q) + HUOH% + Hf”%z((],T;LQ(Q)) +h7t ||gN||%oo(0,T§L2(FN))
1 12
+h7! HQNHLg(O,T;Lz(FN)) ) ’
for any 0 <t <T. -

This theorem implies indeed the existence and uniqueness of the solution for the
finite dimensional ODEs system. However, as comparing with CGFEM, the stability
bound for DGFEM has h~! terms. This is not observed in a practical sense and has
nothing to do. In fact, it implies only the boundary condition is imposed weakly[24], [26].
Hence we do not care about A~! terms in detail.

Under the conditions satisfying the stability bounds for (Q1), we shall consider the
error estimates. Instead of using the elliptic operator defined for CGFEM, we would
introduce another elliptic projection. [24] allows us to use the following approximation
theory.

Theorem 3.7. Elliptic projection [24, 22]
Let e € {—1,0,1}. Define a DG elliptic projector R, with respect to ac (+,-) by

YVt >0, Yo € Di(Er), ae (u(t),v) = ae (Reu(t),v). (3.2.14)
Then we have the property as Galerkin orthogonality such that
ae (u— Re(u),w) =0, Yv € D(&,) and u is arbitrary.

We will call this Galerkin orthogonality too. If u € Lo(0,T; H*(E,)) for s € N such that
s > 3/2, it satisfies

¥t >0, Jlu(t) = Reu()]ly, < CR™M LY u(t) | oe, . (3.2.15)
Wt > 0, |lu(t) = Reu(t)l| py) < O™ lu(®)]l s e, - (3.2.16)

Moreover, with the convex domain Q and Bo > 3(d —1)~*

Ve >0, flu(t) ~ Reu(t)llpy0) < ORI u(@) ey (3:217)
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In terms of a penalty parameter By, a standard penalisation means that we assume
Bo(d—1) =1 for d =2,3. However, it is said to be super-penalised when Bo(d — 1) > 3.
Indeed, for SIPG (3.2.17) also holds with the standard penalisation.

Elliptic error estimates theorem can be proved by approximation properties e.g. see
[22/ 37, [21]. As seen in the above, the super-penalisation leads us to derive Ly optimal er-
ror estimates of NIPG and ITPG, whereas SIPG requires only the standard penalisation.
Meanwhile the super-penalisation implies the optimality of Lo estimates, but the con-
verse is not true. In 1D cases, NIPG and ITPG have optimal L estimates for odd degrees
of polynomials k with the standard penalisation, e.g. see details in [61],[62]. Furthermore,
Lo optimal error estimates without the super-penalisation in multi-dimensional spaces
for rectangular meshes have been presented by [63].

As seen in the CGFEM cases, we consider the DG elliptic projection to derive error
estimates theorems. Let us define

0 =u— Ryu,
19q = wq - R—lqu v%
X = up — Ryu,

Sq = 7ﬁhq - R—lwtp vg.

Lemma 3.2. Suppose u € H?(0,T;C?(2)) N WL (0,T; H*(E)) and Bo(d — 1) > 1 for
s > 3/2. There exists a positive constant C' such that for any t € [0, T

Xl 2o 0,500y + X 2o 0750y SCR™EFESTE

when «ag is large enough. Moreover, if Q is convex and Bo(d — 1) > 3

HX”LOO(QT;LQ(Q)) + HXHLoo(O,T;V) SC’hmin(k+1’S).

Proof. For any v € Dy (&), by subtraction from (3.1.1) to (3.2.6)),

Ne
(p(ii(t) = itn (1)) ) 1y () + @1 (w(t) = un(t),v) =Y a1 (Pg(t) = Png(t),v)
q=1

+ JOPO () = (t), v) = 0.
Hence adding zeros with using DG elliptic operators yields

(p(ii(t) — Ruii(t) — (iin(t) — Raii(t))), v) 0y + a1 (w(t) — Rau(t) — (up(t) — Riu(t)),v)
N

=) Cac (1g(t) — Roathy(t) — (ng(t) — Roaty(t)),v)
q=1

+ JEOPo(a(t) — Rya(t) — (in(t) — Rya(t)),v) = 0
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so that

N
(pX(1),0) 1y + a1 (X(1),0) = D a1 (sq(t),v) + T3P (x(t), v)
q=1
N
(PB0),0), g + 01 (60, 0) = D s Wa(t),v) + S5 (B(0),v)
q=1
When we apply Galerkin orthogonality,
N
(P03 0) ey + a1 (x(D),0) = 3 act (sg(8),0) + S0P ((2), v)
q=1

= (pé(t), U)LQ(Q) + J(?O?ﬁo(é(t),/v)‘

If we put v = x(t), we have
pd 0,50 .
L IO o + 55 X - Za 1 (a0, X(0) + 5 (i), K1)

3 /{DVX e[ (0)]de

eCl'p,Ul'p

— > [{DVX®) - ne}x(t)]de + T3P (0(1), X(1)). (3.2.18)
ecT,Ul'p V€

Also subtracting (3.1.2) from ((3.2.7)

a1 (g (8) + 5y(0),0) = g (x(1), 0) =a—1 (rgg(t) + 0,(t),v) — g1 (B(0),0)
=~ gga 1 (0(0),0).

)LQ(Q)

by Galerkin orthogonality for any v € Dy (&), Vq. Inserting v = {4(t) gives

o Ia I+ 5 s (sat)5a(6)) — s (D) Ga(8)) = g (), &0 (1).

Hence taking integration with respect to time and using integration by parts yield for

each ¢
- / a1 (sq(t), X(1")) dt’ 7 O \\<q<t’>}|idt’+;%a—1<<q<t>7<q<t>>—a_1 (sq(1), X(2))

[ 00600 (3219
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Turning back to (3.2.18)), taking integration over time gives

t
P . 2 , . .
LIS + 5 IO - §j / at (SO 5) @t + [ TR i )a

=L ||X(0)“%QQ +Hx(0)Hi+/0 (pé( ", '(’)) o dat' +/ OB (), ¥())de
/ Z /{DVX ) - ne}x d€dt —/ Z /{DVX ) - net[x(t )]dedt'.

eCcl'p,Ul'p eCl'pUl'p
By (3.2.19), we have
P 1 Je 1 Yoot T,
. 2 2 . .
3 IKONZ, @) + 5 XIS+ 5o (a®)sa(®) + 3 | Zamy (st 5(¢) dt
q=1 q qg=1 q

+ [ nar
t . N(p
=5 1Ol + 5 IO+ [ (o)1), '+ 301 ) x()

/ > /{DVX - ne ()] dedt’ — / 3 /{DVX ) - e} [ (#)]ded?!

eCTHUT eCTHUTp
t

—Z / 01 (0. ct)) '+ [ TP Rt
0

and the coercivity and definition of SIPG imply

KON + 5 (0 HV+Z -t HV+Z [ sl
n /0 TGP (), X ()t
<[F 1RO o+ 5 IO+ [ () ), '+ 301 (4x()

/ Z /{DVX “ne X () ]dedt’ — / Z /{DVX Y[ ()] ded?!

ecT',Ulp eCT, Ul p

_Z/ a_ 1 )) dt' —|—/t Jao’ﬁo(e(t/),)((t,))dt,

0
Neo

L / (DY (t) - ne}sg(8)de

6CFhUFD
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Note that for e such that is a shared edge between elements F; and Ej,

[0(t)]]e =u(t')|ps — Riu(t)|pe — (u(t')|ps — Rau(t')|gg)
=u(t')|ps — u(t')|ms — Ra(u(t’)|me —u(t')|gg)
—0— R1(0) = 0

for all 0 < s <t < T since u(t') is continuous on 2 and hence
[0())=00onT,UTp, Vs (3.2.20)
by Dirichlet condition. In this manner, we can also have

[0(t')]=0o0on T, UTp, Vs. (3.2.21)

Use of Cauchy-Schwarz inequality, Young’s inequality, (3.2.1)), (3.2.2)), (3.2.5), (3.2.20)
and (3.2.21]) makes some bounds as follows:

Iy (pé<t'>,>'<<t’>) dt’

La(Q)

t
. I . Y / /
t
S”X||LOO(O,T;L2(Q)) /0 Hpe(t/) Loy
T ) 9 1/2
. I /
< ”XHLOO(O,T;Lz(Q)) ’Oﬁ </0 Ha(t ) La(2) at )
CL 2T
<35 X% (0,750 L2(0,T3L2(92))
for any positive ¢,.
_ (gq(t),X(t»‘
N, Ne c &
S (gq@),X(t))‘ <3 Il IOl + 7253 A0l + IR
q=1 - Ve q_l
N‘P
C €
< — q 2
Z Tt ) [Ix (@)1l +Z ng( iy

for any positive ¢, for each g.

fot > f{DVX (') - ne}[x(t)]dedt’ — fo > f{DVX (') - ne}[x(t)]dedt!

eCl',Ul'p ecl'p,Ul'p
‘/ Z /{DVX ) - netx ()] dedt! —/ Z /{DVX ) - netx(t)]dedt!
eCT'»UT'p eCT,Ulp
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‘/ > /{DVX X (@))dedt — 3 /{DVX e} [ (t)]de

eCl',Ul'p eCl'pyUl'p

+ 3 [0V n o)

ecl',Ul'p

(".© by integration by parts)
sQ—Q A Hx(tvui IR XN+ (X + Ix(OI)
Qo Jo QQ
" use of (3.2.1) and ||

X /7

C
n \/TTO(HX@HV + ||X(0)Hv)~

Ja“ PR, X)) dt!

N
2::1 Jo a1 (0(t), (1)) dt!

By the definition of the DG bilinear form,

a1 (0(), (1)) = a1 (0(8),&q(8)) =2 3 /{qu O de

eCl'yUl'p

and Galerkin orthogonality for NIPG yields

aa (00)4) =2 Y [1DV() - nyi(e)lae
eCl',Ul'p
Hence implies
a1 (0(t), (1)) =0,
and thus
a_ 1 )) dt
‘fo Jao 50 (t/))dt/‘

gives Jao’ﬁo(é(t’), v) = 0 for any v € Dy(&,) so that
t
| g, e nar| -

0

N‘P
° ‘ 2:31 goi > fe{DVCq( “Net] §q d€|

4 ethuFD
By (:2.1),
Nw N,
L / (DVey(t) - ne}sg (1)) de _Z% T a0l

eCFhUFD
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Tidying up the results, we have

P 1 Cl+N
S IXOIL0) + |5 - — =" Z; X

1 1 (1—|—cpq)> m-q/
- —— - - S|,
;(2% e~ o) I Z s/l
2C | [
Y /Jao,ﬂo 't/,'t/ dt’
(L=25) ), o G)x)
p . 2 1 C 2 6(], -2 p2T .12
<5 IXO)17,0) + (5 + \/7—0) XK + 5 X7 07522020 + 2%, 9‘ La(0.T:La(SD)
2C'T
ﬁ ”XHLOO 0,T;V) *
If we take e, = 4 + 55~ for each ¢, then
P e 2 o C(L+Ny) 2
2 (O + (4 - S ol
N
©o (1+<,0q)> KTy
+ ( lsg (I3 + dt’
q:Z; 4(,03—{—]\7 "‘QOO SO\/i q 1% Z Hq HV
2C
Y /Jao,ﬂo 't/,'t/ dt’
=) (X(t'), (1))
p . 2 1 C 2 6(], .12 p2T .12
< o —a
<8 IO ie) + (5 + —722) YOI + 5 1 ozaion + 5 ] iy
2CT

2
+ —|x A .
N IXIE 0,709

Taking into account L., norm on the left hand side, it becomes

P2 vo C(1+N,) 2
By X7 0,12y + <4 - W@ IXIIZ 0.0
Ny

©o C(l+¢ KT,
_%§:<4¢3+ﬁ%-%¢0 4wvﬁj )Hq ‘hf+§: q/nH% M
q=1
20\ (" 2a0Bose iy o
H1= T [ ae G s

3p
<~ Ix(© )z, @*3 IIX( 05+

ST 2
/oo XN Lo (0,T;V) >

3e 3pT
aWﬂthTLﬂm)+ H‘

L2(0,T3L2(52))

_l’_
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so that

P2 o C(1+ N, +6T) 2
1 IXNE o 0.7:00)) + i Jas X7 0,70

Ny
©o (1+90q)> KTq/ !
+3 - S dt
= (4<p?,+N o0 pevan ) IO Z IOl
20
1— ) [ JooPo@, x(t))dt'
+ \/%)/00 (x(®), x ()
3p . 2
3 T
<=5 IXO)[z,0) + HX( )%+ 99 H ’L20TL2(Q))

when €, = p/6. Furthermore, from and elliptic projection,
Vv € Di(En)), a1 (x(0),v) = a1 (x(0),v) =0

SO

IX(0)[I5 = a1 (x(0), x(0)) = 0.
Similarly, (3.2.9) implies
1%(0)1[7, 0y = (X(0), X(0)) 1, (@
(Uh(o) Rywo, un(0) — Rywo) 1,
) = Riwo, wo — Riwo) .0

< |[in(0) = Rywol| 1,y llwo — Rawoll 1, g

= [X(0) | o0y [ 00)

)

‘Lz(ﬂ)
and so .
' <|éo|, .
50) 10 < 0O,
Note that Theorem [3.7] provides that

0],

since u € H?(0,T;C?(2)). Therefore, there exists a positive constant C' such that for
any t € [0,T]

_ O(hmin(k—i-l,s)—l)
L2(0,T;L2(2))

N Ny t
-2 2 2 . 2
X117, 07502 + X7 o) + D lsa I + Z/O [<a (][5, @t
q=1 q=1
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=[x

SCh2(min(k+1,s)fl)

when sufficiently large «q is given as

@_C(1+Nw+6T)>O 1_£

4 NG ’ NG
and

©0 C(1+pq)

- >0, Vge{l,...,N,}.
402+ No+90  wgy/a0 { o}

Hence we can also prove

Xz ozt + X0y SCREIE,
Furthermore, if our domain € is convex and Sy(d — 1) > 3, Theorem [3.7|leads us to have
[0, e

A sufficiently large «p enables us to conclude

_ O(hmin(k+1,s) ) )
Lo (O»T;LZ (Q))

i

L2(Q)

X2 w0722y + X o) SCREREFE).

Theorem 3.8. Under the same conditions in Lemma [3.2], we have
lu = unll o) SCREI,
6 = itn |, o 0.1 () SCRPEFL
Moreover, if Q is convex and Bo(d — 1) > 3, then

||’LL _ uh”Loo(O,T;Lg(Q)) SChmin(kJrl,s)‘

Proof.

Ju— uhHLoo(O,T;V) =[lu— Ryu— (up — RIU)HLOO(O,T;V)

<0120,y + IXI Lo 0,70

by triangular inequality. (3.2.15)) and Lemma yield

HU N uhHLOO(O,T;V) SChmin(k-i—LS)—l'

In this same sense, by Lemma and (|3.2.16])

e = inll 0,000 = 1@ — Rat = (@ — Rad)|l L __ 0,000
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= HQHLOO(O,T@(Q))  Xltoizac

SChmin(kJrl,s)fl

and if Q is convex and Byo(d — 1) > 3, (3.2.17) gives

||’LL _ /I:Lh‘HLoo(O,T;LQ(Q)) SChmin(kJrl,s)‘

O
Corollary 3.1. Under the same conditions for Lemma 3.2 we have
[ = unll L 0,7:L202)) <opmintrLo=L
Moreover, if Q is convex and Bo(d — 1) > 3
||u _ uhHLOO(O,T;LQ(Q)) SChmin(k+1’$)-
Proof. Tt is easy to show. By Theorem (1.4.10) implies
ol a@) < Cliely, Yo € B ()
for some positive C. Hence, by Lemma and (|3.2.16])
lw = wnll 010000 =lw— Baw = (un — Biw)llp__o7:0,(0)
<101l 0.752000)) T XL (07202
<00 Loc 0.7:22() + C XM Loc 0.7:)
<Chmin(k+1,s)—1
In a similar way, if Q is convex and Sy(d — 1) > 3, Lemma and (3.2.17]) lead
1w = un| oy 0 1iLa(eyy SCR™EHES).
O

3.2.2 Velocity Form

As seen in the previous section, we can also have the semidiscrete formulation of (Q2):
Find uy(t) and {Chq(t)}% such that for all v € Dy(&)

(piin (1), v) 1) + Poar (un(t), v) + Za 1 (Chg(1),0) + Jg (in (1), v) = Fy(t;v),
(3.2.22)
a-1 (quhq(t) + Chq(t)7 U) =a-1 (quqah(t), U) s (3223)
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a1 (un(0),v) = a1 (uo, v), (3.2.24)
(1 (0),0) 1,0 = (0, 0) 1, () » (3.2.25)

where (pq(0) = 0,Vq € {1,...,N,}, Vt. Hence our approximate solutions can be ex-
pressed by

Ny n

un(@,t) = 3 w(t)dile),
=1

th

Chq(w7t> = Z <hq,i(t)¢i(w)7 vq € {17 ce ‘7N50}'
=1

The semidiscrete problem for (Q2) and the strong form of internal variables present
also a ODEs system and is solved uniquely if stability bounds given. The resulting ODE
system is given as

Ne
pMii(t) + poAu(t) + D A*Guglt) + Tit) = F(1),
q=1

TqChq(t) + Cnq(t) = Tgpqit(t), for each g,

where (F(t)); = Fy(t;¢;) for i = 1,..., Nyn, M is the mass matrix, A and A* are the
stiffness matrix governed by the DG bilinear forms, and 7 is the jump matrix from the
jump operator Jg' 0% Tn a similar way with the proof of Theorem we will show the
stability bounds for the existence and uniqueness of the semidiscrete solution of (Q2).

Lemma 3.3.
Suppose up, € H*(0,T; La(22)) N HY(0,T; Dr(&r)) and (g € HY(0,T;Di(Er)), for each
ge{l,...,N,}. Then we have for any 0 <t < T,

t

| ot (@ inte)) dt =5 [ s (Gual®), (e a
0 ¥“q Jo

1

TqPq

t
0t (). Gttt
0
Proof. Put v = (pqe(t') into (3.2.23)). Then Leibniz’s integral rule gives
a1 (Cng(t), Gng(1)) + a1 (Gua(¥), Cha()

_Tq d

o ar ! (Cha(t): Crg(®) + a—1 (Crg(): Cg(t))
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=TqPq—1 (dh(t/), Chq(t/)) .
While taking into account integration from ' = 0tot =t for 0 <t < T,
t
7;1 (a—1 (Cng(t), Cng(t)) — a—1 (Crq(0), Crg(0))) +/0 a—1 (Chq(t/)v Chq<t,)) dt'
t
=T4q /0 a1 (n(t), Gug(t')) dt’
t
—_ /0 a1 (Cug(), n(t')) d.

Since (pq(0) =0, Vg € {1,..., Ny},

/0 (chqu’),uh(t'))dt':;pa_1<chq<t>,<hq<t>>+ /0 a1 (Crgt'), Chg(£)) dt

q Tq¥q

Theorem 3.9. Suppose

up €H?(0,T; La(2)) N W (0, T; Di(En)),
Chg EWao(0,T; Di(En)), Vg € {1,..., Ny}

If Bo(d — 1) > 1, then there exists a positive constant C' such that depends on T and Q
but is independent of hg, for any E with satisfying

N, N,
2 2 ® t
1/2,- H 2 A2 / Y th/
|t/ setomay T om0 + 32 [ )l

t
+ / JSOPO (g, (8, 1 () )t
0

< o]

2 2 - 2
vy T N0+ 20 7200 07 9N L 0712000

+h! HQNHLQ(QT;LQ(FN)) )

for any t € [0, T] with sufficiently large a.

Proof. For any 0 < s <t < T, let v =1(t). m ) becomes

(piin(t'), an(t')) (@) T ¥oa1 (un(t), in(t)) Za 1 (Chg(t), un(t"))

+ J§OP (i (t), an ()
= F,(t;un(t)).
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Integrating from ¢’ = 0 to ¢’ = ¢ yields
P 2 0 2 Al
gwwm@+2wmm+ZAwN%meww
qg=1
t
s [T ). in(e )t
0

=L i)+ 5 O+ [ Fultsine)ar
0
/ 3 / (DVun(t') - no}in (¢))]ded?’

eCl'pyUI'p

/ 2 /{Dvuh ) - ne }un(t')]dedt’.

eCl',Ul'p
By Lemma we have

5 lin(Oll7,0) + %mhm+z 1 (Chg(0),Ghg(9)

+Z
=mwmmgw-°muw@+ézuﬂmwnw

/ 2 / {DVun(t') - ne}lun(t')|dedt!

eCl'y,Ul'p

/ 2 /{Dvuh -} un(t')]dedt’

eCcl',Ul'p

/al%uom»ﬁ+ﬂﬂmmﬁmwww

1 Ta¥Pq

and since SIPG is coercive,

No

ﬂwm(%mwwz muvz/m\w
+ /0 t JEOP0 (g, (), () ) dt!
<[ 10O 0 + 2 1@+ [ Futtsantear

/ 3 /{DVuh - ne Y (¢ dedt”

eCl',Ul'p

/ 2 /{Dv“h ) - ne}[un(t')]dedt|.

eCl'pUl'p
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Consider | fo F,(t';ap(t"))dt'|. By the definition of F,, integration by parts and Cauchy-
Schwarz 1nequahty yield

(t (1)) dt'| =

Ot(f(t’) R () dt’+Z//gN Y (t')dedt’

eCl'ny

Ny
— e V/magy (ug, u(t !
g/o gt s (ug, (') dt
[ @) iyt + 3 [ ot

eCl'y
_Z/QN Jun( de—Z//gN Yup () dedt’
eCl'ny eCl'y
N, N,
- Z@ e”Tuay (ug, up(t)) + Y pqa1 (uo, un(0))
q=1

—Z/ t/Tqal U(],uh( )) dt,

< [ 1O g0 156 8+ 3 N Ol Tl

eCl'y
+ > lan (Ol e l1un (0) ey

eCl'ny

S Sl LG N R TIY.
ECFN
N, N,

+ ESDqK uolly [lun(®)ly, + Z@qK [[uolly [[un(0)[ly,
g=1 q=1

Ne
+ Z/ %KHUOHV |un(t)]],, dt

< [ 1O g 156 8+ 3 N Ol Tl

eCl'n
+ > 1gn )|y e 1un(0)l 1, ey
eCl'y
30 [ 1w o]
eCl'ny

+ K fluolly lun@lly + K lluolly l[un(0)]y
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No ;
# 3 [ ER o
=170 Ta

Ny
since ay (-, -) is continuous, 0 < e~ ¥/7¢ < 1, Vt >0, Vg € {1,... ,Notand > ¢q < 1. Let

us consider Lo, norm then trace inequalities, inverse inequalities and Young’s inequalities
imply

€a 1
=9 HUHLOO (0,T;L2(2)) + 5 ”fH%Q (0,T;L2(Q))

/t F,(t;a,(t))dt'| <
0

”gN”LOO (0,7:La(0n)) T CR™ 12 Huh”Loo (0,75V)
2
+ - HQNHLOo (0,T:La(Tn)) T 5 ”“h( ik

. _16 2
+ ||9N||L2(0,T;L2(FN)) +Ch™ o lunllT o o.70)
2¢, 2

2 K K
2 2
+ T [uolly, + HuhHLoo oTv) T 5 HUOHV 5 llun(O)lly

+Z H 0||V+Z 1 HuhHLm (0,T3V) 5

q=1

for positive eq, €, €c, €4 and {eg}.
On the other hand, observe

/ 2 /{Dvuh “netlin(t)]dedt’.

eCl'pUl'p

y (3.2.1),

Z /{DVUh - ne iy ()] dedt!

’ /t
ecl'p,ul'p

</whmﬁw%<>mmw

g— up||? . +/ JO0B0 (g (), g, ()t
o | hHLoo(O,T,V) V0 Jo 0 (n(t), an(t'))

In this manner, integration by parts implies

‘ / 2 /{Dvuh e} [un(t')]dedt’

eCl'p,Ul'p

Z /{DVuh ) - e Hup (t)]de + Z /{DVuh ) - ne Hup(0)]de

eCl'pUl'p eCl',Ul'p
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L/ > ‘/{Dvuh el (t)]ded?’

eCl'pUl'p
CcT

C

2 2 2

\ﬁ [un (B + NG [un(0)[ly, + NG lun % 0,70)
t

+ M/ Jgoyﬁo(uh(t/),’L‘Lh(t/))dt/.
0

Taking these results, we have the following inequality such that

P
5 ||Uh(t)”%2(ﬂ) + ( \ﬁ ) lun(®)]13 + Z ||Chq )3

N, .
K 2 e 50 /
+ / Ch (t/) dt —|— 1—7 / J o uh uh( ))dt
> [ el
[T 2 wo K C C 9
sgmmﬂwm+(2+2+2+¢%)mmwv
N
K2 K ® T2K2Q03 1 ) 1 )
+ 26d+2+q2217qg 2, HUOHVJFQTQHfHLg(o,T;LQ(Q))

1 At 9 1
+ (2% + 2) 9N 17 (0,7 L2(Tn)) T o0 ||9N||L2 (0,T:L2(T'n)) + e HuhHLw(OTLQ(Q))

_16b —1fe | & € ]
oS rons +Z 2 ag | Ml

Considering Lo, norm in time for 4y and up on the left hand side yields

No
oy -
5 linllL oz + \muummTv-+§j -Gl
2C | [*
1 — 0,80 (. (41 4, (4 /
EZTw(/H@q I e+ = ) [ a5 ), ey
3 20 5
<= I
_ZQWMﬂm®+(%+K+C+¢O>WMWV
2 2 ) 1 )
+ f+K+Z — IIuona||f||L2(o,T;L2<Q)>

1 1 1
+ <€b + h> ||9N||LOO (0,T;L2(T'N)) JF ||9N||L2(0TL2(FN))
ap
.12 € €c 4CT 9
tealltnllz omsLo@) + | Oy +C7 teat ; €+ Voo lunllz . 0,00) >
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Hence if we take

P

€a _67

. _poh

D YTok

. _poh

“ 240"
oy =20

d 247

2]

= Y 1,..., N,
€q 24N<p’ qG{, ) <p}7

then we can obtain

P 2 o 4CT
2 il oo + (5~ ) o hanme GO

Zw [ e+ 0= 22 [ e ante inpar
(ool

0)I? 3 i
™ [un (0115 + [lwollyy + 1117, 0,320 (02))

F R o IR oz + A 18] o raa) )

for some positive C. Therefore, with sufficiently large ag by

@_GC’T

2
0. 1-2% o
4 Vao Vao
we can conclude that

Nso N%O t
1/2 H 2 A2 / N
12 Lm(&T?LQ(m)+Huher<o,T;v>+;uchq<>||V+q; G
t
+ / TGO (i (), g, () ) dlt!
0

2
<C Pl/Qﬂh(O) + [Jun( )Hv + ||U0Hv + HfH%Q 0,T:L2(2) T h! HQNH%OO 0,T;L2(TN))
L2(Q) ( ()

+ht 1981 2y 0.7 L0(0n)) >

2
sc( o720l g + N0l 110 acey + 7 Mo oacrn

+h! HQNHLQ(QT;LQ(FN)) >
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for some positive C. O

According to Theorem if the given initial conditions, boundary conditions and
source terms are zero, our semidiscrete solution becomes also zero. Since our problem
is equivalent to solving a linear system, it implies the existence and uniqueness of the
semidiscrete solution.

Next, we will consider error bounds for the semidiscrete formulation (Q2). Let us
define

0 =u— Rju,
Vg = Cq — R_lgq, Vq S {1, ... 7N80}7
X = up — Ryu,

Tq = Chg — R-1(y, Vq € {1, R ,N¢}.
Recall (3.2.21)) and Theorem for error estimates as seen in Lemma

Lemma 3.4. Suppose u € H?(0,T;C?(Q)) N WL (0,T; H*(E)) and Bo(d — 1) > 1 for
s > 3/2. There exists a positive constant C' such that for any t € [0, T

11 0750y + XN L.y < CRMREFL

)

and if Q is convex and So(d — 1) > 3

HXHLOO(O’T;LZ(Q)) + ”X||Loo(0,T;V) < Opmin(k+ls)

with large enough ag.
Proof. In a similar way with the proof of Lemma subtracting (3.1.5)) from ((3.2.22])
gives

(PR (1), 0) 1 0) + oar (x(£),0) + D ay (Yq(t),v) + I3 ((1), v)

PX ) L2(Q) woar (X ) 1 q ) 0 X )

= (PA(0),0) o+ P (00, 0) + 3 acs (g(t), ) + T (B(0), v),

for any v € Di(&r). By (3.2.21)) and the Galerkin orthogonality,

N
(px (1), U)L2(Q) + poar (x(t),v) + Z a—1 (Yy(t),v) + Jgo’ﬁo (x(t),v) = (pé(t), v) L)
q=1

Also, the difference between ([3.1.6) and (3.2.23]) shows

rya-1 (Ty(t),v) + a1 (Ty(t), v) = Ty (X(2),v)
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—rya_1 (7g(t),v) + a1 (1), v) — Typga1 (9(16),@)
=~ yeqa (0(1),0)

for any v € D(&r), Vg € {1,..., Ny}, by using Galerkin orthogonality. Since

at (0(0).0) = (00).0) —2 3 /{Dw n }6(8)]de

eCl'p uUl'p
by Galerkin orthogonality and (3.2.21))
rya1 (Ty(t),0) + a1 (Ty(t), v) = Tepga-1 ((8), 0)

Put v = Y4(t) here. Then for each ¢

a_1 (Ty(t), (1)) = zl%jt“ 1(Yq(t), Tq(t)) +

o (G0 0). (3:2.2)

On the other hand, by substitution v = x(¢) into (3.2.26)), we have

P IR0y + 22 ) szal £0) + S50 (1) x(0)

d
:(pé(t),j(i) S+ > /{DVX ) - ne}[X(t)]de

eCcl'p,Ul'p

DI (L CRRINCITE
ecTUl'p V€
Inserting (3.2.27)) into this implies

N

2RI ) + 2 <t>u%+;1jta L (L4 (8), X4(0)

Ne

a1 (Tq(t), Ty(t)) + JoO™ (x(t), X(¢))
TqPq

q=1

=(ph0.50), ¢ Y /{DVX )} (O)de

eCl'pUl'p

. /{DvX e (®))de

eCcl'p,Ul'p

With applying integration over time and using the coercive constant &, it yields

KONy + £2 1) HV+Z - HV+Z AL GI
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+ [ x@a
<[8 KO0 + 5 IO + /0 (pé<t'>,x<t'>)L2(m ar
/ Z /{DVX “ne x(t)]dedt’ —/ Z /{DVX ) - ne x(t)]dedt!

eCl'p,Ul'p eCcl'p,ul'p
SBHG'(O)‘LZ(Q)Jr /Ot(pé(t’),X(’ L2 dt +/ > /{DVX ) - me X (¢)]dedt!
eCl'p,Ul'p
/ > /{DVX - ne}x ()] dedt!
eCl'y,Ul'p

IO ey < PO Xl =0, 1Tl =0, ¥a € {1, N},

as shown in the proof of Lemma Now we shall use Cauchy-Schwarz inequality,
Young’s inequality and the boundedness of skew symmetric part B(-,-). Hence, we can
observe the followings
t D(4!\ ~ (4 /

. By X))t
[y (B x0) |

/ (o) 5@),

s/otpHéw)

t ..
< HXHLOO(O,T;LQ(Q))/O P‘ o(t)

o Iy 7

T
SHXHLOO(O,T;LQ(Q))/O P ‘e(t/)

<X Lo 0,715 (02)) \/ﬂ 9‘ La(0.T5La()

Tl .12
p6a p 9‘

< HXHL (0,T;L2()) T 2ea 1Nl o0 12200

for any positive €.

o |l S [ADVX() -ne}x()dedt — [} S [ADVX(Y) - ne}[x(t)]dedt|

ecl'pUl'p eCl'pUl'p

{DVX ) - ne}x dedt—/ > /{DVX ne}x(t))dedt’

ECFhUFD eCl'p,UI'p

:‘2 / > /{DvX ) me bt dedt! — /{DvX ) - e be(0))de

eCl'pUl'p eCl'p,Ul'p
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- /{DvX e} [x(0)]de

eCl'pUl'p

(" by integration by parts)
<2 / ) + 20 ), 3+~ (@1 + 1))
_\/070 0 % 0 ’ \/% % %
¢ by (BZ1) and (23)

< o + fﬁ J“””BO(X(t'),X(t'))dt’vL\/C;TO(!X(t)!\iJrHX(O)!@)
2O N oy + = [ RGO RO + = IO

Turning to the main proof, the above bounds give

2 ©o C
5 ||X(75)||2LQ(Q) + (7 — —) [Ix@®)I3 + Z ||T I

= 3

+ZW [@lpar s 0= 22) [ s

Plls p1 Pea 201 9
<Z + = + —= .
< HG(O)‘ L e 0) a0 5L () HX”LOO(O T;L2(Q)) Jao ||X||LOO(O,T;V)

Additionally, if we consider L., norm, we get

P2 0
gux|er(0,T;L2<m>+(7—f> IXIIE o 0,m0) +Z -

0

N,
- L ! N2 / _£ t 00,50 o (41N ool ,
+q§:17'q90q/0 HTq(t)Hvdt + (1 \/%)/ Jo (X(t):X(t ))dt

3p | 4 2 3T || 112 3,0€a 6CT 2
<22 léco0 ’ ‘9‘ L .
-2 H (0) Ly(Q)  2€q L2(0,T;L2(S2)) ”X||L°° O7:2() T Vao Xz 00y
Let us take ¢, such that )
€q = 6 > 0,
then
P2 ©o C(l —|—6T)
i ormay + (5 = = =) Il oz +Z -

Ny t .
K 9 2C . .
+ T, (|2 dt + (1 — == /J"‘O’ﬁo ), (') dt'
;27—1190(1/0 H Q( >HV ( \/%) 0 (X( ) X( ))

0
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Yol |

ey 9|

Lo (0,T5La(Q))

Suppose ag is sufficiently large as

T+1 2
@—M>O, 1_7C>0.
2 NG NG

Thus, we have
2 2 ks 2 o [t 2
IXNE o 0,700 F XN T 0.0y + Z 1Ty, + Z/o |04 (&")]]5, dt’
qg=1 q=1

+ R X < ( o]

o™ o)
2(2) L2(0,T;L2(€2))

for some positive C. Therefore, by Theorem [.7, we can conclude that

XM 2o 0,720 (02)) + XM Lo 0,70) <Cpmintrle) =L

and if Q is convex and Sp(d — 1) > 3

||>.<HLOO(()’T;L2(Q)) + ”X||Loo(0,T;v) < O pmin(k+1.s)

Theorem 3.10. Under the same conditions for Lemma [3.4], we have
Ju— uh”Loo(O,T;V) < Ot
. . in(k —
it = inllzfo:7:ay < CH I,
10 = tnll 0,1 0000)) < Chmnk+19) ir elliptic regularity estimates available.
Proof. Tt can be proved in the same sense with the proof of Theorem [3.§ By Theorem

and Lemma

lu = unlly 0,0y SN0l Lo,y + XM Lo 0,750)
gChmm(k—i-l,s)—l’

and

Q) = HéHLOO(O,T;LQ(Q)) + XM £ (0,7 222

SChmin(k—i—l,s)—l’

by (3.2.16) and if € is convex and Sy(d — 1) > 3, we can use (3.2.17) so that

[ = wnll L 0.7:L0(

Hu _ iLh”Loo(O,T;LQ(Q)) SChmin(kJrl,s).
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Corollary 3.2. Under the same conditions for Lemma (3.4}, we have

SChmin(k+1,s) -1

)

Ju— uhHLoo(O,T;Lz(Q))
lw = unllr07:1.0) <Ch™nk+L8) 41 Q) s conver and Bo(d — 1) > 3.

Proof. Theorems and Lemma allow us to have

lw = unll g 0.7 L02)) SN0 Loo0,1:2000)) F Xl Lo 0,722 (02))

<0l 10,7000 T C IXI Lo 0,70
SChmin(k-l—l,s)—l.

Moreover, if € is convex and Sy(d — 1) > 3

||u N uhHLOO(O,T;LQ(Q)) gChmin(lH_l’S)-

3.3 Fully Discrete Formulation for DGFEM

In the previous section, we took into account the semidiscrete formulations for the both
displacement form and velocity form, that is, we considered continuous problems in
time. However, by applying Crank-Nicolson method with respect to time and spatially
DGFEM, fully discrete formulations would be derived. Then we will observe stability
bounds and error bounds for both formulations (Q1) and (Q2), respectively. At last,
numerical experiments would have been carried out to verify the error convergence rates.

As following the same argument to introduce Crank-Nicolson method in Section 2.3,
we have the time step At > 0 such that T" = NAt for N € N. Then our numerical
solution Uy can be expressed as

NVh
Uh(watn) = UZLL = Z u?qsl(w)?
=1

for t,, = nAt with the relation

Wyttt wyp  uptt - oy
2 At ’

(3.3.1)

where W} is a numerical approximation of #(t,). Moreover, we recall and use time
average notation.

3.3.1 Displacement Form

A fully discrete formulation of (Q1) is given by
Find U;L‘,W,’L‘,\Ifzq € Dy(&y) forn =0,...,N, and ¢ = 1,..., N, such that satisfy for
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any v € D(&L), V0 <n <N -1

Wn+1 —Wwnr UTL+1 + un N, \Ijn+1 + g
Ly ()

q=1
Wn+1 wn _
+ Joa(%ﬁo (h2—i_h" U) — Fg(/u)7 (3.3-2)
\Ilz+1 g \I,nJrl 4+ gn Un+1 L yn
q hq hq hq _ Zh T Zh
a_1 (Tq A7 + 5 U | =a—1 | ¢q 5 v |, (3.3.3)
ar (U2,0) = a1 (uo,v) (3.3.4)

(Wi(z)7 U) La(Q) = (UJ(], U)LQ(Q) s

where \Il?lq =0, Vg € {1,...,N,}. From the fully discrete formulation, the equivalent
linear system can be obtained by for 1 <n < N —1

<2”M + A+ 1j> ut = [%an + <2PM — A+ 1j> u"

At? At At At? At -
Ny
27—(1 ) 1 n+1 n
+) 3 s A Th SE B (3.3.6)
qg=1
2
nt+l _ < (n+l . ny _ N
2At 21, — At ®
=ha 2Tq+At< oAy Lhat 5 +u)>’ (3.38)
Vg e {l,...,N,} where
1 N %) T, 1\ !
= A— (-9 4 = A*
amg(a-2 8 (F3) )

and u® = 471Uy, w® = M~'W,. The existence and uniqueness of the solution will be
given by stability bounds.

Remark By (3.3.4) and (3.3.5)), Cauchy-Schwarz inequalities and continuity of NIPG

give
ORI = ax (UR, UR) = ax (w0, UR) < K [fully | UR]], -
2
HWi?HLQ(Q) - (W}?’Wf(l))Lg(Q) - (wO’Wf(l))LQ(Q) < ||w0||L2(Q) HWIQHLQ(Q)’
thus

ORIy < K lluolly s IWRIl L, 0 < llwoll 0 -
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Lemma 3.5. For anyn =0,...,N — 1, it holds for any g € {1,..., Ny}

acy (Wi W, Uit = U =200 (Wi URY) = 200 (9, UF)

274 +1 +1
N (% = Ve Wiy~ ZQ>
1 1 1
_%<a_1 (wpt e ) = ay (w5, 93,))

Proof. Let v = (\I/Z;{H — U}, )/At. By substitution into (3.3.3),

1
q +1 +1 +1 +1
AR (i = vy v - ZQ)JFQAt (a0 (R 08") = ama (W W2,
=Pl (Ut U vt - )
. R ,

=Pl (Wt - Wy, U 4 U

acy (Ut = Wiy Up ) =act (W3 UF ) — sy (W5, UR) + s (W7, UF)
— a1 ( Zq’ Ui?Jrl)
a1 (Vi URHY) = acs (1, UF) — aca (W U = UF),
and
act (Wit = Wiy U ) =acy (Wi Ut —acy (W3 U3 ) = 0o (9, UF)
+ a—1 (\IIZ;_l? U}?)
—ay (W U ) = acy (Wi UR) = acy (W5 U = U
we have
acy (Wi = i Ut 4 U ) =200 (WU = 20 (9, UF)
—a (Wi R, U - 0.
This implies

acy (Wi + W, U — U =200 (W URY) = 20 (9, UF)

27_(] n+1 n n+1 n
1 1 1
o (amr (it wprt) = ooy (W7 W) ).
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Theorem 3.11. For any m =1,..., N, there exists a positive constant C such that

mlNg;'

+ max [|U HV+ZH‘I’ HV+ZZN | vt — g,

2
max le/QW}?

0<n<N Ly(Q) 0<n<N = =
m—1

ALY TR Wt W Wt W
n=0

2
SC< Hp1/2w0HL2(Q) + ||U0H]2/ + Hf”%oo((),T;Lg(Q)) + hil HgNH%oo(O,T;Lz(FN))

_ . 2
1 19 0t )
if Bo(d —1) > 1 and «g is large enough.

Proof. Let 0 < m < N. Choosing v = W,?H + W} into (3.3.2) gives

LWy — IWE 12, @) + g0 (U + UF, U5 — )

1 & o
e S (W U U)W W W W
1
RV W)
with the relation (3.3.1). Expanding a; (U;ZH + U, U;ZH — U[L‘) yields
P n+11[2 n|2 1 n+1]|2 (2
£ (97~ ) + 35 (11 - 0715)

1
—  (n (U Up) = an (U U ) Za (et v, Ot - o)

1
+ 5,]30’60 (W]:L—i-l + WP, W}?—H T W)

14 n 2 n 1 " 9 .
= (W2 ) — 1995 H%Q SR (Ll S Ay

1 n+1 n 1 n+1 n
T AL B (U™, Uy) Atza 1(‘1’1131r Wh Uyt = Uh)

1
+ §J30750 (W}’;H—l + W}?, W}’:H—l + W;LL)
=Fy (Wt + Wi,

By Lemma and multiplying At on both sides, the equation becomes
1|2 2 2 2
o (I3 1 ey = IR 2 00) + (TR 1 = N1
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30 (ama (Wi W) — o (W, )

27,
q n+1 n+l __ qn
a_1 (\IIhq — hq7\:[l hq)
¥Pq

+ 7Jgéoﬁo (W}:%l’l + W, W;L1+1 TP

%)
=ALFF W Wi + 2 (a_l (wgqﬂ, U”“) —a_ (U}, U;;))
q=1
+B (UL UR).

Consider the summation from n =0 to n = m — 1. Then,

PIWE 1T 00y + U IIV+Z har i)
il 2T,
30D g (W - v - )
n=0 g=1
At Z Jao,ﬁo Wn+l +Wh,Wn+1+Wh)
n=0
m—1
=0 [ WAl 0 + HUth+Z 1 (G, W) + X ALEF (W + W)
n=0
Ny m—1
+2) ay (U7, U 2Za L (Th,. U + ) B (U, UR)
q:l n=0
m—1 ~ Ny
<pllwoll?, ) + K lluolly + Y ALEFWT + Wi +2 " ay (U, U
n=0 q=1
m—1
+Y_ B(UFLUR) (3.3.9)
n=0
since \Ifgq =0, Vge {1,...,N,},
HWf?HLQ(Q) < llwollf, () and |URIl, < K [luolly, -

Using coercivity on the left hand side of (3.3.9)) and the definition of SIPG, we can have

Ny
1 2KT, 2
— U2 1 q H g+l _ g
P IWE 7,0 + | hHVJrqz:lS"q HVJFZZAW hally,
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Z Jao,ﬁo W"H—FW,?,W,?H—FW,?)

m—1 Ny,
s\p ol 0y + K uolly + 3 ALEZOVEH + W) 423 asy (W, UF)
n=0 q=1
m—1
3 B UL U + Z 3 / (DVUY - 0.} [0 de (3.3.10)
n=0 eCFhUFD

We will observe each upper bound for the right hand side of (3.3.10)).

m—1 _
AP ALEF (W 4w

m—1 m—1
ALY Fp (Weth Wiy =AY (Fr Wt Wi) Lo
n=0 n=0
m—1
+2 Zo (gh, U+t = Uf?)LQ(FN)

with (3.3.1]). Recall summation by parts and whence it is applied,

m—1
D (@R U = U ey = @85 U Ly = (030 0R) L
n=0
m—1
- — (gn - gxf_l’Ul?)Lg(FN)

Moreover, since gy is continuous and differentiable in time,

m—1 1 1m ! tnt1 / /
—n— n

S = U =5 2 [ O TR) -

n—=1 n=1 n—1

So we have
m—1
AL Fp (Wit + Wy
n=0
m—1

—At z% (fr Wit Wit) Ly T 2 (g% UR") oo
m—1

tn+1
-2 (f]?\f’ U}?)LZ(FN) - Z / (gN(t/), U}?)L2(FN) dt’.

n=1 Yin-1
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Using Cauchy-Schwarz inequality,

m—1
‘At > Fp(wptt+wy)
n=0

<AtY anHLg(Q) (Wit + W;llHLg(Q)

+2 2 188 o) 10 2oy +2 D 188 1) OB e

eCl'ny eCl'y

+zj’ S 195 )]y 10R ooy

tn—1 eCl'n
By applying triangular inequality, Young’s inequality, inverse polynomial trace
inequality and inverse inequality, it implies
m—1
‘At > Fp (Wit wi
n=0

At' = n Ateq & e n
< 27 oo + =5 2o AW [y + 1 o)
n=0

—m— € -~ 1 _ 2 9
" H earwy + CFNTR Iy + 7 18870 + CNUR

tn+1 1

> / 3 (21O, ey + IR ) af

At " Ate, ! 1112 n
?Z I HLQ(Q)—i— 5 ZO HWh+1HL2(Q)+||Wh||%2(ﬂ))

Ceb

_ 0112 2
*H Ry + 5 NURIES + Hg9vHL2 e T CITRI

CAt
L 12 e+ B S .

n=1

When we consider maxima of the right hand side, since m < N, it is observed that
m—1 B
‘At > Fp (Wit wy)
n=0

At N-1 ~
< D Ny + AteaN max W77,
@ n=0

. g2 +CQ’ Tk
€ 0<nEN—1 NIy B ocnen IZh v
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1
+ — max ||9J7€/||12(FN)+CHU£H?J

h0< <N-1
1 2 CAteg,
+eb HgN )HLQ(FN)dt'—i— 3 N Jmax HUhHV

At
Z anHL2(Q —|—Tea max |Wy HL2

1 1 n 2 ]. . 2
+ ; + E Oggléa]%(_l HgNHLQ(FN) + :b HgNHLQ(O,T;LQ(FN))

C(T + 1)6(,

+CHUth h 0< <N

x URIS
=— Z anHLg(Q) + Teq ohax, ||W;?H%2(Q)

11 Lovl2
+ : + E o<t <N . ||gN||L2(FN) :b ||gN||L2(0,T;L2(FN))

C(T + e

2, G+ 16

+ CK |luo|ly, + . o <NHUh I3
since T'= NAt and HUOHV < K ||ugl|y-

Ne
. |22a_1( U |
q=1

With , Cauchy-Schwarz inequality and Young’s inequality, it can be rewrit-
ten as

N‘P
25 0y (W, U \<2Z\Uh Iy s, + ZHUh 13+ g 2)

q=1
<Z €q + HUh HV+Z |’q]hq||V’

for any positive €, Vg € {1,..., N }.

* | Z B (U0 |

Note that
B (v,v) =0, Yv € Di(&r),

so adding this zero gives

m—1 m—1
> BUtLUR) =) B(U - UL UL
n=0 n=0
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with (3.3.1). By the definition and summation by parts,

At s n+1 n n
?ZB(W}L +WhaUh)

n=0

m—1
Aty Y [(DVUR W e

n=0 eCI',Ul'p ¢

m—1
—AtY > [{DVWT 4+ W) - n U de

n=0 eCcI',Ul'p * €

m—1
=AtY > [{DVUR - n W+ Wide

n=0 eCT',Ul'p “ €

m—1
2 Y [(pvwptt - up) - nUplde

n=0 eCI',Ul'p “ €

m—1
=At> S ST [{DVUR 0 WPt + Wde

n=0 eCT',Ul'p V€

~2 Y [ovor e

eclpUl'p 7 €

+2 Y /{DVU}? - ne}[Uy]de

eclpUl'p 7€

m—2
A /{vagﬂ-ne}[Ug“—Umde

n=0 ecI',Ul'p ¥ €
m—1

Ay Y / {(DVU} - n YW + Wide
n=0 eCcT'Ul'p V€

—2 Y [{DVUP - n U7 de

ecl',Ul'p “ €

+92 Z {DVU]? 'ﬂe}[U}?]de

ecl',Ul'p “ €

m—2
+AtY ST DVt p W+ W de.

n=0 eCI',Ul'p €
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Use of 1) yields
m—1

> BUTLUL)

n=0

’ ZB (Wit we,op)

C’At
Z (LAl

CAt a n n
Zjoﬁow+1+wh’w +1+Wh)
m||2 m—1
+7070 1Ol + /7HU ‘}v+7“Uh“v
m—2
CAt 2
+ﬁ Z 1Ux 1y
CAt's a n n
\/fZJ 0:50W4r1_|_Wh’W +1+Wh)
20 At 'w
<
< \/OT
20 At v a
+ 0,580 W}?+1+Wh7W:+l+Wh)
v n=0
m (7 m—1 2 (j}(
+ \/7—0 U ||v + \/7—0 HUh Hv \ﬁ ||U0”v

by initial condition. Taking account into maximum with respect to U;’, we have

m—1
CK 20(T+1)
s (Uh 7Uh) _\/OT ||u0||V+ \/OT() 0<n<N||Uh||V
20At '«
aOﬂO Wn+1 +W}?,W}?+1 +W}?)
v n=0

‘ Z > f {DV\II ne W de‘

6CFhUFD
It is easy to see

N,

2C 2
<2 oo Il

g=1

/ (DVI -0, [T de

eCFhUFD

by ([B.2-1).
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Turning to the main proof, as a result, tidying up into (3.3.10]) implies

N4P
1 2KT, 2
2 2
memdm+umwv+§:a, }b+§:§: qH@ml "
=1 "1

v

At
Z Jao,ﬁo Wn+l + Wh 7 W}TZ+1 + Wh )
n=0

At
§P||w0||%2(9) +K(1+C+ \ﬁ) ||U0||v Z anHLQ

11 1
+ <€b —+ h> ngnga]%( 1 HgNHL2 (T'n) + HgNHLz (0,75L2(T'N))

C(T + 1),
———— max HUhllerZ €q + HUh [

ni2
+T€a0g}%XN||Wh”L2(Q) + A oax,

2C(T +1)
+§:q+4*|WHV‘4ﬁﬁ*M<NWMV

«p
QCAt ao,ﬁo W"“ + W, W"H + Wi + Z <o 2\Cﬁ H‘I’%Hi

Set € = ¢q + ¢0/(2N,) > 0 for each g. Then we have

N,
m ¢o CN. m . ©o C(24 ¢q) m 12
IV, + (22 ”mm%+2< - D) w2
q=1

2 Jag 202N, + 0o Pg/a0

m—1
1 2C
+ At<2 - > Z JeoPo (Wit W Wit W)

C n
<PHWOHL +K(1+C’—|—r l 0Hv+*ZHf HLQ

(2 n) max gy + — lonl?
o B ) onBN INI Ly (T ) & IN N Ly(0,7;L2(TN))
C(T+1)e 2C(T+1)
Qg 0<n<N
Taking into account the property of maximum, we can obtain
(@ _CON n2
2 /o 0<n<N

ni2
+Tea max (Wil ) +

n|2
RIS Wil L) +



O G (L0 30 35 L

m—1
1 2
N At( _ C) S gg R (Wt W Wit W
n=0

C n
<3<pr0HL2 +K(1+C+r HUOHV ZHf HLQ(Q)

1 1 . 2
+ (eb + h) ol <N ) HgN|!L2(pN) :b ”9N||L2(0,T;L2(FN))

C(T+1)e 2C(T+1)
ny2
+ Teq max (W37, ) ( T a ) o U -
By setting
Y woh
0, ¢ = ———— >0,
“=T "V VT T+
it yields
p 2 po  6C(T+1)+CN,
5 (]ISHnaSXN ||Wh HLQ(Q) + < 4 \/Ozio OI<nna<XN HUh HV
N
©o 2+ @q ) QKTQ n+l
i ol + H\P
> (v - (S Z Z
1 QC ml ag 50 n+1 n+1
+ At 5—7 ZJ ' W +Wh,W + W)

C
(puwor\L2 LK1+ C+ r)\luo!\wm ZHf”HLQ(Q
<GC(T+1) 1
+ -~ @7

T g e b

6C(T+1) . |2
+ W ||9NHL2(07T;L2(FN)) )

If we take a large ag such that

po  6C(T+1)+CN,

%)
v _ >0
4 v/ Q0 7
Yok
>0, Vg e {1,...,N,},
202N, + 2004 \/070 { o}
1 2C
- — — >0,
2 Ja
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it is concluded that

m—1 Ny

2 n+l n
La(Q) * 0SnEN 10 + Z [t HV + Zo 21 At H\I]

1/2yxn
max w
0<n<N Hp h

m—1
+ ALY et Wt W, Wit W
n=0

N-1
so( Hp1/2on;(m ol + At Y 171 0
n=0

— —n 112 — . 2
+h~"  max HQR/”LQ(FNH'h l”gN”Lz(O,T;LQ(FN)))a

0<n<N-—1
and, since
N-1 )
F 2
At Z anHLQ(Q) <2T ”f”Loo(O,T;Lz(Q)) ’
n=0
and
o IAX ”gN”Lg(FN <2 HQNHLOO (0,T;La(T'y)) >
we can also obtain
2 —1 Ne
1/271n n+l
o%@XN Hp Wi L2(Q) * oina<XN U HV + Z H\P HV + nz qz At H‘IJ

+ At Z JOéo B0 Wn-l—l + W W;LL-H + W

sc( HPWMOHL2<9> + luoll} + 117 .oy + B 9N L0120

_ . 2
+h! H9N|L2(O,T;L2(FN))>

for some positive C. O

We proved the stability bound for the fully discrete formulation of (Q1) without
using Gronwall’s inequality. For the stability, it requires sufficiently large ag. From
this stability bound, we can also show the uniqueness and existence of the fully dis-
crete solution of (Q1). Then we will consider error bounds by introducing DG elliptic
projection.

Let us define

0 :=u— Ryu,
= U;? - Rlu”,
w" = W} — Rid",

175



g 1= g — Ro1tbg ¥ € {1,..., N},
Sqg = Vh, — Ry Vg € {1,...,N,},

where u" = u(t,) for 0 < n < N. By using DG elliptic projection (3.2.14)), we shall
show the error bounds for the fully discrete formulation of (Q1).

Remark For any v € Dg(&,), Vt, Galerkin orthogonality gives
ay (6(t),v) =0, ( )

ar <9(t),v> =0, (3.3.12)

a—y (94(t),v) =0, Vg € {1,..., Ny}, (3.3.13)

a_1 (19q(t),v> =0, Vg € {1,..., Ny} ( )

In addition, the continuity of the strong solution and homogeneous Dirichlet boundary
condition impose

O] =0, [B(1)] =0, [94(1)] =0, [4(t)] =0, (3.3.15)

for any t, Vg € {1,...,Ny,} on I', UT'p. Moreover, for any v € Dy(&,), SIPG can be
written as

a_1 (6(t),v) = ay (6(t),v) — 2 /{DVU ne}[0(t)]de

eCl'pUl'p

so that (3.3.11) and (3.3.15) imply

a_1(0(t),v) =0. (3.3.16)

801s9 bym

Lemma 3.6. Suppose u € H*(0,T;C?(Q)) N WL(0,T; H*(E)) and Bo(d — 1) > 1 for
s> 3/2. For large enough «y, there exists a positive constant C such that

) . Ne Ne N1 §"+1 -7
Ogg!\W’HLQm)+Og§fg§VHx]HV D3 !<3HV+A75;;] B
1/2
(At Z JOéO BO n-‘rl + w”j wn-i-l 4 w“))
< C(hmln (k+1,s) ‘|‘ AtQ).
Furthermore, if Q is convex and o(d — 1) > 3 is given, we have
' ' Ny N-1 gn—f—l —n
2 i+, I+ 3 s, Il + 303 3
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N—1 1/2
+ <At Z Jgéoﬂo (wn—H + wnvwn—i-l + wn))
n=0
< C(hmin(k+1,s) + AtQ).
Proof. Consider subtracting (3.3.2)) from (3.1.1]

(B(ﬁ”“ i) —

1
! Wit = Wie) e (@) = (O ), )

At( 2
1 e 1 1
— 5> an (W5 ) — (U 0, 0)
g=1
1« . .
+ 5Joo,ﬁo ((unJrl T+t — (W}?-‘rl + W, U) -0,

for any v € Dy(&p). Hence it holds

N,
1 P
A7 (@ =) g+ e (¢ X —*Za 1 (s g v)
q=1
1
+ §J§°’B° (wn+1 + " v)
N,
0n+1 0n 1 0n+1 Lo 1 - 19"+1 19”
At( ’U>L2(Q)+§a1( o )_§Za 1( +9g.v)
q=1
sl + i vt g 1 0.50 /4 .
o - 700, 0n+1 0n
+p< 2 At 7U>L2(Q)+2‘]0 ( + 70)7
At (0”4‘1 én’ U) L2(Q) —+ P (6?, U)LQ(Q) N (3317)

for 0 <n < N — 1, where
it + At) +a(t)  a(t+ At) —a(?)
2 At ’
by (3.3.11)), (3.3.12) and (3.3.15)). Note that we have the following identity equation

&i(t) =

Xn+1 _ Xn wn-{—l 4

a2 8E (3.3.18)
where
Eo(t) = A;) +0(t) 0t + AAti — 00
&x(t) = U AA? —u(t) alt+ A;) +ilt)
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by (3.3.1). Put v = (x"*! — x™)/At into (3.3.17). Then (3.3.18) gives

n+1

p < n+1 n X _Xn> 1 <n+1 n X Xn>
— @ -, +oa T O S S
At At ) 2 At
1 n
,E n+1 n X - X" L 00,80 n+1 n XnJr - X
- (11< +§q7 At >+2J0 w +w7 At )

1 n
P @ 4@ Pt en
2(2)

1 n
B L (o X=X
At (w w ’53)L2(Q)+2a1 (X + X, At

L < X" X" 1
g2 (G ) e e )
=1

_ %Jgéo,ﬁo (wn+1 4 wnng) JOéo ,Bo ( n+1 + wn78§z) 7

P n 2 n P n n en
~9A1 (I="*17 ) = I ”Lzm)) =g @ =T E) )

14 1
S F w"yfé‘)Lz(m + 57 (115 - Hxnui)
1
_ @B(XH+1’ ) 2At Za 1 n+1 +o A Xn)
ijaoﬁo ( ntl | on gl wn)
;Jéloﬁo (wnJrl + wn7g£L) o %Jgéoﬁo (wnJrl + wnagg) :

P (9n+1 én’wn+1 +wn>

=5 At e (6 —6m.ep)

Ly (Q2) At
(0n+1 en gn) +B (gn wn+1 +wn) o (gn gn)
At " ) T2 La() ~ PR C2 )0y

P (ETES ) Ly () -

Since continuity and homogeneous boundary condition imply

La(Q)

(€3] =0, [E5] =0,
we have

P n 2 n P n n on
AL (HW My — Il ||iQ(Q)> - (@ - E8) )

1 1
_ é (wn+1 _ wn,&?)Lz(Q) + SAL (HXnJrlui _ ||XnH$/> B EB(XnJrl?Xn)
N,
1 ki 1
B E qzla_l ( i + §q ’X Xn) + ZJSYO’BO (w"+l + w",w”‘H + wn)
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P (en—i-l 9 ’wn+1 _|_wn)

= G (=)

L () At
p n n n n n
+5 (€@ e a") L~ P ENE) o)

L2(Q)

-

—p(&r ,5§)L2(Q)

Ly ()

hence on account of summation from n =0ton =m — 1 for 0 < m < N, we derive

1 m—1 Ny
2
S 1™ e + 57 I — mtzzal X = X"

—1
+ 411"12: ngo,ﬁo (wn+1 + wn7 wn—i—l + wn)

_L 0 - 0 L m+1 _ Agn n+1 n
=5z |I® HL2 + 2At Il + N, ; (0 e+ )Lm)
p m—1 0 m—1
= m+1 _ gn en 7 i+l Agn en
At ngo (9 0 ’62)L2(Q) At = (0 0% & )LQ(Q)
m—1 m—1 m—1
+ g Z (‘g{l?wnﬂ + wn)L @ P Z (€183 1y — P Z (€1, 88) 1,0
n=0 n=0 n=0
p m—1 P m—1
+ E 2 (wn—H wn)gg)L @ + E nz:;) (wn—l-l n Z?)L @
1 m—1

On the other hand, let us consider the subtraction between and ) for each
q. It gives

1
%‘!ta_l (ggzﬂ — o) + S (s n+1 +<v) — %a_l (" + %", v)
=Ty (9 =9, 0) e (B 49 0) — Day (67 407, 0)
in+1 in n+l _ /n
ra (wq 2+ by Yy . vy 71})

=Tq0_1 (E;‘, v)

by (3.3.13) and (3.3.16)), for any v € Dy (&), where

byt + At) + 1y (t) _ Pg(t+ At) — (1)

for each q.
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Inserting v = ()7 — ¢I') /At and taking summation for n = 0,...,m — 1 yield
1
+1 +1 0.0
At2 Za 1"~ 7§‘?)+2At (a1 (sq"54") = a-1(sq5))

4
_ TAqt Z_;) a_q (gg—&-l ggL’ Xn—i—l + Xn)

Since 14(0) =0 = ¢2q7 with applying summation by parts, we gain
m—1

Zal (g7 =GN = D e (T T =)
n=0

=2a_ 1 7§q Zal GRS Q?H-i-&?)

and
m—
S o ™ =) = () - S 7 - ).
It implies
0 m—1 o 1
q n+1 n n+l n) _ 149 m _m\ _ m _m
2Atnz:0a (x X" ey) Ata—l(X <) oA 1 (sg" ")
—1
_ lmz a ( n+1 n _n+l n)
A2 ~1(Sq Sq'+Sq S
n=0
+E (Em 1 m)
At \Fa 0%
- m—2
4 +1 +1
- > an (B - B
n=0
As a result, (3.3.19) can be written as
13 1
5 meHLQ o t5 ”XmHv Z;a—l (<§”,<Zf)
g=1 "1
+ At Ta, . q’ q q>
=S P At At
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Z Jao,ﬁo n+1+wn’wn+1_’_wn)

H

m— .
{OHV g <9n+1 0" o 4w

n=0

m—1 _
—P nZ—O (énH - én’%l)@(m —P nz_;) <én+l B én’ggl)Lg(Q)
m—1 m—1 m—1

p n n n n n n n
+ §At Z (" +w )LQ(Q) — pAt Z (1, E3) 1yq) — PAL Z (€1, €5) 1,0

n=0 n=0 n=0
N

m—1
+pz (w"Jrl w" 52 —l—pz e —w",é’g)LQ(Q) +Za_1 (Xm,C;n)

q=1

=
2

0H2 n>
L@ L(9)

m—2 Ny

Ny m—1
1
+> 7;(1@71 (By e =20 —a, (B = Bl oo ™) + 5 2 BOCXD,
q=1 q n=0

n=0 g= 1
and applying coercivity and expanding SIPG also yield

m—1 Ny

N,
1 1
1"+ I T + 5 30 s+ A S 3

q= anl

Z Jozo ﬁo n+1 + wn7wn+l + wn)

gq - gq

0 ) 1 ) pm 1 '
s{z R R D Y T R B

m—1 —
—p nzo (9n+1 -0 g;) L@ 7 nzo (9n+1 - gQ) La(Q)
m—1 m—1 s

p n n n n n n n
+ §At Z (e, ot + )LQ(Q) — pAt Z (€1, 83) 1y0) — PAL Z (€1, €5) 1,0
n=0 n=0 n=0

m—1
—i—,oz:(w"'H @", &), +pz ("t — " €3, Q)—l—Za 1 (X™, <)

m—2 Ng

N, _
1
z*w S T (g - )+ LS B
= n=0

n=0 g= 180(1

— Y / {DVS" - ne}s"]de

QCF; ul'p

Recall (2.3.19). The right hand side of (3.3.20]) coincides with that of (2.3.19]) except

Nw
(3.3.20)
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skew symmetric part of DG bilinear form B(:,-). Also, instead of continuity of the
bilinear form it is necessary to use (3.2.5). Using the same arguments in the proof of
Lemma we can obtain the upper bounds of the right hand side of (3.3.20)) as follows.

2
o 1=,
HWOHiQ(Q) = (W} — Riwo, Wy, — Rywy)
= (wo — Rawo, Wy — leO)Lz(Q)
(. since (wo,v) ) = (W’?’U)LQ(Qy Vo € Vh)
)
L(€)

(' " since 90 = Wy — leo)

L2(2)

<[

ol

(" by Cauchy-Schwarz inequality)

S0,
2
1= ey < 1],
2
o [IX°[5
ar (UR,v) = a1 (uo,v), Yo € Di(&n),
a1 (Riug,v) = a1 (uo,v), Yo € Di(&),
hence
ai (U}OL — R1UQ,U) =0, Yv e Dk(gh),
and
HXOHi = a1 (U} — Ryug, Uy — Riug) = 0.
m—1
n+l 'n n+1 n
\ngo (9 o 4w >L2<m|
m—1

(énJrl _ én?wn+1 + wn)
0

m—1 . . I ,
= 7;)/% <0(t ), @ +w )LQ(Q)dt
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- Ly(Q)




o(t')

m—1 tna1
<> |
n=0 tn
(' by Cauchy—Schwarz inequality)
n+1 m—1 tm+1
/ a n+1 n||2 /
Gy / D D A e N
n= n=0 v "'"
(" by Young s inequality for any positive €,)
1 9 ¢ m—1 9
/ a n+1 n
N @ 3 Z;) [ + =", @ A
n=

tm .
< He(t’
(- Hwnﬂ + wnHL2(Q) is independent of s)

La(©) = "] o 0

~ 2¢,

1 tm . 2 m—l1 .02
< / / J
~%e, Jy Hﬁ(t) L@ dt —1—26@7;)0%22}%\[“@ HLQ(Q) At

112
¢ HW"*WW’”‘HZ( < 2[|@" |7, @) + 21" a0 < 4 max =]l )

N-1
12
SE H9 )dt’—i—QeagogaS)%VHwJHLQ(m At
1§12
" 2, 6’ La(0,T;La()) + QE“TOQ%V = HLQ(Q) '
m—1 m—1
o m+1l _ gn eon o m+1l _ Agn eon
‘| ngo (9 ’ ’52)L2(0>|’| ngo (9 ’ ’83>L2<9)‘
In the same sense as the above,
m—1 m—1 o1
_ m+1l _ Agn en | _ (4! n /
‘ nzo (61 -6 ’52>L2(n> ‘ nzo/t (0(t),€2>L2(Q) dt
m—1
1 2
§2/ H9 La@ )dt/+ 3 Z 1€ 117, ) At
AT 5
2 L2(0,T;L2(R)) 2 O<]<N 1 Ly(Q)
Also,
m—1
S ), | < e 5o [
= Lo () 2 L2(0,T;La(2)) 2 0<j<N-1 La(Q)
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m—1
o |At nzz;o €@+ ") L |

At Z (&r, w4 w")LQ(Q)

‘ m—1
n=0

At AL T 2
STb nZ:o €TI0 + bT ;:0 =" + =" 10

(" by Cauchy—Schwarz inequality and Young’s inequality for some positive )

m—1

At
Z IIET ||L ©) + 2ep At E max HwJHLZ
0

2
(- Hw"+1 + ||} 0 <2 ||w"+1HL @+ 217" 2w < 4 max (127, 0)
T
ST% 0<jEN-1 HEJHL @ 2€bToI<rﬁ)§v =720 -

(- m<N, T=NAt)

m—1 m—1
o |-A T (EE L@ | = AT (€ E) L |

‘ m—1

—ALY " (E15 ) 1,0

n=0
m— m—1
At At n
? Z |51 HLQ 7 Z ”52 ||%2(Q)
n=0

-1
. At 2 12
<— max HS{ + — max Hé’g
o 0sJ<N-1 Lo(Q) 2 4= 0<j<N-1 Lo ()

n= =

12 T 12
HE{ + -~  max HE% :
L2(Q) 2 0<j<N-1 La(Q)

In the same way,

m—1

‘ — ALY (N EN) Loy | <

n=0

12 T
- J -
—2 0<§n<%€f( 1 Hgl‘ 2

La(Q)

0<_7<N 1 ‘

m—1 1 m—1 1

° ‘ E@ (wn-i- — wn’ES)LQ(Q) {, | ZO (wn+ — wnag??)Lz(Q) ’
n= n=

By summation by parts,

m—1

+1 wn)gg)

La(2)

n=0
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m—1
0 0 1 1
2’ (@™ € ) Loy — (@5 69) fyioy — D (@8 = E3) Lo
n=0
0 ¢0 = [ 16
_ m ecm _ _ n+ / /
_’(w V) Ly — (@ ,SQ)LQ(Q) r;)/tn (w ,Ea(t ))LQ(Q) dt
1
€c 2 0
5 meHL2 270 1€2" 175 0) + 5 | HLQ( Hg2 HLQ
+ idmi: | |7 o) At + 1/tm HS (t S
2 & La(®) 2¢q Jo 17V s
€ . 1 12 IRTINIE
<5 Moo+ 5 o, e, 0+ 21
=9 ogien (L PR 56, 021 12l Ly T2 1 1 )
1 €q 2
Z j €d J
*3 0N -1 HgQ‘ L@ 2 = 02N | HLQ(Q) At
42 " HE () Lo
2€4 2 La(2)
<& max H H 1 max Hé'j‘ + = H ‘
=2 0<j<N L2@) T 2, 01 192 Ly T2 17 lae)
1 112 €d 02
o 275
+ 20<I]n<%,\7 1 H 2 Ly () + 2 ogaéva HLQ( + 2¢4 Lo(0,T;L2(82))

for positive €. and €4. In this manner,

m—1
Z (wn+1 _ wnjgg)LQ(Q)
n=0
S L
= 2 osien 117 | HL2 2ec 0<TEN -1 Hg3 Lo () *3 o La()
1 j €d J||? = H ’
+ 2 0<§n<%< 1 HE?’HLQ(Q) + 2 Torgn@v Hw HLQ( + 2¢4 Lo(0,T;L2(Q))
N, N,
21 a_1 (xm,%”) ) ' 21 %‘;CLA (E;”‘%;”) ‘
9= 9=
Use of makes
> SHE > h+
aor ()| <30 (F+ ) Nl + ) Il
A RPS RN R
for some positive {e;}. And the continuity of SIPG form implies
i T, K%r, €
éa (B <) ' SZ Saqq 1B 1HV+Z¢ 2~ "1l

q=1

for some positive {é,}.
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m=2 Ve . +1 +1
o [ = X 3 Jray (B¢t - Bt |
n=0 q=1
‘ m—2 Ny

_ Z Ea (En+1 En n+1) ’
- q
n=0 q:l Pq

FEEL e
dt +Z

Z (S [W

1 g 2¢4

queq H ‘

Ny
D DR e ]
L3(0,T;V) = * ©q 26 0<]<N v
for some positive {éq}.
1mfl
o [32 B XM
n=0

Since B(v,v) = 0 for any v € D(&),

ZB n+1 n ZB n+1_X X)

Then the definition of skew symmetric B(-,-) and (3.3.18) lead us to have

MS

n+1 n’ Xn)
n=0

m—1
=At Z Z {DVX" - n " + @™ — EF — EF]de

n=0 eCT',UT'p ” €

-2 Z /{Dme -@e}[xm_l]de

eCl'pUl'p €

+2 ) /{Don-ne}[xo]de

eCI'p,U'p €
m—2
+ At Z Z {DVX" ™ n "+ o™ — EF — EXde.
n=0 eCI',Ul'p V€

Note that [£5] = [E}] = 0 on Tp UT), and ||x"||,, = 0, hence (8.2.1) and (8.2.2)

give

m—1
1 C’At
- B n+17 n + m + m 1
‘ n§:0 ( ) WE x5 \ﬁHX I WH 15
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CAt Zjao,ﬁo n+1_’_wn’wn+1+wn)‘

In addition, consider the maximum on the right hand side with respect to m except
the jump penalty. Then we obtain

1 C(T +2) 2

'22)3(x”“,x") == omax [1x[ly
n=

C'At

W

Zjao,ﬁo n+1—i—w wn+1+w )

JPVES ORAC AN

eCl'p,Ul'p
From 1 ,

No

/ (DVE™ - Yo" de

—Z¢r}|;n“v

eCFhUFD

Note that the terms of &1, &2, E3 and E, are bounded by At? by Crank-Nicolson method.
So are their first time derivatives. For our sake, we set

1 1 1 1

TG+ NIT T 6B+ NIT T 8B+ N, 4T 8B+ N)T
and
T,(402 N, + 2 Tr, 802N, + 4
€= g + SOO?gq: o PatVe wowq),€q=(3+N¢)j PatVe PoPq
2N, $0Pq Pq ©o

for each q. Then,

€c €d 4
T+eT + —T) —__ P Sy
p(ea + e + 5 + 5 1 p > U,

q=1
and
N‘P N(p N<p N‘P
1 1 T 1 %0
- _ S A __ = > 0.
i R ; Va2 ; 80qNep + dpovg

In the end, tidying up the above results with the elliptic approximation estimates,

vo CN, 2
1™ e+ (52 - T2 ) I
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+§¢:< ©0 C(1+90q+7'q>H H +Atmz:1NZ’Wq gq _gq
A R AN = P

1 p
+ At Z (7 _ 7){]840, 0 (wn-H _i_wn’wn—i—l +wn)
n=0 4 \/%

< 2(min (k+1,s)—1) a“, P 2
<C(h AT+ 43+ N,) o%aév | HL2(Q) + Voo 0<j<N X

%0 CT,
i Z 3+N TBEEN, + dpopy | pavan) omiy 21 (3.3.21)

Whence taking into account maxima on ([3.3.21f), we can obtain

p 12 vy CN, 12
§0r<rb'a<}§v ijHLQ(Q) + (4 - \/@) og;'ag)?v HXJHV

Ol +¢g+19) ;
+Z <880qN + 4popy g/ 023&?%”( HV
—|—AtT’LZlNZ HTq q(1 §q +At7n2_1 (1 C )J—ao,ﬁo ( n+1 + n n+1 + ’I’L)
-——=)Jy w w',w w
n=0 g=1 v n=0 4 \/OTO

2(min (k+1,5)—1) N, P |2
§(3+N¢)<C(h + 88 + gy e, [

c@er+1
Jas o It

©o CTry ) )
* Z ( 2(3 + Ny) 802N, + 4popy + Pgr/ 0 0<]<N Hg HV

therefore
p " wo C(T'+2)(34+ N,)+CN, 2
s I (%- o= o [

C(1+<Pq+7q(l+3T+N¢T))> |
+ J
Z <8SDqN + 4800@(] Spq\/aio 0< S%V ng HV

m—1
+ At Z Z KTy Cq =< + At Z (} _ L)Jgéo,ﬁo (wn+1 I e S w”)
n=0 ¢=1 ¥q % n=0 4 \/aio

SC(h2(mm (k+1,s)—1) + At4).

If we choose the large ag by
Yo C(T+2)(3+ Ny,)+ CN,,
4 \/ Q0
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1 C
—-——>0
4 \/ Q0
and
$0 C(1+80q+7q(1+3T+N<pT)) >0
802N, + 4popq T ’
for each ¢, we can conclude that
Ny N—1 gn—i-l o
j j q q
omax (||, 0 + max ]l + Zog% lsglly +at> > %
q= q=1 n=0 1%
N-1 1/2
+ <At Z Jgéoﬂo (wn—H + wn,wn—i-l + wn))
< C(hmin(k+1,s)fl +At2).
Furthermore, if Q is convex and By(d — 1) > 3 is given, (3.2.17) gives
Ne N2l qn+t —gn
j S¢ T 5¢
Og%ﬂwwhmﬁwggkav+ Oggvmmfwwggg;

1/2
(At Z Jao ﬂo n+1 _i_wn’wn—i-l +wn)>

< C(hmln(k+1,s) + Atg).
]

From Lemma in a similar way with CGFEM cases and the semidiscrete problem,
we can obatin the following error bounds for the fully discrete formulation of (Q1).

Theorem 3.12. Under the same condition on Lemma we have

Nl < min (k+1,s)—1 2
max ||u(t;) Uh]V_C(h +AR),

N _77J < min (k+1,s)—1 2
phax, u(t;) Uh‘ < C(h + At?),
TN ¢ 72 < min (k+1,s)—1 2
O%aS)CN u(ty) — W < C(h + At%),

and if Q is convex and [o(d — 1) >3

—— Hu(tj) . U}jl) < C(hmin (k+1,s) + Atz),

0<j<N La(Q)
S+ Td < min (k+1,s) A#2).
o i) W] g, < OO 1 A
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Proof. 1t is easy to show the statement. We have already proved similar problems. The
proof follows the same way with the proof of Theorem and Corollary 2.1 but in [|-|[,,
rather than ||-||;, by using the result in Lemma O

As seen in theorems in terms of the stability bound and the error bounds for the fully
discrete formulation of (Q1), the discrete solution is bounded by data and converges
without Gronwall’s inequality but it requires sufficiently large ag. In this manner, we
can also deal with the fully discrete formulation of (Q2).

3.3.2 Velocity Form

As following the notations, the fully discrete formulation for (Q2) is governed by Crank-
Nicolson method:

Find Uy, W' and S, € Dy(&p) for n = 0,..., N, Vg € {1,..., Ny} such that for any
v € Dp(&n)

wrtl _pyn UTL+1 4T U Sn+1 + 87
(PhAthvv) + oay (h +Za 1 7’”&
Lo(Q)

+%?%<W¢+;+Wwﬂozzﬂﬂm, forn=0,...,N -1, (3.3.22)
Tg0—1 (W,U> +a_ (Wa“) = TgPqd—1 (W’U> )
(3.3.23)
forn=0,...,N—1,Vge {1,...,Ny,},
a_1(UP,v) = a_1(up,v) , (3.3.24)
(W3.0) 1) = (00:0) 5000 - (3.3.25)

with (3.3.1) and Sy, =0, Vg € {1,..., N,}. Whence we define

Nyn Nyn Nyn

Uy = Z ui'di, Wyl = Z w;'¢;, and Sy, = Z Shq.i®i for each g,
=1 i=1

=1

the resulting linear system is given by

2p ©0 1 2p 2p 1
n+l __ - _ n
u <At2M+ A+B+At.7> [AtMm <At2M A+B+Atj>u

No

2 * 1 ~n+1 ~n

n+l _ 2 ( n+1

") — " 3.2
1 AL —u") — ", (3.3.27)
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—1 —1
ntl _ (Ta 1\ " Ta¥a o ni1 T 1 T 1\ 9
g <At + 2) At (u ) + (At + 2) <At 2 Shy (3.3.28)

for ¢ = 1,...,N,, where §2q = 0, u and ' are governed by (3.3.24) and (3.3.25),

respectively with

Mij = (05, $i) 1,0) » Aij = a1 (95, i) s Afj = a—1(¢5,04), Tij = JEOP (6, ¢4)

Ny
fori,j=1,...,Nyrn and B= > QTququtA*. When we show the stability bound, we can
q=1

also solve the resulting linear system uniquely.

We will refer to the proofs for the fully discrete formulation of (P2) to show the
stability and error bounds for that of (Q2). Basically, the difference between CGFEM
and DGFEM on the proof will come from the skew symmetric part of DG bilinear form
and DG energy norm. Hence we should deal with them carefully.

Lemma 3.7. For each q and for any m € N such that 1 < m < N,

m—1
> a (S Sp Wt W) = a_y (Sps. She)
n=0

IAY
m—1

_l’_

+1 +1
o (S + Spyp it + Spy) -
n=0

Proof. Consider v = S,?qﬂ + Spy, for 0 <n <m —1on (3.3.23). We have

T 1
T (o (S S ) = an (St St) ) + g1 (S + Shoe Si + 85y
_Ta¥q

2

Summing with respect to n,

a (Wt + Wi, St 4+ Spy).

—
—_

3

Ly (Sp, ST +

L act (St + S Spt + Sty

‘ 2

n

m—1
= T (Wit Wi i ST,
n=0

since S}?q = 0 for any ¢, thus it is observed that

m—1

2
D a (Sptt 4 Sp, W+ W) =01 (S, Sm)
n=0 (Pq

m—1 1

+1 +1
£ e (S + Sp Sitt + Sty ) -
n=0 974
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Theorem 3.13. Suppose fo(d—1) > 1. For a sufficiently large oy, there exists a positive
constant C such that

N, N—1 N
12 P L 2 i 2
J J J A n+1 n
o5 W s [+ 2 g o, + 2 5 2 i+ s
N-1
+AE g W Wt W)
n=0

§C< ||w0||%2(§2) + HU0||\2/ + ||f||%oo(07T;L2(Q)) +h! ||gN||%oo(0,T;L2(FN))
+h! ”gN”iQ(O,T§L2(FN)) )

Proof. Let m € {1,...,N} and v = W}?H + W for n = 0,...,m — 1 and put it into
(3.3.22)) with (3.3.1). Then we have

14 n+1 2 n 2 ®0 n+1 2 nn2 ©o nt1 n
(W ) = 1WEIa@)) + S UTRR = 10RID) - S5 B UR)
195 entl L en wm R R o )
+§Za71(8hq+1—{—5hq7wh+1+Wh)+§J00750(Wh+1+Wh’Wh+l+Wh)

=F} (Wit + i)

Summation from n = 0 to n = m — 1 and multiplying At give

m—1 Ny

At S )
PIWEE o + 20 IURIS + 5 D2 D acs (S + Sy Wit + W)
n=0 g=1

At m—1 N
5 2 W W Wt Wi

n=0
9 ) m—1 m—1
=2 [WRll 1y + 0o [URIR, + At Y B (Wit + Wit) + w0 ) BUR™LUR).
n=0 n=0
By Lemma we obtain
Ny, 1
2 2
PIWI I, ) + o IURIS + Y —a—1 (Shy: Shy)
=1 %1
m 1 Ny 1
+1 +1
S (S i+ S
n= Oq 1 4%q

2 ZJOZOWGO Wn+1+WEL7WI:L+1+W}1L’L)
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m—1

—PHWhHLQ(ﬂ)+300HU'1HV+MZFn (With + Wi) + @0 > BWURTL UL,
n=0 n—0

so that

N e N K 2
PIWEMZ 40 + %0 IUR I +Z HSthV Z ZW Spt+ sy, ”
n=0 g=1 7ra

At
Z Jaoﬂo Wn+1 + Wh ’ W}?+1 + Wh)
n=0

< pHWhHL +g00||Uh}|v+AtZF" (Wit W) +¢OZB Ut Uh)’
n=0 n=0
(3.3.29)

by coercivity. Let us consider each component of the right hand side of (|3.3.29).

o |At Z Er(witt+wp) |
Usmg the definition of Fy, (3 and summation by parts, we have

m—1

’At S E (Wt W)
n=0

’ m—1

=AY (Wt Wi Ly +2 (9% “Lum ) L)
n=0

m—1

tn+1
2@ U iy~ 2 | N TR ey

n=1 th—1

m—1 Ny —tn /7q tn/Tq
+2ZZ<,0q i +e a (UO,U,?H—U;?)
n=0 g=1
m—1
<At [ W W) @+ 2@ ) Ly
n=0
bni1 ’ /
420 (38 U8) 1 |+Z »/tn G
(29} 7t /7‘
2|ay (uo, UR") | + 2ax (uo, U) |+Z<PqK Z uo|| [|UR |y, dt'.
tn—1 V

Recall the similar arguments in the proof of Theorems and for the last
term in the above. With applying (3.2.5), Cauchy-Schwarz inequality, Young’s
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inequality, inverse polynomial trace theorem and Poincaré’s inequality,

m—1
‘At Z Er (Wit W)
n=0

m—1
<AL NP oy IR+ Wil ey +2 D2 198 o) 107 e
n=0 eCl'ny
0 0 i I /
+2 ) 1% | 100 TR ey + Z/ > 198 ] Ly o) 1UR N ey Ot
eCl'y n=1"tn—1 ccry
m c C m
+ 2ol U7y + == luolly + —== 1V + 2 [URI
Ne o m—1 g, —t'/r.
IO D A B A
q=1 n=1 “tn-1 Tq Y

At Atea = o Ateg o
S Yo7 HiQ(Q) T > HWh—HHLQ(Q) T > AW
& n=0 n=0 n=0

1 12 _ m 1.0 n2 2
+:bH9N 1HL2(FN)+Ch Yep U5 + b 1H99VHL2(FN)+CHUF(L]HV

m—1

1

2 2

YU + = lluoll5
€d

n=1

I
+ec/0 HgN(t’)HiQ(FN)dt’+Ch_1Atec

C C 2
Um |2 2 U™ 4 9 |70
+ €a ||Uy, HV—FTOTO [[uolly + Jas IURM + 2 |UR |5,
N K2 €, M1
2 2
+y luolly + At= > 1URI
o drqee 2 =

2

0<j<N

At 2 ) j
< 2 17 Moy + T g 93]

b Een ma [0+ one v+ o U
€ 0<j<N-1 La(I'w)
+ 616 198 2o 071 )y + €' T 025 LN HUiHi - eld luoll
+Wm%gwmﬂ%w%wwm
N,
+ qz:; éz ol + = max v

for any positive €4, €, €, €7 and €.
m—1 41
n
e [vo X BUTL UM
n=0
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Since B(v,v) =0, Yv € Dr(&r),
BUR*,UR) = BUR - UL UP).

(3.3.1)) allows us to have

At
B(URT = Uy, Up) = 5 BW,™ + Wi, Up).

As seen in the proof of Theorem by (3.2.1)), it yields

m—1
C(poK 20@0(T+ 1)
B Un+1 U, SO P U
SOOT; ( h h) \/(70 || OHV \/@ 0<TL<N|| hHV
2Cg0QAt B 1 1
+ — Jao’ ° W"+ +wpr,wirtt L.
Jao Z o Wh n)

Tidying up the above results, (3.3.29)) yields
C Je
2 -1 m||2 K m (|2
PIWi 12y + (o = Ch™ b — €a — —=) U1, + > — ||Sh
L2(22) Vao q;s% H qu

2
n+1 n
Shg T Sthv

ZZ(

n=0 g=1
+At 1_ 20900 Z Jaoﬁo WTL+1 +W}?,W}?+1 +W}le)
A=
<pHWhHL2 @ (C+2+ ”Uth Z 1F HLQ(Q

12 2
+ Te, max HWfL
0<j<N

— 4 pt H—j ‘
L2 () +(eb + )o<1326}\)/{ 119N

L2(TN)
1. 9 -
+ - HgNHLg(O,T;LQ(FN)) +Ch 1T€C max HU H
(&
N,
1 COA+poK) 1 K? T
1 - Uy
" <€d " NG ! qz:l ATg€e leoll + €. 0SnEN 1R

N 2Cpo(T +1)
v/ Q0 0<n<N

Whence taking into account maxima, we have

x RS-

max
0<j<N

+ (po — Ch™* 6 —ea— -

2
Voo 0<]<NH H ©q HSZ;HV
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2
HSnH +S}7‘L‘JHV

DI

1 2
+At - 0900

Tq¥Pq

Z JOéO ,Bo Wn—l—l + W}?, W;LH-I + W,?)

2 C 2 At = 2

0 0 rn
ss(p\>wh|\L2<m R el L Re Y 1
1

L o]
Lo(Q) eb+ )03%%(—1 IN

2
+ Teg max H ’

L2(T'N)

1 . _ 12
+ € HgNHL2(07T;L2(FN)) + Ch™'Te; max ’U}]‘HV
C

0<j<N
N,
1 C(l+ poK) L K? T
al R Sl i - = U
+<6d+ v/ 0 —i_quéque6 H 0”v+2 02113,<XNH hHV
+ ———= max_||U}[f3,
Voo 0<n<N
Set
GZLEZLOOhE:SOOh 6:@627800
“T 6T T 8C T 48CT YT 20 T 4T

then it implies

12
L max ‘WJ

o 6Cp(T ;
W ae) © (4 B \/070> 05N ’U H +Z* (Sl

2 0<j<N
S s
h q
n=0 g= ITSD ! v
1 QC‘PO B 1 1
+At(§— ZJ‘“O W L W Wt L W
<3 (VR + (o0 + C 1+ <) [0
Jao
N,
2 C(l+ ¢K) = 6K2T>
) —— +At— n
(2 ot L ) Il Z 1771120
8C 48CT .. 2
(%+1)h 0<?1§6}\}/(—1H N‘LQ Tw) Wh |gNHL2(O’T;L2(FN))>'
If we assume « is large enough as
6Cpo(T + 1 1 2C
o 6Cpo(T + )>0’ L 800>0’
4 v/ 2 v/ Q0



we can conclude that

2
n+1 n
St Sh||

S H At ]
0<]<NH ‘LQ(Q) 0<3<NH H o%aévH hal|y, T ZZ

+ At Z JeOPo (Wit L wp Wit W)

2

0<j<N-1 La2(T'N)

N-1
2 2 |2 - a7
C(llwolld, @ + luoll} + A8 3™ (17170 + 57" max |||
n=0
+ht ”gN”LQ(o,T;LQ(FN)))
2 2 2 - 2
C(llwollz, ) + luollyy + 1F17 o200 T2 IINIT (072w
1 2
+h TGN T 07510 (0w)) )
by Cauchy-Schwarz inequalities, since m is arbitrary, HW,? H La(9) < lwol| Ly(@) and
U]y, < K Jluolly- -

Theoremindicates that the fully discrete problem of (Q2) can be solved uniquely.
Hence — could be determined for any n = 0,..., N —1. With similar tech-
niques, we can obtain the error bounds for the fully discrete formulation of (QZ2).

Let us define

0(t) := u(t) — Ryu(t), X" = U — Riu(ty), w" =Wy — Riu(ty),
ve(t) := (g(t) — R—1Gy(1), Ty = Spy — Ro1Gy(tn), Vg € {1,...,N,},
forn =0,...,N, Vt € [0,T]. Recall Galerkin orthogonality and its properties such as

and (F3.10)

Lemma 3.8. Suppose u € H*(0,T;C?(Q)) N WL (0,T; H*(E)) and Bo(d — 1) > 1 for
s> 3/2. For large enough «y, there exists a positive constant C such that

Ny N—1
s 7]y + g, I + ZmN 141, + 203 - ey 1,
N—1
+ At Z Jgoﬂo (@™ + @", " w™)Y/2
n=0
< C(hmin(k—‘,—Ls)—l +At2)
Furthermore, if Q is convex and Bo(d — 1) > 3, we have
. . Ny N—1
o5 1 e+ g, by + Zm il +a0 3 ey + 1l
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N-1

+ At Z JSéO:ﬁO(wn—&-l + wn’wn—l—l + wn)l/Z
n=0

< C(hmin(k+1,s) +At2).

Proof. Let n € {0 ,N — 1}. For average between t = t,11 and ¢t = t,, subtracting

m ) from (3.1.5)) gives

i i Wt Wy U e
p — n , U + Yoal - , U
La(2)

2 A 2 2

n+1 n+1 n
+ S +S 1
+Z (Cq S h"’“>+2J6‘°’5°<a"+l+u“(W:“+W;:>,v>

=0,

for any v € Dy (). By adding zeros and Galerkin orthogonality, we have

p P
E (wn-i-l _ wn,v)LQ(Q) + ?Oal (Xn-‘rl + Xn U Za_ Tn—i—l + Tn )

1
+ 7{}010,50 (wn—H + @™, )

n—+1 m n
At (9 -0 aU)L2(Q)+p(517U)L2(Q)

for any v S Dk(é'h)’ where 51({;) = ﬁ(t'i_A;)'H’;(t) _ ﬂ(t"r‘AAti_d(t)‘ If we put v = X"+gt—xn
with (3.3.18)) here, we can obtain
P n+1|2 n2 n+1112 2
sz (1= 0 = Il ||L2(Q>) + o (I = 1)
N,
1 £ 1 .
+ AT Za—l (TnJrl + Tn n+ Xn) + ZJO 0,80 (wnJrl + wn’wn+1 + o™
q=1
T 2At (0 -0 w +w>L2(Q)+2(5hw +@") L@
en-i-l Hn gn . P én+1 _e'n &n
At( ’ 2>Lz(Q) At( ’ 3>L2(Q)
n en n en 0 n n
=P (& &)y () = P(ET E8) o) T 5 A, BIX X", (3.3.30)

where

O(t+ At)+0(t)  6(t+ At) —0(t)

E(t) == 5 - AL )
ot AL —u(t)  at 4+ At) 4 (t)
E4(t) = N _ : .
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In a similar way, subtracting (3.3.23) from (3.1.6) yields
‘n+1 ‘n n+l _ ¢on n-1 n n+1 n
+ S S + S +S
g1 Cq Cq _ “hq hq7v tag Cq Cq _ “hg hqu
2 At 2 2

sn+1 - ntl _ 11
o W' 4at Uy Uhﬂ)
i 2 At

for any ¢ € {1,..., Ny}, Vv € Dy(&p,) and so

1
;—qta,l (T;“H — Tg,v) + 50-1 (T;’“H + Tg,v) — Tinq a_1 (x"'H — X”,v)
=Tq0_1 (EZ;, v) — Tgpqa—1 (E3,v)
by Garlerkin orthogonality where
L+ AL) 4, (t t4+ At) — C(t
Eq(t) = Cq( + )+Cq( ) _ Cq( + ) Cq( ) fOI' each q
2 At
ot prn
Whence we set v = ———*, we have
1
TAtafl (T;H-l 4+ T27 Xn—l—l . Xn)
1
:ma—l (Xn+1 _ Xn7 TZLJrl + TZ)
1 1
e (o (T~ (X T0) + o (X T 1)
2Atp, 27440q
1 1
+1 +1
~ 5,01 (Bg, Tq™ +0g) + 501 (&5, 05 +73) (3.3.31)

for g € {1,..., Ny}
By substitution of (3.3.31]) into (3.3.30) with multiplying At,

g (Hwn+1Hi2(Q) - Hwn”%z(g)> + % (HX”HHi - ||X"||%;)

1 n n n ~n
+ o> — (e (YN Y0T —asy (Y7,77))

ay (T3 4+ Ty)

At
4

:g (énJrl _ én’ wn+1 + wn)

(- i)

+ JSXO,ﬁO (wnJrl + wn7wn+1 + wn)
P B n n+1 n
Loy T 28 (& @™ + ") 0

m+1 moen n eon
(0 ey eSEE)

L2(Q2 2
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At 1
g=1 714
At O
®0
=5 2 (E T4 TE) + T BOTTL X,
q=1
Summation of this for n =0,...,m — 1 for 1 < m < N implies
1
14 2 2] 2
5 @™, + 5 X"y + 5 Z ;afl (g Ty
g=1"1
m—1 Ny
At T"H T" T”“ T"

Z Jaoﬂo n+1 ern’wn—&—l +wn)

m—1
51+ I+ 5 X (7 ==t )
n=

m—1 m—1
14 n n n n o en
+2Atnz% (& & +w ) o) —PT; (9 -0 ,52)L2(Q)
m—1 m—1
_pz (41— om 53) paiy ~PAE D (EE) L) — AL Y (6 E) 1)
n=0 n=0 n=0
m—1 Ny 1 m—1 Ny
SO IEEICR AL AR D ) SIRIC R AR Y
2 n= Oq 1 n=0 ¢g=1
%0 n n
"’ ? ngo B(X +1aX )7
hence coercivity leads us to obtain
o m—1 Ny
L™y + 52 ™15+ 3 Z* el +ae 3230 + 771
n=0 g=1
At m—1
+ T nz:O Jgo,ﬂo (wn-i-l + wn7wn+1 + ") (3.3.32)
p ¢ 14" P
2 0 2 n 'n n n
S‘z HWOHLQ(Q) + 5 HXOHVJrzqzl \TOHV £ ; (9 H_gn ot 4 )LQ(Q)
m—1 —
14 n n n n mo en
+2Atzo (8= + "), g —p; (0 —omep),
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m—1 m—1

m—1
o2 () DY (S ED ) — DY (S E e

n=0 n=0 n=0
At m—1 Ny 1 m 1 Ny
+7ZZ—CL1(E" Yoty — ZZal (5,0t +17)
n=0 ¢g=1 Pq n=0 ¢g=1

m—1
©o +1
- ZOB(Xn AN (3.3.33)
n=

Comparing with , we can derive the bounds for the right hand side of
(3.3.33)) except the skew symmetric terms B(-,-) but in ||-||,, rather than in ||-||\,. In
other words, as following the same arguments in bounds for in Lemma for
example using Cauchy-Schwarz inequality, Young’s inequality, Theorem and
the result of Crank-Nicolson methods, we can obtain

m—1 Ny
IS TS e LA RRY Spwb g LARE LT
n=0 ¢q=1
At ZJaoﬂo S S w”+1+w )
n=0
P 12 min —
SEO%EQ%HWJHLQ(Q”LO@?( (b+Ls)=1) 4 Asd)
—1 N, At .
ZZ*M ! E”,TZ+1+TZ)| ZZ|G 1 53,Tn+1+'f")|
n=0 g= 1 e et
+ %|B(Xn+l7 Xn)| (3334)

Here, instead of (1.4.8)), Theorem is applied for approximations. Now, we shall
consider the skew symmetric terms and SIPG terms. (3.2.4) and the continuity of SIPG
imply the bounds for these skew symmetric terms as below

m—1 Ny
o F X X dlan (BT Y Z Z la_y (&7, Y0+ 4 17) |
n=0 gq= n=0 ¢=1

Use of continuity of SIPG and Young’s inequality provides

m—1 Ny

At Z Zim . (En Tn—i—l —I—Tn) ’
2 n=0 g=1 Pq
A e g
<5 2 EL g+ gl
n=0 g=1 Pq
Atm_lN(P K2 t— 1N¢e
§7 Z 280 . nHV Z Z tq HTn—i-l +T”HV
n=0 g= n=0 g=1
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mlNap

At N-1 N n2 6q n+1 n
?222906 qu ZZ HT +THV

n=0 g=1

for any positive ¢, for each ¢. In the same sense,

m—1 Ny

ZZya (&, |

n=0 gq=1
N lN(p m 1N<p€
ZZ—II%IIV ZZ e+l
n=0 g=1 n=0 g=1

While we take ¢, = ﬁ for each ¢, since finite difference approximations used,
arq

we gain
At A At &
7 Z Zi‘a 1 (En Tn-l—l_i_frn)‘_‘_iz‘a 1 537Tn+1+'rn)‘
n=0 g=1 Pq q=1
m—1 Ny
O(AtY) + At ) +12
n=0 g= 1
25 1B )
Slnce B(v v) = 0 for any v € Dg(&),
m—1 m—1
Z B n+1 n B n+l n7Xn)
n=0 n=0
m— 1At m—1
- 7B(wnﬂ +a@",x") — > AtB(E5,X")
n=0
m—1

AtB(&3, x")

I
o

n

by (3.3.18]). Then the definition of skew symmetric B(-,-), (3.2.1]) and (3.2.2)) lead
us to have

%0 s n+l . n sy At n+1 n o.n sy At n o.n
n=0 n=0 n=0
m—1
At
_ Z 7B(gn’Xn)
n=0
I e S N S
>~¢0
¥ NG P Xy 2\/— Xy 2./a6 X



CAt on CAt "=
ZH2”V 2WZ_%‘3”V
CAt's

+ ZJQO,BU n+1+w wn+1+w )
v nO

In addition, consider the maximum on the right hand side with respect to m,
except the jump penalty. Then we obtain

m—1

o0 o cat R CAt
23 B SSDO( Z lE3I2 + Z e
n=0
C(2T—|—1) N2
+7m omax Xy
CAt T
4+ 2= Jao ,30 n+1+w w”+1+w ))
e
9T +1 .
gO(At4)+M mas |||
Vo 0<j<N v
At &
n Copo Zjao,ﬁo S wn+1+w )

oo
Hence (3.3.34)) can be rewritten by

m—1 Ny
L™ ey + 5 ™5 + 5 Z o el +ae Y R
n=0 q= 1
+ Atmz_:l (1 - %)Jgoﬂo (@™ 4 ", "t o)
n=0 4 \/OTO
p 112 Ceo(2T +1) 112 min _
gﬁogﬁ%\/ ijHLQ(Q) + 0\/070 Og%v HX]HV + O(hZ( (k+1,8)-1) 4 At4)
so that when taking into account maxima on the left hand side, we obtain
p © K Yo 1
112 0 in2 2
5 o0 177|100 + 5 max X1+ 5 q; ool
m—1 Ny
+AEY + 123,
n=0 q= 1
+ Atmzzl (1 _ %)Jao,ﬁo(wn—l-l + " wn—H + wn)
n=0 4 \/% ’ ’
p n Cpo(2T + 1)
e L R )]
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Thus, we have

N,
p 12 ® C(12T + 6) 12 2k
N AR Y (L EL NN S
< =

4 0<j<N 2 NG 0<j<N
m—1 ng K 9
ALY S gl
n=0 g=1 1¥q
m—1 1 C
+ At Z (Z _ \/%)Jgfo,ﬁo(wn—l-l + wn,wn—f—l + wn)
n=0

SO(hZ(min(kJrl,s)fl) +At4).
If we assume «q is large enough such that
C(12T' 4+ 6 1 C
(127" +6) <0 ©o

then
112 P2 e 2 el e 1 2
251 o s O+ 7 + 80 Sy 4 v
m—1
+ ALY JGOP (@ 4 " " 4+ )
n=0
SO(hmin(k+l’S)_l +At2)
and since m is arbitrary
.12 .12 N(P .12 Nl N(p 1 2
o (||| o + max [l + ;022% 1T3lly + At ;::) q; g™ + el
N-1
+ At Z JSOP (" 4 " "t 4 ")
n=0

§0<h2(min(k+l,s)fl) + At4).

In addition, whence Q is convex and fy(d — 1) > 3, (3.2.17) could be applied thus we
can derive higher order result as

N, N—1 Ny
12 12 12 2
o (||| o + max [l + ;‘)g% I3l + At HZO qu g™ +1alls,
N-1
+ At Z ngo’ﬂo(w”"'l + o™, "+ o)
n=0

SO(h2 min(k+1,s) + At4).
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As shown in the proof of Lemma [3.8] we followed very similar way for CGFEM but
we used the DG bilinear form so we should deal with skew symmetric part B(-,-). This
term can be controlled by the penalty parameter ag so that large g is required for our
claim. Also, in the same manner in CGFEM, Lemma [3.8) will imply the following error
bounds of the fully discrete solution for (Q2).

Theorem 3.14. Under the same condition on Lemma [3.8, we have
N 77 < min (k+1,s)—1 A 2
mas [|u(t) Uh] L<C +AR),

N Y < min (k+1,5)—1 2
0N ulty) Uh‘ La() — Clh AL,

< C(hmin(kJrl,s)fl +At2),

max |lu(tj) — W,z L) =

0<j<N

and if  is convex

< O(hmin (k+1,s) +At2),

max Hu(t]) — Ufl) (@)

0<j<N
max ||u(t;) — Wj’
ma [Ji(t;) — W

< Cr(hmin(k:—l—l,s) +At2).
L2 ()

Proof. 1t is easy to show our claim. The proof follows the exactly same way with the
proof of Theorem and Corollary [2.2|but in ||-||,, rather than [-||;, by using the result
in Lemma 3.8 and Theorem O

As seen in Theorem the fully discrete solution for (Q2) has also same order
accuracy as that of the displacement form (Q1). Both formulations, the displacement
form and the velocity form, require a large penalty term aq for the stability bounds and
error bounds. From (3.3.6))-(3.3.8) and (3.3.26)-(3.3.28]), we can construct computational

forms with based on FEniCS and so we will implement numerical experiments regarding
(Q1) and (Q2) in next section.

3.4 Numerical Experiments

In the same sense with CGFEM, we can construct numerical simulation codes in FEniCS
with use of the fully discrete formulations for DGFEM. Here, we make some numerical
experiments to verify error estimates as seen in Theorems and Our examples
of exact solutions are sufficiently smooth in other words let us take s = co. Then as
following error estimates theorems the order of error bounds depends only on a degree of
polynomials k. First of all, we assume that p=1, D=1, T =1 and Q = [0,1] x [0, 1].
We choose ag and Sy to fulfil the conditions of stability bounds. Note that 2 is convex
and so elliptic regularity has been equipped. That is, optimised Lo estimates would be
observed. Also, let us define

ep = u(ty,) — Uj} and €} := u(t,) — W
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where N € N, At =T/N and t,, = nAt forn=0,..., N.

We want to show the exactness to verify our code implementation satisfying the
error estimates theorems. Note that in order to see the exactness in time we should
ignore internal variables since the internal variables are defined as integral forms with
exponential functions in time.

Example 3.1.

Suppose u = (1 + t?)zy and there is no internal variable, which leads us to solve a
simple wave equation. From the exact solution u, we can obtain f and gy, respectively
then we have the following Table

Lhoar ] dledlly ] e | leblle |
1/2 172 ] 4.3704 x 10~ | 1.1106 x 10~ | 3.3440 x 10~
1/4 1/4 | 1.0365 x 10713 | 2.4790 x 10714 | 1.6028 x 10~

Table 3.1: Errors for u = xy on k = 2

As shown in Table [3.1] for coarse mesh sizes in time and space, the errors are suffi-
ciently small about 10~!3 ~ 107!, These small values are kind of round-off errors and
so they are negligible hence we can conclude that the numerical solutions are exact to
the strong solutions. Therefore, we can say that our codes satisfy the exactness.

Example 3.2.

Let u = e 'zy with two internal variables where ¢; = 0.1, 3 = 0.4, 71 = 0.5
and 7o = 1.5. With respect to the spatial domain €, for fixed time, u is a quadratic
polynomial. Hence, as described in Tables the errors are independent of a spatial
mesh size h. To be specific, when we observe the errors column-wisely, the convergence
is not shown. However, as At decreasing, the errors approach to zero. So, the error
convergence rates show

N 1o s X 1 = OAE),

lea’ll,
At
b 1/4 1/8 1/16 1/32 1/64
1/4 2.6451x107%  6.8075x10~% 1.7091x10~% 4.2735x10™° 1.0687x107°
1/8 2.6444x107%  6.7987x10~* 1.7105x107% 4.2791x1075 1.0700x10~°
1/16 | 2.6425x1072  6.7980x10~% 1.7098x10~% 4.2793x107° 1.0702x107°
1/32 | 2.6423x1073  6.7984x10~*  1.7097x10~% 4.2781x1075 1.0696x107°
1/64 | 2.6423x1073  6.7981x10~% 1.7095x10~% 4.2820x107° 1.0409x107°
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le

N
h HLQ(Q)

2 1/4 1/8 1/16 1/32 1/64
1/4 3.6021x1073  9.0223x10~% 2.2576x10~1 5.6484x107° 1.4123x107°
1/8 3.5969x107%  9.0127x107% 2.2548x107% 5.6386x107° 1.4099x1075
1/16 | 3.5967x107%  9.0121x10~% 2.2547x10~% 5.6381x1075 1.4096x1075
1/32 | 3.5967x1072 9.0121x107% 2.2546x10~% 5.6378x107° 1.4093x107°
1/64 | 3.5967x107%  9.0121x10™*  2.2546x10~* 5.6385x107° 1.4097x10~°

N
Heh HLQ(Q)
At

b 1/4 1/8 1/16 1/32 1/64
1/4 1.0067x1073  2.6644x10~%  6.7531x107° 1.6940x10~° 4.2386x10~°
1/8 1.0053x1073  2.6609x10~% 6.7449x107°5 1.6920x107° 4.2335x10°6
1/16 | 1.0052x1072 2.6606x10~% 6.7442x107°5 1.6918x107°5 4.2329x10~¢
1/32 1.0052x1073  2.6606x10~*  6.7441x1075 1.6913x107° 4.2300x1076
1/64 1.0052x1073  2.6606x107%  6.7434x1075 1.6922x107° 4.2306x10~°

Table 3.2: Errors for u = e ‘zy on k = 2
Example 3.3.

If we set u = tsin(xy) without internal variables, u is a linear in time on each
(z,y) € Q. As following error estimates, the error convergence rates are given by

lenlly, = O(hk) and ”éhHLQ(Q) ) H€h||L2(Q) = O(th)

since 2 is convex. It is also indicated that for k =1

HégHLQ(Q) ’ Hef]lvHL2(Q) =0(h?)

in Table 3.3] More precisely, when we consider the table row-wisely it is seen that the
time step size At has no effect on the errors between the exact solution and our numerical
solution.

lei[l,, = O®),

N
[len [l
At
b 1/4 1/8 1/16 1/32 1/64
1/4 1.1179x10~ 1 1.1176x10~1 1.1175x10~T 1.1174x10~1 1.1174x107"
1/8 5.9704x1072  5.9700x1072 5.9698x1072 5.9698x1072 5.9698x 102
1/16 3.0372x1072 3.0371x1072 3.0371x1072 3.0371x10~2 3.0371x10~2
1/32 1.5253%x1072  1.5253x1072 1.5253x1072 1.5253x1072 1.5253x102
1/64 7.6348%x107%  7.6348x1073 7.6348x107% 7.6348x1073 7.6348x1073
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[ [P

At 1/4 18 1/16 1/32 1/64

1/4 8.6095x1073  8.5555x10~° 8.6335x10~° 8.7479x1073 8.7848x 103
1/8 2.5642x107%  2.4664x1073  2.4078x1073 2.4107x1073 2.4311x1073
1/16 | 6.8260x10~% 6.5654x107% 6.4071x10"* 6.3238x10~* 6.3120x10~*
1/32 | 1.7364x107% 1.6761x10~% 1.6362x10~% 1.6172x10~% 1.6074x10~*
1/64 | 4.3610x107° 4.2179x107° 4.1142x107° 4.0757x107° 4.0534x107°

lei’
1/4 1/8 1/16 1/32 1/64

1/4 5.9528x107%  5.9162x1077 5.8862x107% 5.8770x1077 5.8747x107°
1/8 1.7732x1073  1.7825x1072 1.7789x1072 1.7761x10~2 1.7755x1073
1/16 | 4.6509x107% 4.6868x107% 4.6901x107% 4.6882x107% 4.6862x10~*
1/32 1L.1777x107%  1.1874x107*% 1.1887x10~*% 1.1888x10~* 1.1886x104
1/64 | 2.9545%x107° 2.9791x1075 2.9827x107° 2.9837x107° 2.9840x10~°

l.c0)

At

Table 3.3: Errors u = tsin(zy) on k =1

Example 3.4.

From Examples 3.1, 3.2 and 3.3, we can find the exactness of our code implements.
To see more general cases, let us consider the following numerical experiment such that
u = e !sin(ry) with two internal variables where @1 = 0.1, o = 0.4, 77 = 0.5 and
79 = 1.5. Then the internal variables and data terms can be computed.

Numerical errors for u = e~ !sin(zy) have been shown in the following tables which
vary with the parameter 5y, the degree of polynomials k and the form of internal vari-
ables:

e Standard penalisation (8y = 1): Tables

e Super-penalisation (8y = 3): Tables

Linear polynomial basis (k = 1): Tables
Quadratic polynomial basis (k = 2): Tables
Displacement form (Q1): Tables

Velocity form (Q2): Tables

Due to Crank-Nicolson method for the time discretisation, it is observed that the fixed
order of accuracy At? for any case. The convergence orders with respect to the spatial
mesh h only depend on various settings such as Sy and k. They thus show the evidence
of our error estimates theorems. Regardless of the form of internal variables, the error
analysis theorems provide the same convergence rate where condition parameters o and
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Bo are sufficiently large. It is shown in Tables - The convergence rates for the
displacement form and the velocity form are given by

len ||, = O(h + At?), HéhNHLQ(Q) ; HehNHLg(Q) = O(h* + At?),

for k = 1, respectively. While degree of polynomials k increasing, the order accuracy in
time does not change but that of the spatial mesh becomes higher. For example, when
we set k = 2, we can see the following error estimates for both forms

len’

=0 +a8), &, = O(h® + At?),

Hv eizVHLQ(Q)

in Tables|3.7| and The exact errors have no big difference between (Q1) and (Q2)
but convergence rates depend only on k£ under the certain conditions such as sufficiently
large aig and [y(d—1) > 3. Interestingly, as in T heorems the super-penalisation
is an essential condition for optimal Lo estimations but in practice Table and
describe that the standard penalisation also provides the optimality for linear basis. Lo
optimality of the standard penalisation is observed only in odd k. Hence, we shall take
account into benefits of the two penalisation in detail.

Remark We have two penalty parameters, ag and SBy. For a stability analysis and an
error analysis, it is essential that «g is sufficiently large. On the other hand, we would
take into account the standard penalisation Sy(d — 1) = 1 and the super-penalisation
Bo(d—1) > 3. The standard penalisation leads us to obtain the existence and uniqueness
as well as suboptimal error estimates in L. If it is super-penalised, Lo optimality will
be given. To be specific, according to [24], super-penalisation is a necessary condition
for optimal Lo error estimate in elliptic problems with NIPG. In our error estimates
theorems, we used these elliptic approximation estimates, therefore, we need to use
super-penalised NIPG for the sake of elliptic regularity estimates.
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01¢

e,

At

b 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 LI7T13x10™"  1.1474x10°"  1.1306x10~ T 1.1252x10" " 1.1238x10° " 1.1234x10™" 1.1232x10° " 1.1231x10° "
1/4 5.9207x107%  5.7903x107% 5.7477x107% 5.7310x107° 5.7247x107% 5.7232x107% 5.7226x107% 5.7223x107?
1/8 2.9878x107%  2.8513x1072  2.8307x107% 2.8261x1072 2.8241x1072 2.8233x107% 2.8231x1072  2.8230x1072
1/16 1.6245x1072  1.4236x1072  1.3999x107%  1.3972x107%  1.3967x107> 1.3965x107> 1.3964x107>  1.3964x107>
1/32 105401072 7.3568x107°  6.9752x107°  6.9435x107°  6.9401x107°  6.9394x107°  6.9391x107°  6.9390x107°
1/64 | 8.5710x1073  4.1871x107%  3.5159x107° 3.4631x107% 3.4590x107% 3.4586x107% 3.4585x107® 3.4585x1073
1/128 | 8.0082x1073  2.9076x107%  1.8322x107% 1.7338x1073 1.7270x107% 1.7265x1073 1.7264x10™% 1.7264x107?
1/256 | 7.8618x107° 2.4888x107% 1.0556x107° 8.7629x10™* 8.6344x107* 8.6259x10™* 8.6252x10™* 8.6252x10~*

~N

‘|€hHL2(Q)
b At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 3.0251x1077  2.0250x10" 2 1.7577x10"7 1.6803x10 2 1.6640x10 > 1.6598x10 2 1.6588x10° > 1.6586x10 ~
1/4 1.7876x1072  8.2162x107%  6.0155x107%  5.3461x107% 5.1737x107% 5.1459x1073 5.1387x107%  5.1372x107*
1/8 1.4483x1072  4.5881x107%  2.1824x107% 1.5944x107% 1.4121x107% 1.3622x107° 1.3553x10™% 1.3536x107?
1/16 | 1.3626x1072  3.6952x107%  1.1739x107% 5.5720x10™*  4.0750x10™* 3.6043x10™* 3.4753x107™* 3.4569x107*
1/32 1.3409x1072  3.4770x107%  9.3066x107* 2.9518x10™* 1.4035x10™* 1.0261x10™* 9.0829x107°  8.7500x10~°
1/64 1.3355x1072  3.4225x107°  8.7201x107"  2.3301x107" 7.3953x107°  3.5180x107° 2.5721x107°  2.2753x107°
1/128 | 1.3341x1072  3.4089x107% 8.5753x107* 2.1815x10™* 5.8293x107° 1.8501x107° 8.8024x107¢ 6.4350x107°
1/256 | 1.3338x1072  3.4055x107%  8.5391x10™* 2.1449x107% 5.4551x107° 1.4576x107° 4.6265x107° 2.1992x10~°

N

HehHLz(Q)
B At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 7.6041x107°  7.7669x107°  7.6371x107°  7.6095x107°  7.6027x107° 7.5996x10"° 7.5981x107° 7.5974x10~°
1/4 2.8425x107%  2.4123x1073  2.4522x107%  2.4857x107% 2.4950x1073  2.4969x107% 2.4971x1073  2.4969x10~3
1/8 2.6171x107%  9.1137x10™*  6.5459x107*  6.8995x10™*  7.0528x10™* 7.0941x10™* 7.1036x10~* 7.1055x10™*
1/16 | 2.8088x107% 8.7184x10™* 2.3712x10™* 1.6952x10™% 1.8079x10™* 1.8528x10™* 1.8648x10™* 1.8677x10~*
1/32 2.8741x107%  9.1747x10™*  2.3181x10™* 5.9841x107° 4.3025x107°  4.6029x107°  4.7208x107° 4.7523x107°
1/64 | 2.8916x107% 9.3228x107* 2.4393x10™* 5.8807x107° 1.5005x107° 1.0829x107° 1.1595x107° 1.1894x107°
1/128 | 2.8961x107%  9.3620x107* 2.4771x10™* 6.1902x107° 1.4754x107° 3.7557x107° 2.7159x107° 2.9088x10~°
1/256 | 2.8972x107° 9.3720x10™* 2.4871x10™* 6.2857x107° 1.5533x107° 3.6915x107° 9.3967x1077 6.8069x10~"

Table 3.4: Errors of (Q1) for linear polynomial basis; Example 3.4 where ag = 10, 5y = 1




T1¢

el

At

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.0898x10~T 1.0729x10~T 1.0601x10"T 1.0552x10~T 1.0539x10~T 1.0536x10~T 1.0534x10~' 1.0533x107!
1/4 4.8538x1072  4.7914x107%  4.7746x107%  4.7693x1072 4.7673x1072 4.7663x1072 4.7660x107%  4.7659x 10>
1/8 2.4052x1072  2.2924x1072  2.2809%x1072 2.2799x1072 2.2797x1072 2.2797x1072 2.2797x1072 2.2796x10"?
1/16 1.3682x1072 1.1510x1072 1.1290x1072 1.1275x1072 1.1274x1072 1.1274x1072 1.1274x1072 1.1274x1072
1/32 9.6127x1072  6.0860x1072  5.6553x1072  5.6254x107% 5.6236x107% 5.6235x107% 5.6235x107° 5.6235x107°
1/64 8.2987x1073  3.6514x1073 2.8746x1072 2.8143x107% 2.8105x107% 2.8102x107% 2.8102x1073% 2.8102x1073

~N
= Heh HLQ(Q)
t

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 3.2167x1077  2.2092x1072  1.9363x1072 1.8661x107 2 1.8546x10°2 1.8509x10~2 1.8500x1072 1.8498x10~ 2
1/4 1.8968x1072  8.9226x107%  6.5453x107% 5.9124x1073 5.6356x107% 5.5971x107° 5.6239x107%  5.6225x107?
1/8 1.4765x1072  4.8213x1073 2.3224x1073 1.6953x1073 1.5443x1073 1.4877x10™3 1.4509x107% 1.4451x1073
1/16 1.3692x1072  3.7542x107%  1.2162x107°% 5.8429x107* 4.2848x10™* 3.9042x10™* 3.7989x10™* 3.7392x10~*
1/32 1.3425x1072  3.4912x107%  9.4210x10™*  3.0409x10™* 1.4609x10™* 1.0734x10™* 9.7994x107° 9.5601x107°
1/64 1.3359x1072  3.4260x107% 8.7489x10™% 2.3556x107* 7.5981x107° 3.6356x107° 2.6691x107° 2.4371x107°

N
. Heh HLQ(Q)
t

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 6.9346x10°  7.6602x107°  7.9200x107% 8.0123x10™7 8.0372x10° 8.0432x10™° 8.0444x10™° 8.0446x10~°
1/4 1.2587x107%  2.2791x107%  2.8254x107% 2.9858x107% 3.0276x107% 3.0381x107° 3.0407x107° 3.0414x1073
1/8 2.0565x107%  3.8793x10™*  6.4345x107*  8.0387x107* 8.4702x10™* 8.5786x107* 8.6057x10™* 8.6125x10™*
1/16 | 2.6738x1073 7.3670x10™* 1.0347x10™* 1.6729x10™* 2.0828x10™* 2.1904x10™* 2.2175x10™* 2.2243x107*
1/32 2.8408x107%  8.8562x107% 1.9914x107* 2.6434x107° 4.2293x107° 5.2597x107° 5.5271x107° 5.5947x107°
1/64 2.8833x107%  9.2445x107% 2.3625x107* 5.0709x107° 6.6418x10°° 1.0753x107° 1.3382x10~° 1.4017x107°

Table 3.5: Errors of (Q1) for linear polynomial basis; Example 3.4 where ag = 10,89 = 3




¢le

el

At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.1537x1077  9.3151x10°° 9.5031x10~% 9.5653x10~° 9.5955x10~° 9.6001x10~° 9.6008x10~° 9.6010x10~?
1/4 7.6279x107%  3.1716x107%  2.7503x107°  2.8078x107%  2.8353x107%  2.8406x107% 2.8419x107% 2.8422x107?
1/8 7.6320x107%  2.2528x107°  8.5506x10™*  7.6106x10”* 7.7841x107* 7.8541x107* 7.8693x10”* 7.8749x10~*
1/16 | 7.7559x107%  2.2850x107% 5.8643x107* 2.2280x107* 2.0102x107* 2.0546x10™* 2.0719x10™* 2.0767x107*
1/32 | 7.7974x107%  2.3189x107% 5.9498x107* 1.4814x10™* 5.6842x107° 5.1665x107° 5.2796x107°  5.3228x107°
1/64 | 7.8087x107% 2.3292x107% 6.0357x10™* 1.5013x10™* 3.7141x107° 1.4357x107° 1.3097x107° 1.3381x107°

~N

= Heh HLQ(Q)

t 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.3916x1072  4.1086x10™°  1.5857x107° 1.0351x107° 8.7919x10~*F 8.5231x10~ % 8.4630x10~ " 8.4488x10~*
1/4 1.3412x1072  3.4905x10™%  9.4733x10™* 3.2155x10™* 1.8270x10™* 1.5516x10™* 1.4956x10™* 1.4818x10™*
1/8 1.3350x1072  3.4188x107% 8.6781x107* 2.3045x10™* 7.6050x107° 4.4247x107° 3.8907x107° 3.7790x107°
1/16 1.3340x1072  3.4074x107%  8.5579x107* 2.1647x10™* 5.7080x107° 1.8735x107° 1.1152x107° 9.9576x10~°
1/32 1.3337x1072  3.4051x107% 8.5342x10™* 2.1398x10™* 5.4072x107° 1.4223x107° 4.6612x107°% 2.7998x107°
1/64 | 1.3337x1072  3.4045x107% 8.5288x107*% 2.1344x10™* 5.3497x107° 1.3513x107° 3.5509x107% 1.1630x1076
N

. [len HL2(9)

t 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.3250x107°  9.6746x10™ T 1.5999x1077 1.7756x10"° 1.8210x10~° 1.8323x10™° 1.8351x10~% 1.8357x10°°
1/4 2.4414x107%  4.8102x107*  2.2573x10™*  4.0590x107* 4.5251x107* 4.6420x10™* 4.6712x10™* 4.6785x10~*
1/8 2.7813x107%  8.2074x10™* 1.3371x107* 5.7283x107° 1.0292x10™* 1.1460x10™* 1.1752x10™* 1.1826x10™*
1/16 | 2.8684x1073 9.0817x10™* 2.1980x10™* 3.4350x107% 1.4520x107° 2.5910x107° 2.8823x107° 2.9554x107°
1/32 | 2.8903x107%  9.3018x10™* 2.4171x10"* 5.5880x107° 8.6472x107° 3.6529x107°% 6.4957x10° ¢ 7.2233x10°°
1/64 | 2.8958x1073  9.3569x107*  2.4721x10™* 6.1359x107°  1.4028x107° 2.1656x107° 9.1573x107"  1.6258x107°

Table 3.6: Errors of (Q1) for quadratic polynomial basis; Example 3.4 where ag = 10, 5y = 1




€1¢

e,

b Al 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.1488x1077  9.0056x10~%  9.0435x10™7  9.0725x10°  9.0940x10~° 9.0967x10~° 9.0970x10~% 9.0970x10~7
1/4 8.0441x107% 3.2534x107% 2.4698x107° 2.4308x1073 2.4346x107% 2.4353x107% 2.4354x10™% 2.4355x107?
1/8 7.8243x107%  2.4024x1073  8.5827x107*  6.3589x107*  6.2090x107*  6.2042x107*  6.2048x10™*  6.2052x10™*
1/16 | 7.8132x1073  2.3374x107%  6.2612x10™* 2.1868x10™* 1.6138x10™* 1.5722x10™* 1.5699x10™* 1.5698x107*
1/32 | 7.8126x107%  2.3332x107%  6.0830x10™* 1.5815x10™* 5.5116x107° 4.0749x107° 3.9685x107° 3.9619x107°

~N

HehHLz(Q)
A At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.3733x1077  3.8846x10° 1.3658x107° 8.3552x10" 7 6.8306x10" T 6.6706x10~ " 6.6364x10"" 6.6288x10~ "
1/4 1.3356x1072  3.4242x107%  8.7622x107% 2.4847x10™* 1.0043x10™* 7.2509%x107° 7.3936x107° 7.4375x107°
1/8 1.3338x1072  3.4052x107%  8.5370x107* 2.1464x10™* 5.5927x107° 1.8351x107° 9.5664x107¢ 9.6140x10~°
1/16 | 1.3337x1072  3.4044x107%  8.5277x10™* 2.1333x10™* 5.3410x107° 1.3509x107° 3.8040x107% 1.7037x107°
1/32 1.3337x1072  3.4043x107%  8.5271x107* 2.1327x10™* 5.3332x107° 1.3338x107° 3.3487x107% 8.6729x10~"

N

HehHLg(Q)
A At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.6765x107°  5.7620x10"% 1.1570x10° 1.3287x10°° 1.3738x10°° 1.3850x107° 1.3878x10°° 1.3884x10 %
1/4 2.7693x107%  8.1112x10™*  1.3364x10™*  8.6344x107° 1.2570x10™* 1.3643x10™* 1.3916x10~* 1.3985x10™*
1/8 2.8884x107%  9.2850x107*  2.4018x10™* 5.4895x107° 1.1183x107° 1.0180x107° 1.1933x107°  1.2444x107°
1/16 | 2.8970x107%  9.3695x107* 2.4846x10™* 6.2624x107° 1.5323x107° 3.5899x107° 1.2551x107% 1.2302x107°
1/32 | 2.8975x107°%  9.3749x10™*  2.4900x10~* 6.3156x10"° 1.5824x107° 3.9363x10°°% 9.7334x10"7  2.6049x10" "

Table 3.7: Errors of (Q1) for quadratic polynomial basis; Example 3.4 where ag = 10, 5y = 3




[4%4

e,

At

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

1/2 1.1623x10™7  1.1461x10°"  1.1335x10° T 1.1297x10" " 1.1291x10" " 1.1290x10™" 1.1289x10" " 1.1289x10° "
1/4 5.8410x107%  5.7675x1072  5.7407x1072 5.7296x1072 5.7255x1072  5.7248x107% 5.7247x107%  5.7247x10"?
1/8 2.9007x107%  2.8391x1072  2.8282x107% 2.8254x1072 2.8242x1072 2.8237x107% 2.8236x1072  2.8236x1072
1/16 1.4849x1072  1.4090x1072  1.3986x107%  1.3972x107%  1.3969x107> 1.3967x1072 1.3967x107> 1.3967x10>
1/32 8.3170x107% 7.1043x107? 6.9564x107° 6.9425x107%  6.9408x10™%  6.9404x10% 6.9402x10™% 6.9402x107?
1/64 | 5.6469x1073  3.7392x107%  3.4813x1072 3.4609x107% 3.4591x107°% 3.4589x107% 3.4588x107® 3.4588x1073
1/128 | 4.7578x1073  2.2200x107%  1.7662x107% 1.7294x1073 1.7268x107% 1.7266x107° 1.7265x107% 1.7265x107?
1/256 | 4.5092x107°  1.6352x107%  9.3718x107* 8.6766x10™* 8.6290x10™* 8.6257x10™* 8.6254x10™* 8.6254x10~*

~N

‘|€hHL2(Q)
b At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 2.9173x1077  2.0582x10 7 1.8183x10° 7 1.7538x10 2 1.7403x10 % 1.7366x10 2 1.7356x10" > 1.7354x10
1/4 1.5567x1072  7.7461x107%  5.8329x107% 5.2038x107% 5.0444x107® 5.0189x1073 5.0118x10™%  5.0100x10~*
1/8 1.1904x1072  3.9657x107°  2.0112x107°  1.5112x107°  1.3427x107°  1.2963x107° 1.2901x107° 1.2884x107°
1/16 | 1.1000x1072  3.0369x107% 1.0070x107% 5.0815x10™* 3.8254x107* 3.3962x10™* 3.2759x10™* 3.2600x107*
1/32 1.0775x1072  2.8113x107%  7.6397x107*  2.5249x10™* 1.2740x10™* 9.5957x107° 8.5305x107° 8.2221x107°
1/64 LO718x1072  2.7553x107°  7.0535x107%  1.9119x10™%  6.3175x107°  3.1869x107°  2.4019x107°  2.1349x107°
1/128 | 1.0704x1072  2.7414x107%  6.9089x107* 1.7646x10™* 4.7817x107° 1.5795x107° 7.9668x107¢ 6.0053x10~°
1/256 | 1.0701x1072  2.7379x107%  6.8728x10™* 1.7283x107% 4.4126x107° 1.1955x107° 3.9484x107° 1.9886x107°

N

HehHLz(Q)
B At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 7.5253x107°  7.3057x107°  7.0495x107°  6.9860x107° 6.9724x107°  6.9691x10"° 6.9683x107°  6.9681x10~°
1/4 225001072 2.2604x1073  2.2732x107%  2.2828x107% 2.2861x1073 2.2872x107% 2.2874x1073 2.2875x107%
1/8 1.3695x107°  6.6056x107*  6.1039x107*  6.3809x10™* 6.4729x10™*  6.4982x10™* 6.5047x10™* 6.5064x10~*
1/16 1.4808x107%  4.9580x10™* 1.6937x10™* 1.5846x10* 1.6753x107* 1.7041x10™* 1.7116x10™* 1.7136x107*
1/32 1.5374x1073  5.2925x107*  1.3362x10™* 4.2661x107° 4.0318x107° 4.2739x107° 4.3502x107°  4.3702x107°
1/64 1.5533x107°  5.4266x107*  1.4307x107* 3.3980x107° 1.0704x107° 1.0164x107° 1.0781x107° 1.0975x10~°
1/128 | 1.5574x107% 5.4632x107* 1.4655x107* 3.6443x107° 8.5284x107°% 2.6811x107° 2.5514x107° 2.7073x107°
1/256 | 1.5585x107% 5.4726x107* 1.4748x10™* 3.7326x107° 9.1521x107°% 2.1335x107°% 6.7090x10™7  6.4040x 10"’

Table 3.8: Errors of (Q2) for linear polynomial basis; Example 3.4 where ag = 10, 5y = 1




G1¢

el

At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.0865x10~ 1  1.0755x10~ " 1.0660x10~" 1.0624x10~" 1.0617x10" " 1.0616x10~T 1.0616x10~" 1.0616x10~ "
1/4 4.8157x1072  4.7922x107%  4.7815x107%  4.7778x1072  4.7764x1072  4.7757x1072  4.7755x107%  4.7755x107>
1/8 2.3219x1072  2.2858x1072 2.2812x1072 2.2807x1072 2.2805x1072 2.2805x1072 2.2805x107%  2.2804x10?
1/16 1.2096x1072  1.1360x1072  1.1280x1072 1.1275x1072 1.1275x107% 1.1275x1072 1.1275x107% 1.1275x1072
1/32 | 7.1473x107%  5.7916x107%  5.6350x107%  5.6242x107°% 5.6236x107° 5.6235x107% 5.6235x107%  5.6235x107°
1/64 | 5.2380x107%  3.1336x107% 2.8336x10™% 2.8117x107° 2.8103x107° 2.8102x10™% 2.8102x10™% 2.8102x10~3

~N
Heh HLQ(Q)

At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 3.0732x1077  2.2320x10727  1.9956x1072  1.9399x1077 1.9313x10"2 1.9283x10 7 1.9274x107? 1.9272x102
1/4 1.6488x1072  8.3678x107%  6.4446x107% 5.9173x1073 5.6702x107% 5.6397x107° 5.6679x107%  5.6668x107?
1/8 1.2148x1072  4.1743x107%  2.1672x107%  1.6595x10™% 1.5374x107% 1.4881x10™° 1.4532x107° 1.4478x1073
1/16 1.1058x1072  3.0904x107%  1.0525x107°%  5.4459x107* 4.1891x10™* 3.8816x10™* 3.7944x10™* 3.7392x10™*
1/32 1.0789x1072  2.8243x107%  7.7597x10™*  2.6301x10™* 1.3610x10™* 1.0492x10™* 9.7421x107° 9.5547x107°
1/64 | 1.0722x1072  2.7585x107%  7.0830x10™* 1.9396x10™* 6.5651x107° 3.3679x107° 2.5815x107° 2.4157x107°

N
Heh HLQ(Q)

At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 TA1T6x107°  7.4240x10°°%  7.4678x107° 7.5018x10°° 7.5127x10°° 7.5156x10°° 7.5163x10°° 7.5165x10 °
1/4 1.9401x1073  2.5797x107%  2.8873x107%  2.9809x10™% 3.0057x107* 3.0120x10™° 3.0136x10™° 3.0140x1073
1/8 T7685x107%  4.4274x107*  7.2967x107*  8.2645x107*  8.5248x107* 8.5900x107* 8.6063x10™* 8.6104x10™*
1/16 1.3372x1073  3.5390x10™*  1.0799x10™* 1.8907x10™* 2.1405x10™* 2.2053x10™* 2.2216x10™*  2.2256x10™*
1/32 1.5023x1073  4.9597x107*  9.9252x107° 2.6964x107° 4.7742x107° 5.4035x107° 5.5612x107° 5.5948x107°
1/64 1.5446x1073  5.3450x107*  1.3500x107* 2.5424x107° 6.7725x107% 1.2327x107° 1.4137x107° 1.4219x107°

Table 3.9: Errors of (Q2) for linear polynomial basis; Example 3.4 where ag = 10,89 = 3




91¢

e,

B At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

1/2 1.1623x107T  1.1461x10°"  1.1335x10° T 1.1297x10"1 1.1291x10" " 1.1290x1071 1.1289x10 " 1.1289x 10T
1/4 5.8410x1072  5.7675x1072  5.7407x1072 5.7296x1072 5.7255x1072  5.7248x107% 5.7247x107%  5.7247x107?
1/8 2.9007x107%  2.8391x1072  2.8282x107% 2.8254x1072 2.8242x1072 2.8237x107% 2.8236x1072 2.8236x1072
1/16 1.4849x1072  1.4090x1072 1.3986x107% 1.3972x1072 1.3969x107% 1.3967x1072 1.3967x1072 1.3967x1072
1/32 8.3170x107%  7.1043x107%  6.9564x107° 6.9425x107%  6.9408x107%  6.9404x107% 6.9402x10™®  6.9402x107?
1/64 | 5.6469x107%  3.7392x107% 3.4813x107% 3.4609x107% 3.4591x107° 3.4589x107% 3.4588x10™® 3.4588x1073
1/128 | 4.7578x107%  2.2200x107%  1.7662x107% 1.7294x107% 1.7268x1072 1.7266x107% 1.7265x107% 1.7265x107°
1/256 | 4.5092x107%  1.6352x107% 9.3718x10™* 8.6766x10™* 8.6290x10™* 8.6257x10™* 8.6254x10™* 8.6254x10™*

[

b At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

1/2 2.9173x1077  2.0582x10 7 1.8183x10° 7 1.7538x10 2 1.7403x10 % 1.7366x10 2 1.7356x10" > 1.7354x10
1/4 1.5567x1072  7.7461x107%  5.8329x107% 5.2038x107% 5.0444x107® 5.0189x1073 5.0118x10™%  5.0100x10~*
1/8 1.1904x1072  3.9657x107%  2.0112x107% 1.5112x107% 1.3427x107® 1.2963x107° 1.2901x10™% 1.2884x107?
1/16 | 1.1000x1072  3.0369x107% 1.0070x107% 5.0815x10™* 3.8254x107* 3.3962x10™* 3.2759x10™* 3.2600x107*
1/32 1.0775x1072  2.8113x107%  7.6397x107*  2.5249x10™* 1.2740x10™* 9.5957x107° 8.5305x107° 8.2221x107°
1/64 1.0718x1072  2.7553x10™%  7.0535x10™* 1.9119x10™* 6.3175x107° 3.1869x107° 2.4019x107° 2.1349x107°
1/128 | 1.0704x1072  2.7414x107%  6.9089x107* 1.7646x10™* 4.7817x107° 1.5795x107° 7.9668x107¢ 6.0053x10~°
1/256 | 1.0701x1072  2.7379x107%  6.8728x10™* 1.7283x107% 4.4126x107° 1.1955x107° 3.9484x107° 1.9886x107°

HefﬁVHLQ(m

b Al 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

1/2 7.5253x107°  7.3057x107°  7.0495x107°  6.9860x1077 6.9724x10"° 6.9691x10"° 6.9683x10™°  6.9681x10~°
1/4 2.2590x 1072  2.2604x107% 2.2732x107° 2.2828x107% 2.2861x107% 2.2872x107% 2.2874x107® 2.2875x107?
1/8 1.3695x1073  6.6056x107*  6.1039x107*  6.3809x10™*  6.4729x10™*  6.4982x10™* 6.5047x10™*  6.5064x10~*
1/16 1.4808x1073  4.9589x107* 1.6937x10™* 1.5846x10™* 1.6753x10™* 1.7041x10™* 1.7116x10™* 1.7136x10™*
1/32 1.5374x107%  5.2925x107*  1.3362x107*  4.2661x107° 4.0318x107° 4.2739x107° 4.3502x107°  4.3702x107°
1/64 1.5533x1073  5.4266x107*  1.4307x107* 3.3980x107° 1.0704x107° 1.0164x107° 1.0781x107° 1.0975x107°
1/128 | 1.5574x1073 5.4632x10™*  1.4655x10™* 3.6443x107° 8.5284x107% 2.6811x107° 2.5514x107¢ 2.7073x10~°
1/256 | 1.5585x107°  5.4726x107* 1.4748x10™* 3.7326x107° 9.1521x107% 2.1335x107°% 6.7090x1077  6.4040x10~"

Table 3.10: Errors of (Q2) for quadratic polynomial basis; Example 3.4 where ag = 10, 8y = 1




L1¢C

e,

Al 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 9.8172x107°  8.9173x10™° 8.9616x10™° 8.9695x1077 8.9832x10° 8.9840x10° 8.9840x10™° 8.9839x10~°
1/4 4.9597x107%  2.7376x107%  2.4396x107% 2.4276x107° 2.4296x107° 2.4296x1073 2.4295x107% 2.4295x10~?
1/8 4.4579x107%  1.5119x107%  7.1448x107*  6.2576x107*  6.2046x10™* 6.2033x10™*  6.2035x10™*  6.2037x107*
1/16 | 4.4256x107%  1.3954x107% 3.9630x10™* 1.8171x10™* 1.5857x10™* 1.5706x10™* 1.5698x10™* 1.5698x10~*
1/32 | 4.4235x1073  1.3877x107%  3.6665x10™* 1.0028x10™*  4.5835x107° 4.0029x107° 3.9639x107° 3.9618x107°

~N
llen HLQ(Q)

At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 1.1353x1077  3.4701x107% 1.4274x107% 9.7365x10” " 8.3742x10~ T 8.2060x10~ " 8.1684x10~" 8.1594x10~*
1/4 1.0748x1072  2.7874x107%  7.4124x107* 2.3788x10™* 1.1462x10™* 8.6711x107° 8.5795x107° 8.5576x10~°
1/8 1.0703x1072  2.7398x107%  6.8933x107* 1.7535x10™* 4.8046x107° 1.8047x107° 1.0309x107° 1.0133x107°
1/16 | 1.0700x1072  2.7369x107%  6.8629x10™* 1.7184x10™* 4.3151x107° 1.1079x107° 3.3604x107% 1.6862x107°
1/32 1.0699x1072  2.7367x107%  6.8610x107* 1.7164x10™* 4.2928x107° 1.0733x107° 2.6941x107¢ 7.8729x10~"

N
Heh HLQ(Q)

At 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1/2 6.2959x 10~ 7  7.5763x10° 7 1.1082x107° 1.2073x10°° 1.2339x10°° 1.2406x10°° 1.2422x10°° 1.2426x10°°
1/4 1.4463x1073  4.3957x10™*  6.6655x107°  9.1956x107° 1.1551x10™* 1.2180x10™* 1.2341x10™* 1.2381x10™*
1/8 1.5508x107%  5.3979x10™*  1.4029x107* 3.1118x107° 8.8690x107% 1.0246x107° 1.1278x107° 1.1565x107°
1/16 1.5583x107%  5.4707x107* 1.4730x10™* 3.7163x107° 9.0326x107°% 2.2079x107°% 1.1828x107°% 1.2355x107°
1/32 1.5588x1073  5.4754x10™*  1.4777x107* 3.7610x107° 9.4203x107% 2.3404x107% 5.6276x1077 2.0866x10~"

Table 3.11: Errors of (Q2) for quadratic polynomial basis; Example 3.4 where og = 10, 8y = 3




As seen in the proofs of the error estimates theorems, the parameters oy and Sy
should satisfy the given condition to get optimal error estimates. Let At be sufficiently
small to become negligible and dy, d1, d2 be a convergence order such that

lenlly = O(®), &l ) = OB™), llenll ) = Oh®)

at the final time 7. We can determine dy experimentally by

do = ln(||ehHV/Heh/2HV)/ln 2.

It varies with the degree of polynomials k and the choice of the parameters. In a similar
way, d; and do can be also computed. Theoretically, dgy =k, dy =k +1,and do =k +1
if ap is large enough and SBy(d — 1) > 3. In Table it shows that the numerical
rates are very close to the theoretical convergence rates when the penalty parameters
ag and [y are sufficiently large. However, if the penalty parameters do not satisfy the
conditions of the stability bound and the error bound, the optimal error estimate may
not be observed. To be specific, in a discontinuous piecewise linear polynomial basis,
the numerical approximations exist such that either the error increases as h — h/2 or
the numerical convergence rates are less than their theoretical results. But it is not able
to solve the equivalent linear systems to the fully discrete formulations in k& = 2 whence
ag and By do not fulfil the condition of the existence and uniqueness, so any result is
not seen at the second and third row on Table for k = 2. Interestingly, regardless
of super-penalisation, Lo error estimates show optimal results for linear polynomials.
In rectangular meshes or 1D problems with odd degree of polynomials, the optimal Lo
error estimates are theoretically proved in [63, 62, 61]. Also, Table indicates the
standard penalisation is able to have the optimal convergence rates for £k = 1. Moreover,
for uniform meshes, the convergence rates become optimal if &k is odd, however, this is
not theoretically shown [24].

=1 @) @)

ag  Bo do dy da do dy do
5 3 1.005 2.002 1973 | 1.005 2.003 1.976
5 0.1 || -47.64 -51.99 -48.94 | -49.72 -51.19 -50.50

0.01 3 0.712 1.826 1.283 | 0.754 1.943 1.336
5 1 1.011  1.976 1.990 | 1.010 1.987 1.982
F=o @) @)

ag Bo do dy da do dy da
5 3 2.000 3.115 3.564 | 2.003 3.237 3.507
5 01| NJA N/A N/A | NJA N/A N/A

00l 3 | NJA N/A N/A | NJA N/A N/A
5 1 1.937 2.045 2.009 1.940 2.091 2.018

Table 3.12: Numerical convergence rates
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Recall and , let us consider the global matrices. Since solving fully
discrete formulations is equivalent to solving the resulting linear systems, the global
matrices are so important. Note that our global matrix is non-symmetric hence we
have to deal with solving the linear systems carefully. More precisely, it consists of a
mass matrix, symmetric/nonsymmetric stiffness matrices and a jump matrix. We would
use iterative methods to solve the linear system hence the global matrix such as either
A%M—i—fl—i— ﬁj in or A%M—i— %A—i—[y’—i— ﬁj in , must be good. If
a condition number of the global matrix is too big, which means ill-conditioned, the
numerical result would not be appropriate. As in [64], a condition number of a global
matrix of NIPG for elliptic PDEs depends on a spatial mesh size and penalty parameters.
For example, the condition number is of order O(h*(HfBO)) for By = 1,3. In our case, the
condition numbers of our DG global matrix with and without the super-penalisation are
shown in Table As same as elliptic problems, the condition numbers have increased
when the spatial mesh size becomes small. Furthermore, the super-penalised Sy yields
more sharply increasing graphs of condition numbers in Figure More precisely,
the condition number of the standard penalisation is of order O(h~2) but that of the
super-penalisation is of order O(h~%), which means the global matrix of the standard
penalisation is more ill-conditioned than the standard penalised one. On the other hand,
our model problem is time-dependant hence time discretisation would have effect on the
condition number. A fine time step size gives a better condition number in contrast
with a spatial mesh size. Regardless of Sy for fixed h, the condition number depends
only on At with first order. Consequently, the condition number has an numerical order
O(h_(ﬂﬁl) + At) for By = 1,3. Unfortunately, this is not proved theoretically but we
could observe the results numerically. Only the theoretical analysis of SIPG for elliptic
problems is given in [64, 65], however our problem may also be dealt in a similar way,
and this would be a future question.
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b At 1 1/2 1/4 1/8 1/16 1/32
1 6.16x10  5.17x10  3.94x10  2.70x10  1.93x10  1.66x10
1/2 1.43x10%2  1.06x10%2  9.04x10  7.64x10  5.50x10  3.64x10
1/4 4.89x10% 3.16x10% 1.93x10%* 1.63x10> 1.46x10* 1.11x10?
1/8 1.89x10% 1.18x10% 6.30x10%> 3.61x10%> 3.09x10% 2.83x10?
1/16 | 7.49x10% 4.64x10° 2.40x10° 1.21x10° 6.93x10> 6.00x10?
1/32 | 2.99x10* 1.85x10* 9.49x10% 4.65x10° 2.35x10° 1.35x10°

U 1/2 1/4 1/8 1/16 1/32
1 3.89x10  2.98x10  2.30x10 1.80x10 1.61x10  1.62x10
1/2 2.51x10%  1.98x10% 1.73x10%2 1.46x10% 1.01x10®> 6.14x10
1/4 3.18x10%  2.27x10%  1.46x10% 1.26x10% 1.13x10% 8.27x10?
1/8 4.84x10*  3.36x10* 1.90x10* 1.12x10* 9.69x10% 8.87x103
1/16 | 7.64x10° 5.28x10° 2.90x10° 1.51x10° 8.72x10* 7.60x10%
1/32 | 1.22x107 8.40x10° 4.58x10° 2.31x10° 1.18x10° 6.87x10°

Table 3.13: Condition numbers of a global matrix; k = 1, Sy = 1(top), By = 3(bottom)

10° Condition number with fixed At
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Figure 3.1: Graph of condition numbers; §y = 1(solid line) and Sy = 3(dash line)



Remark CG vs DG

(a)

(b)

Bilinear forms

Regardless of finite elements methods, we can observe coercivity and continuity on
finite dimensional spaces. However, DG bilinear forms are conditionally coercive
and continuous, which need large penalty parameters. Also it is only valid on the
finite dimensional test spaces of polynomials but CG bilinear form is unconditionally
coercive and continuous on the subspaces of H' space. One more difference is that
we consider also non-symmetric DG bilinear form (NIPG).

Well-posedness

Both finite element methods show stability bounds so that they imply the existence
and uniqueness of solutions. Discrete solutions are bounded by data terms but sta-
bility bounds of DG have h~! terms due to use of inverse polynomial trace theorem.
However, it has no effect on stability analysis as well as error analysis.

Boundary conditions

In general, DGFEM has imposed boundary conditions weakly, whereas CGFEM has
made it strongly. This difference may not significantly affect on stability and error
analysis. In fact, it is able to improve imposing boundary conditions strongly for
DG. FEniCS also allows us to give strong boundary conditions.

Error estimates

According to error estimates theorems and numerical experiments, it is shown that
the numerical solutions have second order accuracy in time as well as optimal conver-
gence order in energy norm, respectively. With elliptic regularity, Lo error estimates
become optimal but NIPG also requires super-penalisation.

Degrees of freedom

Each degree of freedom in CG is a function value at the corresponding nodal point.
On the other hand, degrees of freedom of DG are just coefficients of global basis
functions. For the sake of discontinuity for global basis functions, DGFEM has
much more degrees of freedom than CGFEM. For example, Table describes the
number of degrees of freedom with respect to spatial meshes where we consider 2D
unit square with linear polynomial basis. As a result, the resulting linear system
of DGFEM has much bigger size and it may encounter significant issues on solving
linear systems in computational sense such as accumulated round-off and truncation
errors while iterative solvers used.

h 1/2 1/4 1/8 1/16 1/32 1/64 1/128
CGFEM || 9 25 81 289 1,089 4,225 16,641
DGGEM || 24 96 384 1,536 6,144 24,576 98,304

Table 3.14: The number of degrees of freedom on a unit square in 2D for linear polyno-
mials
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(f) Condition numbers
Table indicates that the condition number of CG is of order O(h~2) with respect
to the spatial mesh, experimentally. It is very similar to standard penalised DG.
However, as shown before, in order to ensure optimal Ly error estimates, DG must be
super-penalised for NIPG, which deteriorates solving linear systems for fine meshes
in practice.

At

3 1 1/2 1/4 1/8 1/16 1/32
1 2.36 2.29 3.93 5.17 5.64 5.78
1/2 1.19x10 5.44 5.44 7.50 8.97 9.51
1/4 3.94x10  1.24x10 6.83 6.40 9.79  1.18x10
1/8 1.35x10%  3.76x10  1.27x10 7.40 6.77  1.07x10
1/16 | 4.89x10% 1.32x10%> 3.62x10 1.32x10  7.59 6.87
1/32 | 1.85x10% 4.96x10%> 1.31x10*> 3.59x10 1.33x10  7.65

Table 3.15: Condition numbers of a global matrix; CGFEM

(g) ete.
Overall, it seems that CG is better method in terms of degrees of freedom and solving

linear systems. Nevertheless, DG is also good approximation methods to solve PDEs,
since it has benefits of hanging nodes issues and local mass conservation. In this
thesis, we have not considered hanging nodes and mass conservation in details but
we can observe some advantages of DGFEM in [24] [11].

Summary

In Chapter 3, we have formulated DG variational formulations with respect to two forms
of internal variables. In a similar way with CGFEM, we have shown stability bounds
as well as error bounds without Gronwall’s inequality. With sufficiently large penalty
parameters, we can derive various properties such as coercivity, continuity, inverse poly-
nomial inequalities, etc. Consequently, we can prove existence and uniqueness of discrete
solutions as well as optimal energy error estimates with fixed second order accuracy in
time. However, our DG bilinear form, NIPG, requires super-penalisation for optimal Lo
error estimates, which enforces ill conditioned linear systems. In contrast to theory, we
can observe Lo optimality with standard penalisation in the numerical experiments for
odd degree of polynomials basis.
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Chapter 4

Linear Viscoelastic Problems with Internal
Variables

Recall our primal model problem ([1.3.17))-(1.3.23|) with introducing internal variables
(1.3.24)-(T.3.27).

pu—V-o=f in (0,7] x Q,
u=0 on [0, 7] x I'p,
g-n=gy on [0,7] x 'y,

u = Uy on {0} x Q,

U = wy on {0} x Q.

(Displacement form)

pit — V - (D(O)e(u2¢q)) =f in(0,T]xQ,

q=1
Tq¢q+1/:q:<pqu forg=1...,N,in [0,T] x Q.

and

(Velocity form)

N, N,

pit — V- («poD(O)E(u +> Cq)) =f+V- (Z wqet/TqD(O)s(uO))
q=1 q=1
in (0,7 x €,

ch‘ququ:Tq(pqu forg=1...,Ny,in [0,T] x Q.
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In this chapter we will consider finite element approximations to these vector-valued
model problems. As shown in Chapter 2 and 3, use of CGFEM and DGFEM allows us to
derive numerical approximations and we would consider error estimates and numerical
simulations. In other words, we will expand the stability bounds theorems and the error
bounds theorems in the scalar problems to vector-valued cases.

We assume that initial conditions, a surface traction, and a body force are sufficiently
smooth. Hence we suppose

gy € CHO.T;[L2(Tw)]),  f € C0,T; [La(2)]),

and initial conditions depend on spatial discretisation methods. For the sake of elliptic
regularity of solutions, ug and wq are also sufficiently smooth.

4.1 CGFEM to Wave Propagation with Viscoelasticity

For a convenient notation, let D < D(0) for the fourth order tensor which is defined

in (1.3.17)-(1.3.27). Consider v € V where V = {v € [H(Q)]¢ | v(x) =0 on I'p} and
then multiplying v by (1.3.17) with integration over the space domain gives

(p’il(t), U)LQ(Q) - (v 'Q(t), U)LQ(Q) == (f(t)7U>L2(Q) . (4.1.1)

As seen in the linear elastic problem in Chapter 1, since the stress tensor of the vis-
coelastic problem is symmetric, integration by parts yields

~ (Vo200 = (@), £0)) 0~ [ alt) oo dr
Hence imposing the boundary conditions implies

(Pia(t), v) ) + (@(t),€(V)) ) = (F(),0) 1y + (GN(E), V) 1y (4.1.2)

where gp = 0. Since the stress tensor can be written with internal variables as (|1.3.24))

and (|1.3.26)), (4.1.2)) is rewritten by

N‘P
(pﬁ,(t), U)LQ(Q) + (Q§(u(t))7§('v))L2(Q) - Z (D§(¢q(t))a§(v))L2(Q)
q=1
= (F(1), V) 1,0 T (@n () V) 1,00 (4.1.3)
and
N
(pii(t),0) 0+ 0 (DE(u(0).£(0)) 1y 0y + S (DEC, ) ®) . 0
q=1
No
= (f(1):v) 1, 0) + (@GN () V) iy T Z pge " (De(u0),€(v)) 1,0 > (4.1.4)
q=1
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respectively. Let us define a bilinear form a (-, -) by
o (v, w) = / De(v) : £(w)dS (4.1.5)
Q

where v, w € [H'(2)]. Also we have linear forms F,; and F, such that

Fults 0) = (F(8),9) 1y + @8 (0, 0) (e (4.1.6)
Ny

Fulti0) = (F(5).9) 1y + (@x (0, 0) oy + D poe ™ a (un,v). (417)
q=1

Thus, we can obtain the following variational formulations:
(R1) find w and {4}, “’1 such that satisfy for allv e V

Ny

(pii(t), v) 1, ) + a(u(t),v) - Z a (Y (t),v) = Fy(t;v), (4.1.8)
q=1

a (Tq¢q(t) + zpq(t), v) = a(pqu(t),v), (4.1.9)

for each ¢, where u(O) = up, u(0) = wo and 1,(0) = 0. In the same sense,
(R2) find w and {(, } #, such that satisfy for allv € V

N‘P
(pii(t), v) 1, () + Poa (u Za = Fy(t;v), (4.1.10)
a (rcha) +¢,(0), v) = a(rgpgi(t),v). (4.1.11)

for each ¢, where u(0) = uo, 4(0) = wo and ¢,(0) = 0.
We assume and consider only d = 2,3. Note that according to Korn’s inequality (e.g.
see [511 [52), 50] 11]),

C o1l (@) < Amin l€(0)||Z,(0) < @ (v,0) < Amax [€(0)[ 7,0

for any v € V' where C is a positive constant independent of v, and Apin and Apax are
the minimum and maximum eigenvalues of D. In addition,

ECI Z/vwvﬂ @

1,j=1

1 Z/|UZJ| + 203,505 + [vja|* dQ
i,j=1
|’U|H1 @ *5 Z/vwvﬂdﬁ

zgl
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d
1, 1
<5 [vlm@ +35 > /Q\%’,j”j,z‘\ ds

Q=1
1 1< 1 &
2
<5 lolne+ > [ ol dos 37 [ ol do
ij=17% ij=1"%

Lo L9 2
=5 [l o) + 5 W) = vl
<ol
by Cauchy-Schwarz inequality and Young’s inequality. Thus it holds for any v € V'
2 2
Co vz < a(v,v) < Crl[v]Fg) (4.1.12)
for some positive Cy and C;. Furthermore, we also have for any v,w € V
|a (v, w) | <Amax (V) L, @) le(W)lL, @)
<Amax 10l 1) 1wl g1 - (4.1.13)

Whence we define the energy norm ||-||;, on V' by

lolly = Va(v,v),

we can observe norm equivalence between H! norm and the energy norm on V by
(14.1.12]).

Consequently, as shown in the above, the bilinear form is coercive and continuous
and the linear forms are continuous when data terms are given well.

4.1.1 Fully Discrete Formulation

While we approximate a solution with using CGFEM, we consider also time discretisation
with Crank-Nicolson finite difference method. Hence our numerical solutions are defined
by using the same notations and suppositions in the scalar problem but using bold
symbols with the relation

Wit e wy upt - vy
2 At ’

(4.1.14)

Note that our finite dimensional test space V" is a vector-valued analogue of V" in
Chapter 2 such that
Vi={veV |vel[V"].

Hence V" is the finite dimensional subspace of polynomials of degree k in V. Con-
sequently, we can derive the following fully discrete formulations with respect to internal
variables:
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(R1) find W73, U} and ¥}, in Viforn=0,...,Nandg=1,.. ., N, such that satisfy
for all v € V"

wit - wi U”+1 +UL (TR g,
(pAt’ v +a| —— Za ,’U
La()

=F(v), forn=0,...,N —1, (4.1.15)
v - vy Wt 4wy Uyt +uy
a(rq th 4. q2 q’,v =a ¢, h 5 h’v 7
forn=0,...,N -1, and for g =1,..., N, (4.1.16)
a (U%, v) = a(up,v,) (4.1.17)
(W(f)wv)LQ(Q) = (’LU(), 'U)LQ(Q) ) (4118)

for each ¢, \Ilgq =
(R2) find W}, U} and S, in V" forn=0,...,N and ¢ = 1,..., N, such that satisfy
for all v € V"

Wit W Ut + U i S"+1 + 87,
<pAt, v + o | ——— + Z —_—, v
L2(Q)

=F"(v), forn=0,...,N -1, (4.1.19)
8n+1 _Qn Sn+1 _|_Sn Wn+1 wn
a <’Tq hq N ha + ha 5 hq,'v =a quoq—h 2+ h,'v ,
forn=0,...,N -1, and for g =1,..., N, (4.1.20)
a (UO, v) = a (up,v), (4.1.21)
(Wng)la(g) = (wOa U)LQ(Q) ’ (4122)

for each ¢, S?Lq =
@117), (.1.18), (@1.21) and (F.1.22) yield

HU?LHV < HUOHVv HW(;LHLz(Q) < Hwo”Lz(Q)’

by Cauchy-Schwarz inequality. Due to trace inequalities, we can analyse boundary terms
in the stability bounds of the scalar-valued problem. In the same sense, it is observed
that for any v € V

[vill Ly0) SC ||vill g1 (q) foreachi=1,....d

by (2.1.13]), and hence
10117, 00) = Z\IvzllL2 o0) = CZ iz ) = C loll7n oy
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=|vlLy00) < Clvlm@ < Clvlly (4.1.23)

for some positive C by (4.1.12)) and trace inequalities. As shown in the stability bounds
for a scalar analogue, the existence and uniqueness of the fully discrete solutions can be
obtained, once we use the same techniques but in vector-valued cases.

Theorem 4.1. Consider the fully discrete solution of (R1). There ezists a positive
constant C such that

Ny m—1
max (W0, + o U uv+zuw 23w -

g=1 n=0

<C< H’U’O”%Q(Q) + [luolly + Hf”%oo((],T;Lg(Q)) + HgNH%Q(O,T;Lg(FN))

2
NN T (0,7 0000)) >,
for any m = 1,...,N. Here, C is independent of h, At and numerical solutions but

depends on the final time T.

Proof. Let m € N such that 1 <m < N. By taking v = WZH + W7} into (4.1.15) for
n=20,...,m — 1 and adding the m equations together with (4.1.14]), we have

m—1
P||WZZ||%2(Q)+HU [k pHW HL2 +HU HV"’AtZFd (Wit 4 W)
n=1
m—1 Ny
D al¥nt + U U - UR). (4.1.24)
n=0 ¢g=1

For each ¢ € {1,...,Ny,},and n =0,...,m — 1, put v = ‘I’Zq“ — W} into (£.1.16) and
take summation all with using summation by parts then we can obtain

m—1
S Uyt - Up w4 )
n=0

2T, 2 1 2
=2a( ™) At; ZH L, 7 V_EqH‘I'%HV (4.1.25)
since \Il(,)lq = 0. Hence, combining and gives

= o 2
PIWH ) + IUR ||V+Z HV+ZZ o L

) m—1 Ny
=p || W7y + (DRI + 20 D7 B3 (Wi + W) + 3 2a(U 2.

n=0 q=1
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Now, we shall consider bounds for the right hand side. As seen in the previous proofs,
using triangular inequalities, Cauchy-Schwarz inequalities, Young’s inequalities and in-
tegration by parts(also summation by parts), the following bound can be given.

m—1
ALY Fp (Wit + W)
n=0
C’ b2 p
zuf [ +Ateazuw o+ = [ o)1 ey
m—1
Ata Ata
+CAte, Y UL + S W ) + CanllURTY + =5 WAl 0
n=0
—-m _ 2
+C|udly + HQNHiQ(rN)+0Hg9vHL2<w

for any positive €, and ¢, and some positive C'. Details are shown in the proof of fully
discrete stability bounds for (P1). Here, to estimate Ly norm on I'y, (4.1.23) is used.
Moreover, taking into account the property of maximum yields

m—1
At Z Er (Wit 4+ wi)
n=0

At C .
Z " HLQ(Q + Teq o ax, W HLQ ZngN”%g(O,T;LQ(FN))

At Ate,
+ Ce(T + 1) max [UF[ + ‘

2
W3l + C ORI
C _
+ (61) + C) o B IIQ?vHiQ(rN) :

Also, Cauchy-Schwarz inequality implies

N, N, , Ne o ,

> 20U ) <> e [URIG + > = [ ®hlly

g=1 q=1 q=1 q

with €, = ¢4 + ¢0/(2N,) > 0 for each ¢q. As a consequence, these two bounds give

¥0
PIWi L + 5 U ||V+Z N, o el

Nyo m—1
+Z¢ Z 274 H‘I,n—i-l e
hq q
q=1 n=0 At(pq v

Ate, At
<(14 55 ) IWBIE 0+ 0+ ORI + Zuf 7.0
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C
. 2 — 2
+ Sl + (o +€) | 19810,

+T€a o 1A IWil7,0) + Cen(T + 1) pnax IRl

for any m. Therefore, by setting ¢, = p/6T and €, = ¢¢/12C(T + 1), and on account of
maximum, we can conclude that

p w2 o4 o m
5 o2, WL, @) + 7 max | merMN oo 1l
N m—1 2T,
q n+1 n
DD IE ol LIS I N
g=1 n=0

< (W12 0+ ORI + 50 3 17 g+ Won o
n=0

- g1 )
<C( llwoll?, ) + luolly + I£1I7 +lgnl?
= 0ll Lo () olly Loo(0,T5L2(52)) INILy(0,T;L2(T )

2
N7 0,100(00)) >,
for some positive constant C. O

In Theorem Gronwall’s inequality are never used so that the constant C' does not

increase exponentially but depending on the final time 7. In the same way, a stability
bound for (R2) can be also derived.

Theorem 4.2. Suppose we have a fully discrete solution of (R2). For any m € N such
that 1 < m < N, there exists a positive constant C' such that

Ny m—1
max W) + max HUm\V+ZHs A+ D03 adllsit+ s

q=1 n=0

SC( ||w0\|%2(9) + [luolly, + Hf”%oo(O,T;Lg(Q)) + HgN”ioo(O,T;LQ(FN))
.2
1IN ITs 0,7 000 n)) )

Proof. Let us consider (4.1.19) with v = WZH +Wifor0<n<m-1,m=1,...,N.

Summation over m gives

mlng

PIW R + %0 U + ZZ (Spt + S, Wit + W)
n=0 g=1
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m—1
=Wl + o [UR[ + A > By (Wit 4+ W) (4.1.26)

n=0
by . By taking v = SZ;{H S}, into ( m for n = ,m — 1, adding the m
equations implies
m—1
> AWt + Wi Sit + 87 = — |ISilly + Z —Hsnﬂ
n=0
(4.1.27)
since qu = 0 for any ¢. By substitution of into , we have
Ny m—1 9
Nwwmdg+¢wv|w+§j Hs»@+§j§j%¢\b“1 |
g=1 n=0
m—1
:pHW2||L2 +<p0HU2HV+AtZF” (Wit +wy). (4.1.28)
n=0

With based on the same knowledge before such as using Cauchy-Schwarz inequalities,
Young’s inequalities, maximum properties and (4.1.23]), we can estimate the following

m—1
bound for At 3> F (W)t + W7 by
n=0
m—1
ALY F (Wit 4 W)

n=0

<P [WillLu@) + (€ +2) U7 Hv+*ZHf ey

C _n .
+ <6b + C) max HgNH%Q(FN) + Ceq HQNH%Z(O,T;LQ(FN))

0<n<N-1
11 1
2 w2
€1
t(care ) e, 1071 (1.1.29)

for positive €4, €, €., € and €.. Hence, substituting (4.1.29)) into (4.1.28) and applying
the property of maximum yield

N(p m—1
%ZE:
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<o (Wl + 2 [0+ 2 5 17

C —n 12 .2
+ <6b + C> oax 1GN T, 00y T Ceallgnlliom .y

N,
1 A 1 9 1 n 2
(o X ) Pl e (3 ) s W
€T 2
+ (cae L) g U312 )
Whence we set
€, = p - P > 0,
At(6N +3) 6T + 3At
©o _ %o po
_ ru 0 0 —_— 0 nd = 0
@940 T Ty T 24C’T 7P and e = q9p 2

we have a positive constant C' such that

p
£ max [Will7,q + 5 max U} HV+Z

2 0<n<N 0<n<N h‘lHV

Ny m—1

2.2,

q=1 n= 02quo

s

N—
2 2 =n |2 n
S PR L YD Y PR P

- 2
+ ”gNHLQ(O,T;LQ(FN)) + ||U0Hv>
2 2 2 2
SC( lwoll 7, ) + ol + 1FI17 o 0,7520 ) T 19817 0,7 2200))

. 2
+ HQNHLQ(O,T;M(FN)) ) )

O]

Theorem and Theorem are sufficient to show the existence and uniqueness of
the fully discrete solutions for the displacement form and the velocity form, respectively.
More precisely, the discrete solutions are bounded by only data terms such as source,
traction and initial conditions. It means, zero data imply a trivial solution so that the
linear system can be solved uniquely.

From now on, we shall introduce a new elliptic projection operator R defined by

R:V — V" such that for w e V c [HY(Q)]¢, a(w,v) = a (Rw,v), Yv € V.
(4.1.30)
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Obviously, we can observe Galerkin orthogonality such that a (w — Rw,v) = 0, Yv €
V" and use of interpolation estimates gives the following H' estimates

lw — Ruwl| ) < Cluw|groyh" (4.1.31)

for w € [H*(Q)]% where r = min(k + 1,5s). Furthermore, elliptic regularity estimation
provides an optimal Ly estimates such that

if elliptic regularity is given. See e.g. [14, [I1], [66]. To consider error bounds for our
problems let us define

0 :=u— Ru, x":=U} — Ru", w' =W} — Ru",
Yy =1, — Ry, Sq =Wy, — Ry, Vge{1,..., Ny},
vy = (, — R(,, Yy =Sy, — RCy, Yge{l,..., Ny},
where u" = u(t,). We follows the same argument in scalar cases to see error bounds

using the properties of elliptic projections such as Galerkin orthogonality, certain error
estimates (4.1.31)), (4.1.32)) and other techniques.

Lemma 4.1. Suppose w € H*(0,T; [H*(Q)])NWL(0,T;[H*(Q)]%). If the fully discrete
solution satisfies (R1), then

n n < min (k+1,s)—1 2y
oax 11, + max fIx"ly < Ch + At7)

If we also assume elliptic regularity,

n n < min (k+1,s) 2y
e ([0 ) + max X"y < C(h +AR)

Proof. Consider (4.1.15) and (4.1.8)) for average between ¢t = t,41 and t = t,, and
subtract each other. Then we have

Pin ) p n n
(L +am) - L (Wit - W) v)

1 n+1 ny n+1 n
5 A7 +2a((u +u™) — (U +Up),v)

L2(Q)
N,
1 = n n n n
-5 a ((zpq“ ) — (Tt \Ilhq),v) —0,
q=1

for any v € V. When we define

A Fa)  alt+ At — ()

Ei(t) = . 9 |
Es(t) := ot + A;) +6() 6+ AAti _ 9(t)7
E3(t) := ult + AAti —u(t) a4+ A;) + u(t)7
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Galerkin orthogonality gives

N,
p n n 1 n n n
E(w +1—w,v)L2(Q)+§a(x X" v) Z:: S 46 w)
_L 'n+1_'n n
_At (9 (7] ’U)LQ(Q) +,0( 17U)L2(Q) .

Taking v = X X" A —X" into the above and using the fact

XnJrl o Xn _ wn+1 + vl gn n
At 2 B
yield

IO n 2 n
S (1o 7 = 1" o) + 555

n+1 2 n|2
o (I = i)
n+1 n
= n+1 n X - X
q=1
:L (én—i—l_én wn+1 n) _L (971—&-1_971 gn)
’ La(@) At "2 ) L)
_ én—&-l_é’rz En +P( n n+1+ n) . ( n gn)
At ) e 2 U T ) T P S @)
n+1 n en P n+1 n
—p (€1, €5) )+ At( - w ’SQ)LQ(Q) E( - ", £3) (Q)°
summation from n =0 to m — 1 for m < N, implies

™ 2y + 5 X mu%—jmgga( et X,
A
é nz_% (9n+1 9”753) 2(Q) é T:_O (énH B én’ 83) L2(Q)
+g”§::(£n "+ wh) () PZ (€1, €3) 1,0 — PmZ:: (€1, €)1,
+ Af’tm_l (w”“ _ o £n

m—
25 ey
n=0 n=0
To rewrite a (¢ 462, x

La(Q) * (4.1.33)
such that for each ¢

), let us consider the difference of (#.1.16)) and (4.1.9)
o ntl Ln n+1 n
VP " + ¢ ‘I’h ~ T hg 1 1 1

Tqa< q 5 q th ,V +§a <( n+ +’l,bq) (\IIZ;_ —l—‘I’Zq),’U)
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=l (@ +u") = (U +UR),v).

n+1
By setting v = Al A7 S and taking summation for n = 0,...,m — 1 with summation by

parts, Galerkin orthogonality gives

m—1
Pq a (Xn+1 X" CZLH 4 gg,)
=g (et a) - o z st = sl = g Ismll2 + R (65

m—2

Tq +1 +1
— 3 Z a (EZ En n ) .
n=0
where . .
Eq(t) = — )
2 At
for each ¢. Imposing this result into (4.1.33)), we can write
Ny m—1 Ny n+1
§me\|L2(Q)+§||Xm”V+§Z H Sq Hv—i_AtZZ
q= 1 n=0 g= 1
p 2 1 2 pm y +1
_ 0 0 o" 0" !
L PR 1 S R D R +w”)L2(m
n=
m— +1 m—1 +1
TL N n
—o"ey) - (6" - 0" 1)
Z ( 2) Lo () Pnz:% La(%)
o m—1 m—1 m—1
+HALY (EY @™ @) o)~ pALY | (EVEL) ) — ALY (ET.E5) 1)
n=0 n=0 n=0
m—1
+IOZ(W”+1*W gn +pz *W gn +Z X gq
n=0
m—2 Ny -
- Z Lo (B7 ) =YY La (BT - B )M (4.1.34)
g=1 Pq n=0 g=1 SOq

Note that we suppose a sufficiently smooth u with respect to time hence Crank-Nicolson
finite difference method provides the following bounds such that

E1]1€3], 1€5], | G| < CA, Vg,

for some positive C. Furthermore, use of the same arguments to estimate bounds for
(12.3.19) turns out the similar result such that
No

P 2 ¥0 2 ®0 2
=™ + = Ix™ 5 + E Sq'
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m—1 Ny n+1
S —-<r
pary > | o s
n=0 g= 1 1%
N,
<P max ||o"|? +i ! 70 x l<all;
~4(3+ N,) 0<n<N L2() 2(3 4+ N,) 802N, + dpopq ognen Neallv
+ C(hZ(min(k+1,s) )+ At4),
and thus
N,
2 s o2+ 22 mas I 4> P a1
4 0<n<N L2(9) 4 0<n<N v i 1692 N, + 8o 0<n<N 1V
mol N T C
Aty D> Tt
n=0 g=1 “q Vv
<O (h2min (kt1,5) = 1)+At4). (4.1.35)

Consequently, we have

(k+1,5)— 2
e ([0 oy + ma X7y < CRm I 4 AR),

If elliptic regularity is equipped with, (4.1.35)) could have optimal estimates and hence
we can derive

k+1, 2
([, + max [y < O 4 A),

O]

In a similar way with Lemma[4.1] we can obtain the following bounds for the velocity
form.

Lemma 4.2. Suppose w € H*(0,T; [H*(Q)])NWL(0,T;[H*(Q)]%). If the fully discrete
solution satisfies (R2), then

in (k41 2
s [ )+ s [y < OO 4 A2)

If we also assume elliptic regularity,

n < min (k+1,s) 2
e [0 + max X"y < O L AR).

Proof. A proof will follow the same way in the proof of Lemma [2.13] but in vector-valued
cases. Let us consider subtraction of ) from (4.1.10]). Then we have

N
1 ¥
Ait (" — =", v)LQ(Q) + %a (X"t +x",v) + 5 g a(XP + X7, v)
q=1
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_L ‘n—o—l_ -n n
_At (0 0 ’U)LQ(Q)—I_p(gl’v)LQ(Q)

WEHAD () w(t+A)—u(t)

for any v € V", where & 1(t) == 5 — N by Galerkin orthogonality.

Note that (4.1.14) implies

Xn+1 - Xn wn—i—l 4 o

At 2 —& &
where Es(t) = é(t+A;)+é(t) B 9(t+AAt3t_0(t)’ Es(t) = u(t-i-AAt%—u(t) B u(t+A;)+u(t).
Hence, when we put v = %, we can obtain
n+1 n n+1 n
p(n—i—l nw++w> 900(71—1—1 n X _X>
— | @ -, —— + —alx +x,
N,
1 ¥ it " Xn+1 _ Xn
Fa2e (e XX
7L e - n+1 n) B n n+1 n
_2At (9 4 @ +w L2(Q)+ 2 (817w +w )LQ(Q)
-0 ety (67 -0"e)
At T2 @) At "3 ) La()
=P (ET.E3) 1) — P(ET,E5) 1, - (4.1.36)

In this manner, the difference of (4.1.11]) and (4.1.20)) gives

Taq (TZ“ — Y7, v) + 1a (TZJrl + Y, v) — Ta%a,, (X" = x",v)

At 2 At
=140 (Ey,v) — 1qpqa (€5, v)
where . .
B (t) = Colt + A + (1) Cylt+ At) — ¢, (1)
o 2 At ’
for each ¢, Vo € V. A choice of v = w yields
1 n n n n
o0 (T =X )
1 n 2 n |2 L n n||? 1 n ~rn n
:2At<pq (HTQHHV o HTQ Hv) + 274 Pq HTqJrl + Tq HV - ﬂa (Equq—H + Tq)
1
+ 50 (€5, 05 + 7)), (4.1.37)

for each ¢q. Now, we can derive

2 (I sy = 1o i) + 22 (™ = 11 )
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N, N,

1 21 LA |

50 50 (Pl =I5l ) + Ae 3 oo Iyt + 13
: q:

g (9”+l 0" ="t + w”) + gAt (7, w" T + w")

L2(Q) L2 ()
—p <9n+1 - 6", 83)

-n+1 A oan B n en
La(@) —p(0 -0 783)L2( Q) pAt( 1782)L2(Q)
g N,

%]
1
5 > —a (B, X7 +07) - § a (&5, X0+ 7)),
q:lgaq ql

_pAt( 71178 2(Q)

by substitution of (4.1.37)) into (4.1.36)) and multiplication by A¢. Summing this equation
fromn=0ton=m—1form € N, m < N, allows us to have

m—1 Ny
2 ™13+ 22 I + ZfHT”‘HVMtZZQ 157
n=0 g=1
p 2 o o2, 1% 1 2 PR [t
_ 0 $0 1.0 1 L 00 14 " 0" ol n
L 2;% el 53 (o ) o
p ol +1
1 n 1
+2At; (E7, @™ + ") pZ( .y ,83)L2(Q)

m—1 m—1 m—1
> (9n+1 0" gn> o PALS " (E1.ED) ) — PAL Y (EL.ED) @)
n=0 n=0

n=0
At m—1 Ny 1 m 1 Ny
52D . (B, Xy +7) Z D a(gg, Xty (4.1.38)
n=0 g=1 q n=0 g=1

As seen in the proof of Lemma [2.13] use of Crank-Nicolson finite difference approxim-
tions, (4.1.31)), (4.1.32)), Cauchy-Schwarz inequalities, Young’s inequalities and other

techniques implies the following bound for (4.1.38)) such that

%]
p ¥ 1
T, 1" + 5 s I+ 3 5 7
m—1 N‘P 1
A g il
n=0 g=1

So(h2(r 1)—|—At4),

where r = min(k + 1, s). The details follow the bounds for (2.3.34]). Consequently, we
have

1 2
max 5" ) + max [y SCT + AR),
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for some positive C'. Moreover, if elliptic regularity is given, it holds

n n < r 2 .
ohax, | HLQ(Q)‘i‘Og}LaSXNHX [y <C(h" + A7)

O]

From Lemma [£.1] and error bounds for both fully discrete formulations are ob-
served as we follow.

Theorem 4.3. Suppose u € H*(0,T;[H*(Q)]9) N WL (0,T;[H*(Q)]?) and the discrete
solutions satisfy either (R1) or (R2). Then we have

N 340 < min (k+1,s)—1 2
max [[u(tn) ~ Ufly < COh N

and

. _ n min (k+1,s)—1 2
pnax, [[e(tn) il o) < C(h + At7)

for some positive C'. With elliptic reqularity, it is also observed that

; _ n min (k+1,s) 2
max [[itn) = Wil 0 < OO +AP)

for some positive C. In addition, we can also see Lo error estimates of a displacement
vector

_ I min (k+1,s)—1 2
o ax, lw(tn) = UhllL,) < C(h + At7).

If elliptic regqularity is given, it shows

77N min (k+1,s) 2
oax, [w(tn) = Ukl Ly < C(h + At7).

Proof. A proof is shown in the same way in scalar error estimates theorems by using
triangular inequalities, for example,

[u(tn) = Uplly = llu(tn) — Ru(ty) — (Uj, = Ru(ty))lly < 18y + [IX"[ly -

The details follow as seen in Theorems and Corollaries O

Due to the norm equivalence between H! norm and the energy norm, Theorem
shows optimal H' error estimates. Also, by elliptic regularity estimates, Lo error
estimates could be optimised. Furthermore, stability bounds and error bounds have a
constant bound C' which is not governed by Gronwall inequalities hence the constant
does not increase exponentially by the final time 7.
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4.1.2 Numerical Experiments

Let a strong solution be a sufficiently smooth with respect to time and spatial domain
such that
u(x,y,t) = (zye' ™, cos(t) sin(zy))

on Q = [0,1] x [0,1]. Suppose there are two internal variables and their coefficients are
given by
0o =05, o1 =0.1, ps =04, 71 =05, 7 = L5

Moreover, we assume an identity fourth order tensor as our D so that De = €. Here,
we have a homogeneous Dirichlet boundary I'p = {(z,y) € 9Q | = 0 or y = 0} and
then other data such as traction, initial conditions and so forth, can be computed.
Note that the energy norm |||y, is equivalent to [|-|| ;1) hence we can obtain H !
error estimates. We consider the exact errors between the exact solution « and numerical
solutions satisfying (R1) or (R2) with respect to H! norm and Lo norm, respectively.
Hence let us define first
ey ==u(ty) Uy, ey =1ul(ty) - Wi,
where U} and W7} are the numerical solutions to (R1) or (R2), for n =0,...,N.
Code implementation has been constructed with based on FEniCS as similar as scalar
CG. Due to Theorem and Theorem approximate solutions exist uniquely and so
we could compute the exact error for the final time. In other words, we will consider
HehNHHl(Q), HéhNHLQ(Q) and He,]LVHLQ(Q). Since our spatial domain €2 is convex, elliptic
regularity is given and hence we would expect optimal Lo estimates as well as optimal
H, estimates by Theorem
As seen in Tables [{.T] and [£.2] it is observed that

He’"b]\[HHI(Q) = O(h+ AP, Hél]szLg(Q) ) HehNHLQ(Q) = O(h* + A#?)

when we take into account linear Lagrange finite element. On the other hand, Tables
and [£.4] indicate higher order of accuracy with quadratic polynomial basis. Thus, it
shows that

HeszHm(Q) = O(h* + A#?), Héiv = O(h* + At?).

HLQ(Q)’ ‘e;ZVHLQ(Q)
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1¥¢

||ehN||H1(Q)

A At 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 1.6489x107 T  1.6355x10° "  1.6311x10" T 1.6299x10" T 1.6295x10° " 1.6295x10™ 1 1.6294x10°" 1.6294x10° T
1/8 8.2304x107%  8.1498x1072 8.1376x1072 8.1353x1072 8.1349x1072 8.1348x107% 8.1347x107% 8.1347x10°?
1/16 | 4.1094x1072  4.0269x1072  4.0171x1072  4.0151x1072  4.0146x1072 4.0144x1072  4.0144x107% 4.0144x1072
1/32 | 2.1299x107%  2.0055x1072  1.9949x107% 1.9936x1072 1.9934x1072 1.9933x1072 1.9933x107% 1.9933x1072
1/64 | 1.2249x1072  1.0117x1072  9.9522x107% 9.9389x10™° 9.9373x10™3 9.9370x10™%  9.9369x10™%  9.9369x 103
1/128 | 8.6420x107°  5.2849x107%  4.9856x107% 4.9648x107%  4.9631x107°  4.9629x107°  4.9629x107%  4.9629x10~°
1/256 | 7.4763x1073  3.0618x107%  2.5218x107% 2.4833x1073 2.4807x107% 2.4805x1073 2.4805x10™%  2.4805x107?
1/512 | 7.1556x107%  2.1773x107% 1.3190x10™% 1.2453x107% 1.2404x10™° 1.2401x107% 1.2401x10™% 1.2401x10~3

~N

2 ”LQ(S’Z)
A At 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 3.0930x 1077  2.7442x10°7 2.6732x10°7 2.6553x10° 2 2.6508x10° 2 2.6497x10 2 2.6494x10~ 7 2.6493x10~°
1/8 1.3233x1072  8.7675x107%  8.0053x107% 7.8566x1073 7.8221x107% 7.8140x107° 7.8120x107% 7.8115x107*
1/16 | 9.1264x1073  3.3978x107%  2.3217x1073  2.1459x107% 2.1115x107% 2.1033x107%  2.1013x107™®  2.1008x1073
1/32 | 8.4072x1073  2.2946x107%  8.5664x10™* 5.9292x10™* 5.5055x107* 5.4226x10™* 5.4032x107* 5.3984x107*
1/64 | 8.2646x1073  2.1132x107%  5.7435x10™*  2.1473x10™*  1.4924x10™* 1.3879x10™* 1.3674x10™* 1.3627x107*
1/128 | 8.2317x1073  2.0778x107%  5.2920x10™* 1.4364x10™* 5.3720x107° 3.7383x107° 3.4782x107° 3.4272x107°
1/256 | 8.2236x107°  2.0697x107%  5.2045x107* 1.3237x10™* 3.5912x107° 1.3432x107° 9.3506x107¢ 8.7015x107°
1/512 | 8.2216x1073  2.0677x107% 5.1844x10™* 1.3018x10™* 3.3096x107° 8.9781x107°% 3.3580x107¢ 2.3382x107°

N

e HLQ(Q)
5 At 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 1.6293x1072  1.6013x1072  1.5988x1072 1.5986x1072 1.5986x10 2 1.5986x1072 1.5986x1072 1.5986x10~ >
1/8 5.3705x107%  4.8472x1073  4.8246x107%  4.8272x107% 4.8284x1073 4.8287x107% 4.8287x1073  4.8288x107%
1/16 2.7020x107%  1.4108x107% 1.2961x107° 1.2933x107% 1.2943x10™% 1.2947x107% 1.2948x107% 1.2948x107?
1/32 | 2.4211x107%  6.9237x107*  3.5896x10™* 3.3150x10™* 3.3098x107* 3.3126x10™* 3.3136x10™* 3.3138x107*
1/64 | 2.4081x107%  6.2640x107* 1.7417x107* 9.0259x107° 8.3482x107° 8.3363x107° 8.3437x10™° 8.3462x107°
1/128 | 2.4089x1073  6.2446x107*  1.5787x107* 4.3612x107° 2.2605x107° 2.0917x107° 2.0888x107° 2.0907x10~°
1/256 | 2.4094x1073  6.2496x107*  1.5746x107* 3.9544x107° 1.0908x107° 5.6544x107°% 5.2327x107¢ 5.2254x107°
1/512 | 2.4095x1073  6.2514x10™*  1.5760x10™* 3.9447x107° 9.8909x107% 2.7272x107° 1.4138x107° 1.3083x107°

Table 4.1: Errors of (R1) for linear polynomial basis




¢ve

||ehN||H1(Q)

At

A 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 1.6469x107 T  1.6352x10°"  1.6310x10° T 1.6298x10" T 1.6295x10° " 1.6295x10™ 1 1.6294x10°" 1.6294x10° T
1/8 8.2096x 1072  8.1477x1072 8.1373x1072? 8.1353x1072 8.1349x1072 8.1348x1072 8.1347x107% 8.1347x10°?
1/16 | 4.0740x1072  4.0244x1072  4.0168x1072 4.0151x1072  4.0145x1072 4.0144x1072 4.0144x107% 4.0144x1072
1/32 | 2.0625x107%  2.0009x1072 1.9946x107% 1.9936x1072 1.9934x1072 1.9933x1072 1.9933x107% 1.9933x1072
1/64 | 1.1039x107%  1.0027x1072 9.9465x10™% 9.9385x10™° 9.9373x10™3 9.9370x10™% 9.9369x10™%  9.9369x 103
1/128 | 6.8191x1072  5.1107x107%  4.9742x107%  4.9641x1073  4.9631x107%  4.9629x107°  4.9629x107%  4.9629x107°
1/256 | 5.2642x1073  2.7504x107%  2.4992x107%  2.4819x1073 2.4806x107% 2.4805x1073  2.4805x10™%  2.4805x107?
1/512 | 4.7977x107%  1.7119x107% 1.2753x107% 1.2424x107% 1.2403x10™° 1.2401x107% 1.2401x10™% 1.2401x10~?

1811 0y

A At 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 3.0131x1077  2.7299x10°7 2.6700x10°7 2.6546x10° 2 2.6506x10 2 2.6496x10 > 2.6494x10~ > 2.6493x10~°
1/8 1.2023x1072  8.5887x107%  7.9746x107%  7.8499x1073 7.8205x107% 7.8136x107° 7.8119x107% 7.8115x107*
1/16 | 7.5915x1073  3.1027x107%  2.2797x1073  2.1389x10™%  2.1100x1073% 2.1029x107%  2.1012x107%  2.1008x1073
1/32 | 6.8013x1073  1.9092x107%  7.8348x107* 5.8267x10™* 5.4883x107* 5.4189x10™* 54023x10™* 5.3982x107*
1/64 | 6.6477x1073  1.7090x107%  4.7779x10™* 1.9651x107* 1.4669x107* 1.3836x10™* 1.3665x107* 1.3625x107*
1/128 | 6.6126x1073 1.6707x107%  4.2784x10™* 1.1948x10™* 4.9167x107> 3.6749x107° 3.4676x107° 3.4249x107°
1/256 | 6.6041x107° 1.6620x107%  4.1834x107* 1.0700x10™* 2.9872x107° 1.2294x107° 9.1921x107% 8.6748x107°
1/512 | 6.6019x1072  1.6599x107%  4.1618x10™* 1.0463x10™* 2.6753x107° 7.4678x107°% 3.0734x107¢ 2.2983x107°

||er’ HLQ(Q)

At 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 1.6593x1072  1.6112x1072  1.6014x102  1.5993x1072 1.5987x1072 1.5986x1072 1.5986x1072 1.5986x10 >
1/8 5.3872x107%  4.9188x1073  4.8473x107%  4.8332x107°  4.8299x107%  4.8290x107% 4.8288x1073  4.8288x107*
1/16 2.1847x107%  1.4124x107%  1.3134x1073 1.2987x107% 1.2957x107% 1.2950x107% 1.2949x107% 1.2948x10~*
1/32 1.6247x107  5.5319x107*  3.5921x107* 3.3574x10™* 3.3230x10™* 3.3161x10™* 3.3145x10™* 3.3141x107*
1/64 | 1.5501x1073  4.1750x10™*  1.3880x10™* 9.0311x107° 8.4534x107° 8.3693x107° 8.3524x107° 8.3484x107°
1/128 | 1.5373x107%  4.0086x10™* 1.0506x10™* 3.4735x107° 2.2617x107° 2.1180x107° 2.0971x107° 2.0929x10~°
1/256 | 1.5345x107%  3.9814x10™* 1.0102x107* 2.6307x107° 8.6862x107¢ 5.6573x107°% 5.2983x107° 5.2462x107°
1/512 | 1.5338x107% 3.9755x10™* 1.0037x10™* 2.5305x107° 6.5793x107°% 2.1717x107°% 1.4146x1075 1.3249x107°

Table 4.2: Errors of (R2) for linear polynomial basis




€ve

HegHHl(sz)

At
b 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 7.8614x107° 3.8924x10° 7 3.4808x10°° 3.4521x10°° 3.4500x10°° 3.4498x10 ° 3.4498x10~° 3.4498x10 7
1/8 7.1090x107%  2.0021x107%  1.0057x1072  9.0693x10™* 9.0024x10™* 8.9979x10™* 8.9975x10™* 8.9975x10~*
1/16 7.0500x107%  1.8024x107% 5.0317x10™* 2.5576x10™* 2.3164x10™* 2.3004x10™* 2.2993x10™* 2.2993x10~*
1/32 | 7.0457x107% 1.7888x107™% 4.5121x10™* 1.2609x10™* 6.4553x107° 5.8596x107° 5.8202x107° 5.8178x107°
1/64 | 7.0455x107%  1.7879x107%  4.4768x107* 1.1281x107* 3.1563x107° 1.6222x107° 1.4741x107° 1.4644x107°
1/128 | 7.0454x107%  1.7878x107% 4.4746x10™* 1.1192x10™* 2.8203x107° 7.8962x107°% 4.0663x107° 3.6975x107°
1/256 | 7.0454x107°  1.7878x107%  4.4744x107* 1.1186x10™* 2.7978x107° 7.0509x107°% 1.9748x107¢ 1.0181x107°
~N
- Heh ”L2(sz)
t
b 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 8.2211x10™% 2.0684x10° 7 5.3806x10~* 2.1098x10~% 1.7458x10~ % 1.7296x10° % 1.7309x10~* 1.7316x10 *
1/8 8.2209x107™%  2.0668x107% 5.1776x107* 1.3084x10™* 3.8747x107° 2.3366x107° 2.2174x107° 2.2127x107°
1/16 8.2210x107%  2.0670x107% 5.1777x10™* 1.2951x10™* 3.2466x107° 8.5268x107% 3.4232x107°% 2.8274x107°
1/32 | 8.2210x107%  2.0670x107% 5.1778x107* 1.2952x107* 3.2384x107° 8.1016x107% 2.0519x107°% 6.1388x107"
1/64 | 8.2209x107%  2.0670x107% 5.1778x107* 1.2952x107% 3.2385x107° 8.0965x107° 2.0245x107°% 5.0801x10™"
1/128 | 8.2209%x1073  2.0670x107% 5.1778x107% 1.2952x107* 3.2385x107° 8.0965x107°%  2.0242x107% 5.0627x10~"7
1/256 | 8.2209x107°  2.0670x107% 5.1778x107* 1.2952x10™* 3.2385x107° 8.0964x107° 2.0241x107% 5.0620x10~"
N
- Heh HLZ(SZ)
t
1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 2.4088x10~7  6.3134x10~% 1.9133x10~% 1.2016x10~* 1.1517x10~ % 1.1509x10~* 1.1514x10~* 1.1516x10*
1/8 2.4008x107%  6.2517x107%  1.5805x107* 4.1759x107° 1.7276x107° 1.4539x107° 1.4379x107° 1.4376x107°
1/16 | 2.4097x1073  6.2521x10™*  1.5767x10"* 3.9525x107° 1.0025x107° 3.0402x107° 1.8942x107% 1.8021x107°
1/32 | 2.4096x107%  6.2521x107*  1.5767x10™* 3.9501x107° 9.8821x107°% 2.4797x107° 6.5655x1077 2.7280x107"
1/64 | 2.4096x107%  6.2521x107*  1.5767x10™* 3.9501x107° 9.8805x107° 2.4706x107° 6.1827x107" 1.5710x1077
1/128 | 2.4096x107%  6.2521x107* 1.5767x10™* 3.9501x107° 9.8805x107°% 2.4705x107°% 6.1769x10™" 1.5464x107"
1/256 | 2.4096x107°  6.2521x107*  1.5767x10™* 3.9501x107° 9.8805x107° 2.4705x107° 6.1768x107"7 1.5461x107"

Table 4.3: Errors of (R1) for quadratic polynomial basis




Ve

HegHHl(sz)

At
b 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 5.8188x10™° 3.6590x10 7 3.4658x10°° 3.4514x10°° 3.4500x10°° 3.4498x10 ° 3.4498x10~° 3.4498x10 7
1/8 4.7255x107%  1.4850x107%  9.4830x10™* 9.0316x10™* 9.0003x10™* 8.9978x10™* 8.9975x10™* 8.9975x10~*
1/16 | 4.6383x107%  1.2000x107%  3.7423x10™* 2.4158x10™* 2.3070x10™* 2.2998x10™* 2.2993x10™* 2.2993x10~*
1/32 | 4.6323x107%  1.1789x107%  3.0058x10™* 9.3944x107° 6.1037x107° 5.8361x107° 5.8188x107° 5.8177x107°
1/64 | 4.6319x107%  1.1775x107%  2.9523x10™*  7.5169x107° 2.3539x107° 1.5346x107° 1.4683x107° 1.4640x107°
1/128 | 4.6319x107°  1.1774x107°  2.9489x107"  7.3819x107° 1.8794x107° 5.8920x107° 3.8481x107° 3.6828x107°
1/256 | 4.6319x107°  1.1774x107%  2.9487x10™* 7.3733x107° 1.8455x107° 4.6989x107° 1.4740x107% 9.6359x10~"
~N
- Heh ”L2(sz)
t
b 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 6.5989x10~°  1.6605x10 7 4.4170x10~* 1.9717x10~% 1.7376x10 % 1.7296x10"* 1.7310x10~* 1.7316x10 *
1/8 6.6009x107%  1.6588x107%  4.1548x10™* 1.0564x10™*% 3.3656x107° 2.2890x107° 2.2148x107° 2.2127x107°
1/16 6.6012x107%  1.6592x107%  4.1546x10™* 1.0392x10™* 2.6090x107° 7.0309x107% 3.2062x107°% 2.8122x107°
1/32 | 6.6012x107%  1.6592x107%  4.1548x10™* 1.0392x107™* 2.5982x107° 6.5026x107% 1.6589x107°% 5.3475x107"
1/64 | 6.6012x107%  1.6592x107%  4.1548x107* 1.0392x10™% 2.5983x107° 6.4959x107° 1.6245x107° 4.0849x10™"
1/128 | 6.6012x107%  1.6592x107°  4.1548x107"  1.0392x10™*  2.5983x107°  6.4959x10"° 1.6240x10°  4.0630x10~"
1/256 | 6.6012x107°  1.6592x107%  4.1548x10™* 1.0392x10™* 2.5983x107° 6.4959x107° 1.6240x107% 4.0627x10~"
N
- |len HLZ(SZ)
t
1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/4 1.5276x107°  4.0384x10~% 1.4576x10~% 1.1567x10~ % 1.1478x10~* 1.1504x10~* 1.1513x10~* 1.1516x10*
1/8 1.5331x1073  3.9695x10™* 1.0050x10™* 2.8290x107° 1.5396x107° 1.4385x107° 1.4364x107° 1.4374x107°
1/16 | 1.5336x1073 3.9733x10™* 1.0016x10™* 2.5116x107° 6.4840x107°% 2.3544x107° 1.8291x107% 1.7971x107°
1/32 | 1.5336x107%  3.9736x10™* 1.0018x10™* 2.5097x107° 6.2789x107°% 1.5828x107° 4.5004x1077 2.4480x107"
1/64 | 1.5336x107%  3.9736x10™* 1.0019x10™* 2.5098x107° 6.2777x107°% 1.5697x107° 3.9331x107" 1.0213x10~7
1/128 | 1.5336x107%  3.9736x10™* 1.0019x10™* 2.5098x107° 6.2778x107°% 1.5697x107° 3.9249x10™" 9.8375x107®
1/256 | 1.5336x107°  3.9736x10™* 1.0019x10™* 2.5098x107° 6.2779x107% 1.5697x107° 3.9251x1077 9.8356x107°

Table 4.4: Errors of (R2) for quadratic polynomial basis




4.2 DGFEM to Wave Propagation with Viscoelasticity

Recall Chapter 3 for DG frameworks. As seen in the previous section, numerical ap-
proximation to vector-valued problem could be implemented by using DGFEM as well
as CGFEM. In particular, the scalar DG approximation would be elevated to vector field
spaces. However, we have to consider Korn’s inequalities in broken Sobolev space to see
coercivity. In addition, we could gain fully discrete formulations with respect to internal
variable forms. As following scalar problems, stability bounds and error bounds would
be dealt with by the same process and similar proofs.

Remark DGFEM for elasticity problems was introduced in [I5} 16}, 17]. The extension
of DG formulation for the elasticity models will be used but we want to consider mixed
DG for viscoelasticity. Either SIPG or NIPG for viscoelasticity was given by Rivére,
Shaw and Whiteman [17) 26].

Let us recall a broken Sobolev space H*(&p,) and a finite dimensional space Dy (Er)
with the subdivision &, as we defined before for s > 3/2. Then we can define a piecewise
Sobolev vector field [H*(&,)]? and finite dimensional vector field [Dy(&p)]%. Define DG
bilinear forms a+; : [H*(&,)]? x [H*(E,)]? — R by for any v,w € [H*(&),)]?

as ( Py /Ds ) dE — /{Ds e} - [wlde

eCI'p,Ul'p
+ Z {Ds ) ne} - [v]de + J5OP (v, w),
eCl'p,Ul'p
where the jump and average operator are given in Section 1.4.2 and

ICRT SN ‘;‘go L[U].[w}de.

eCl'pUl'p

ap (+,-) is a DG bilinear form of NIPG whereas a_; (-, -) is for SIPG. Also we have linear

forms given by
a(t;v) /f de+Z/gN ‘v de

eCl'y

and

v(t;v) /f cv dQ+ Z/QN vde—nge t/Tqal (up,v),

eCl'y

for any v € [H S(Sh)] , S > 3/2. As a consequence, we now formulate the following
variational forms of m ) with respect to internal variable forms.

(S1) Find v and {% }q “”1 such that satisfy for all v € [H*(&)]?

(P(t),v) 1,0 + a1 (u Za 1 (P (1), 0) + TP (a(t), v) = Fa(t;v), (4.2.1)
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a_lcq¢q@)+dh@L10::a_lw%uG%v), (4.2.2)

for each ¢, where u(O) = up, u(0) = wo and 1,(0) = 0. In the same sense,
(52) find w and {(,}, “"1 such that satisfy for all v € [H*(&,)]?

(p(t), ) 1, () + a1 (u +§)1Cq v) + JgO" (at),v) = Fy(tsv),
4.2.3
@4(%¢AQ+CAQJQ==w4@y%uﬁxv% (4.2.4)

for each ¢, where u(0) = uo, 4(0) = wo and ¢,(0) = 0.

Remark As we concerned before in a scalar analogue, we consider non-symmetric vari-
ational problems as in and - Even though we could choose symmetric
bilinear forms and solve strong forms of internal variables, we have restricted the weak
forms for challenges. In order to manage the difficulty of non-symmetric problems and
discontinuity of the velocity w over the edges, we introduce the jump penalty for the
velocity.

Integration by parts with respect to the space domain yields the weak formulations
with introducing interior penalty and jump penalty.

Theorem 4.4. If the solution u(t) and {wq(t)}fz“al to (1.3.24)), (1.3.25), (1.3.17)-(1.3.21)),

(T.3.13)) and (1.3:.14) belong to [H*(EL)]? for allt € [0,T] and 3/2 < s € N, then u and
v .

{abg}y 21 satisfy (S1).

Proof. For any E € &, Vv € [H*(&,)]?, integration by parts gives

~V - | De(u §:¢q v

Ly (E)
N, N
= Qg(u(t) - qu(t))ag(v) - Z Qg(U(t) _qu(t)) *Ne, V
q=1 La(E) eCOFE qg=1 La(e)

since De is symmetric. Note that continuity by embedding theorem with respect to
space and homogeneous Dirichlet boundary condition imply

[U(t)] =0, [¢q(t>] =0,vq on I'y UTp.

Hence use of the same arguments in the proof of |3 u allows us to claim that w(t) and

{9, (1)}, fulfil ( - Moreover, (|1.3.25)) yields (4.2.2) straightforwardly, since the

blhnear form is well-defined. O

In this manner, the strong solution with internal variables of the velocity form be-
longing to [H*(&)]¢ satisfies (S2).
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4.2.1 Fully Discrete Formulation

Before obtaining fully discrete formulations, let us consider coercivity and continuity on
the finite dimensional space [Dy(&,)]?. Define a DG energy norm by

1/2
llvlly, = ( Z / De(v v)dE + Jao’ﬁo(v v)> , for v € [H*(&)]°.
Ecé&y,

Remark Due to Cauchy-Schwarz inequalities, we have for any v € [H'(2)]¢

d
Z v)ei(v Z |vi ;2. (4.2.5)

i,j=1

Lemma 4.3. Let v € [H*(&,)]%. If we assume Bo(d — 1) > 1,
> Wl < Clvliy
E€&y,

for some positive C' independent of v.

In [36], Korn’s inequalities for piecewise H' vector fields have been introduced. Use of
the Korn’s inequalities allows us to obtain Lemma since D is symmetric positive
definite and the jump penalty is defined on not only interior edges but also positive
measured Dirichlet boundary.

Theorem 4.5. Both NIPG and SIPG bilinear forms are coercive on [Dy(Ex)]? with large
penalty parameters ag and By. Thus there exists a positive constant k such that

a_1 (v,v), a1 (v,v) >k |[v]3}, Yo € [Dip(E)]°.

Proof. Let v € [Dy(&)]* and By(d—1) > 1. It is true that a1 (v,v) = HvHi So we shall
consider SIPG only. By the definition, we have

o) = o} =2 3 [(De(®) ne}- fvlae
eCI'p,U'p
We will show that
> [(Dew) o) - olde < ol
eCl'p,Ul'p € \/aio

If this is true, then the proof is completed by taking sufficiently large ay.

Taking into account a bound of Y [ {De(v) - n.} - [v]de, we can obtain
eCl'p,Ul'p

3 /{Da(v)-ne}-[v}des S HDe@) - nedlpy e 0]l

eCl',Ul'p V€ eCT',Ul'p
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by Cauchy-Schwarz inequality. Note that D is symmetric positive definite and bounded.
As following a similar argument in Theorem inverse polynomial trace theorem gives
that if So(d — 1) > 1,

{De(v) - ne} - [plde < —— ||v]l;
eCFhUFD/ \/7 .

Thus, there exists s such that

a1 (v,0) > (1 - ;;;0) )3 = x o])3

with sufficiently large ag as 1 — \/%—0 > 0. O

As shown the above, we can observe that the following bound such that

ecggrD /{De med ]de<r(’””VJFJQO’/BO(w’w))- (4.2.6)

By (4.2.6} , we can show continuity of DG bilinear forms.

Theorem 4.6. Let ag > 0 and Bo(d — 1) > 1. For any v, w € [Dy(E,)]Y, there exists a
positive constant K such that

a1 (v, w) |, [a1 (v, w) [ < K[l lwl,, .

Proof. Let v,w € [D(&,)]?. By the definition of a (-,-), Cauchy-Schwarz inequality
yields

> [ Detw)sctw) ie - 3 [(De(w)-n.) - wlae

Eegy, eCI'p,Ul'p

+ Z {Ds ) ne} - [v]lde + Jgo’ﬁo(v,w)’
eCcl'p,Ul'p

lat1 (v, w) | =

< 1/2 1/2

- S oo, e
€&y

+ Y H{De() - nedlpy o 0l
eCl'pUl'p

+ Y H{De(w) e}, 10,0
eCcl'pUl'p

+ > |5O 10l Ly ey ]l £y
eCFhUFD

where D2 is the symmetric positive definite fourth order tensor such that satisfies
D = D'?D"Y?. In a similar manner in Theorem [3.4] we can conclude that there exists
a positive constant K such that

lat1 (v,w) | < K [jo|y, |w]l, -
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Remark Let us define a skew symmetric bilinear form in NIPG such that for v,w €

[Dr(En)]?
B(v,w) = a1 (v,w) — a; (w,v).

Then 6|) implies that
|B(v, w)| < s <|v||$; + H’UJHQ;) (4.2.7)
1/ 0

if Bo(d — 1) > 1.

With applying Crank-Nicolson finite difference method to time discretisation, we
can formulate the fully discrete numerical schemes with respect to two internal variable

forms with (4.1.14]).

(S1) find W7}, U} and ¥y, in [Dr(&p)]% for n =0,...,Nand g =1,... , N, such that
satisfy for all v € [Dy(&E)]?

Wit — Wy Ut + Ui, ‘I'"*1 + W7,
<pAt’ v +a | ——F— Z R T
Lo2(Q)

W’n+1 wn B

+ 5o <h2+h'v) = F}(v),forn=0,...,N —1, (4.2.8)

gl _ g gntl 4+ P Un—l—l U»

h h h h +Uy

a—1 (Tq . At ! + 4 2 q7,U =a-1 | $Yq h 2 yU |

forn=0,...,N -1, and for g =1,..., N, (4.2.9)
a1 (U}, v) = a1 (ug,v,) (4.2.10)
(Whiv) ) = (w0,9) 1,0 » (4.2.11)

for each g, ‘Il?lq =0.

In this manner, we can formulate a fully discrete problem of the velocity form as
following;:
(S2) find W7, Uy and Shq in [Dy(Ep)]? for n =0,...,N and ¢ = 1,..., N, such that
satisfy for all v € [Dk(é'h)]

W’n+1 o W’n, Un+1 + Un Sn+1 + S
<phAth7v> +S00a‘1 (h +Za 1 77,0
La()

Wn+1 wn _
4 g0 (’LJ’M;) =F'v), forn=0,...,N—1, (4.2.12)
Sn—i-l n Sn—i-l 1+ 8 Wn—l—l wn
h hq h hq + Wy
a—1 <Tq d At + d 2 yU | =a—1 | Tq¥Pq b 2 O I
forn=0,...,N—1, and for ¢ =1,..., Ny, (4.2.13)
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a1 (U}, v) = a1 (uo,v), (4.2.14)
(W?L, ) La(Q) = (w()?v)LQ(Q)a (4.2.15)

and S?Lq = 0 for each q.
Note that the continuity of the NIPG bilinear form allows us to have

|35 = a1 (UF.U9) = a1 (w0, U}) < K US|, ol = [[UR]], < K [[uolly,

from (4.2.10) and (4.2.14)), and applying Cauchy-Schwarz inequality to (4.2.11) and
(4.2.15) gives

(WO’W?z) = (wO’W?L)L2(Q) < HW?L ||w0||L2(Q) = ng < ||w0||L2(Q)

La(Q) HLQ(Q) HLQ(Q)

for both (S1) and (S2).

In Chapter 3, stability bounds and error bounds are proved for the scalar problems
with DGFEM and we can also elevate these to vector-valued cases. More precisely,
use of the certain techniques such as integration by parts, summation by parts, using
a variety of inequalities e.g. inverse polynomial trace inequalities, Young’s inequality,
Cauchy-Schwarz inequality, etc, as in Chapter 3 leads us to have the following discrete
stability theorems and error estimates theorems.

Theorem 4.7. Suppose fo(d —1) > 1 and g is large enough. Assume W7, U} and
{¥h, = “"1 in [Dr(Ep)]? for n = 0,..., N satisfy the fully discrete formulation of (S1).
There exists a positive constant C such that

2
max le/QWZ

+ max |U? sz max prhquf)

0<n<N Lx(Q)  0<n<N
N—-1 Ny 9 _

+ Z Z A H‘I’nJrl ‘Iqu , + At Z J(?Oﬂo(WZJrl + Wn’ WZ+1 + WZ)
n=0 g=1 n=0

§C< o172, g + ol + 151 o mizaton + 2 gl o itacenny
+ht |gN||%2(O,T;L2(FN)))‘

Proof. Let m € N such that m < N. By substitution of v = WZ'H + W7} into (4.2.8),
we have

LW~ W) + = ([0~ OR12)
1 ntl n 1S ntl 4 n+1 n
_ EB (Uh ’Uh) — E Z;a_l (‘I’hq hq7U Uh)
q:

1
+ o Jg W W W W)
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=Fp (Wit + Wy (4.2.16)

for n =0,...,m — 1. On the other hand, a choice of v = 2(‘1123'1 — WPy ) in - ) for
each g and symmetry of SIPG give

oy (T4 3, UL - U ) =204 <\IIZ;1,U"+1)—2CL,1( P U

27 +1_ m_
Sl
_ i ‘I,n—l—l ‘I,n+1 —a (‘I,n n )
© hq > -1 hq> * hq )
q
(4.2.17)

since
ay (Wt =, UR UL =20 (W30 = 20 (), UF)

n+1 n+1 n
—an (Wt g, U - U7

Combining (4.2.16) and (4.2.17)), multiplying At and summing fromn =0ton =m—1
yield

2
PIW R Ly + IUR HV+Z 1 (P Phy)
m=1 Mo 27,
S (v v i - i)
n=0 g=1

At
Z Jao,,Bo WnJrl_*_anwnJrl +Wn)

n=0
m—1 ~ Ny
=0 Wil 10 + ORI + D AEFWH + Wi 423" ay (%7, UF)
n=0 q=1
m—1
+Y B (U, Uy) (4.2.18)
n=0

since \Ilg =0, Vg € {1,...,N,}. Use of coercivity of SIPG and expansion of SIPG

reduces (4.2.18)) to

N
1 2K, 2
2 2 1
PIW e+ ORI+ 3 - 1R+ ZZ |l -,
q=1

Vv

m—1
At (67 mn n n n
5 ZJO()’BO(WhH‘FW ’Wh+1+Wh)
n=0
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<|pllwoll7, ) + K lluolly + Y AtFF (Wit + Wi) +2) a .y (7, UT)

‘ m—1 A@
n=0 q=1

ZB(U”“ Uy) +Z 3 /{Ds ) on) (O] (4.2.19)

eCFhUFD

since
Whll 1,0 < llwoll L) and [[UR[ly, < K fuolly,-

In a similar way with the proof of Theorem [3.11], we can observe the bound for the right
hand side of . To be specific, we would use the same arguments in the scalar DG
problem but we should introduce (4.2.5)), (4.2.6), (4.2.7) and Lemma more. In the
end, it is able to conclude that

m—1 Ny
1/2vx7n H ntl
OISI}%XN HP Wi La(@) Og}iXN HU ||v + Z H‘I’ Hv + nz;) ; At lIl
m—1
+ At Z Jgto,ﬂO(Wz—i-l +WZ>WZ+1 _i_W’;LL)
n=0

2
— 2
<o el g ol 5 5 1

— . 2
+ht ”gN”Lg(O,T;Lz(FN)))
2
gc( 072wl g 0l + U717 o r:naen) 1 Nl oirizacrny

_ . 2
+ht ||9N”L2(0,T;L2(FN)) > ’

for a sufficiently large o and

Ne
1/2yx/n E n |12
0Snew Hp w La() " 0ZnEN HUhHV i g=1 00N H‘IlthV
N—-1 Ny 2 N-1 3
n+l _ n Q0,00 n+1 n n+1 n
+ngoqglAtH‘I’ hqv+Atn§::‘]0 (Wi + Wy, W™ + Wri)

2
1/2 2 2 -1 2
go( o720l g ol + UF1E o r:nan) 2 N oiriacrny

_ . 2
+ht HQN||L2(0,T;L2(FN)) )’

since m is arbitrary. O
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In this same manner, a stability bound for the velocity form is given.

Theorem 4.8. Suppose fo(d —1) > 1 and «y is large enough. Assume W1, Uy and
{8} } 2 in [D(Ep)]? for n = 0,..., N satisfy the fully discrete formulation of (S2).
There exzsts a positive constant C' such that

2
max 2w max (U HwZ max_[|S7 |1,

0<n<N 0<n
N-1 Ny, 9 -

ALY DSt Shy |+ A Z JoOP (Wt + Wi Wit W)
n=0 ¢g=1 n=

2
gc( R R E R a2 Aoy

+h! ||gN||%2(O,T;L2(FN)) >

Proof. One can show a stability bound for the fully discrete formulation of (S2) as
following the same way as in Theoremm Taking v = WZ‘H +Wi forn=0,...,m—1
where m € {1,..., N} in (4.2.12)), adding from n = 0 to n = m — 1 and multiplying At,
we can obtain

mlNa,a

PIW I oy + 20 IUFIR + 5053 s (S35 + 87, Wi + W)
n=0 g=1

At
Z Jao,b’o Wn+1 +Wn,Wn+1 —I—Wn)

n=0
m—1
n=0 n=0

(4.2.20)

Once we consider putting v = SZ[;H +Sh,forn=0,...,m—1into (4.2.13) and summing
it from n = 0 to n = m — 1, we can have the following equation such that

p
g 1 _
Z“ 1(Shy + S Wi + W) ma—l( ha» Sha)

m—1 1

+) -

n=0 974

1 1
a1 (Sit+ Shgs St + 87y
so that substitution of the resulting equation to (4.2.20)) yields
plIWg HLQ + o U Hv—i_zia 1 hq? hq)
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m

1 Ny
Z a1 (Si + 84, 80 + 53y
—1 Tq4¥q

CYO,BO Wn+1 +Wn Wn+1 + Wn)

£y
S

m—1 m—1
= |[[Whll L, + 90 |URIS + At Y- B (Wit + W) + 90 Y BUR,UR)
n=0 n=0
Coercivity implies
At
PIW T, ) + 2o IUR ||V+Z - |Isi 1%+ ZZ—HS”*WSZQ
n=0 g=1

Z JQO,BO Wn+1+WZ,WZ+1 +WZ)

m—1
é\p\>W%HL2 UL+ S (e w)
0
m—1 "
+e0 Y BUTL UL
n=0

(4.2.21)

Note that we have HW HL2 < ”"UOHL2 and HU Hv < K ||ug||y,- Asseen in Theorem

3.13, we can derive bounds of At E Er (Wi + W) and Z BUT,UY) with

using the same arguments in the scalar case but introducing (4.2. 5|) (4.2.6)), (4.2.7), and

Lemma [1.3] for estimates of traces with respect to the strain tensor.
Consequently, we can obtain

m—1 Ny
n+1
Jmax W3, q) + max U} HwZHS lly+at > > |
n=0 ¢g=1
m—1
+Atz J(?O’BO(WZ+1+W27WZ+1+WZ>
n=0

N-1
2 2 2n 2 _ _n 2
C( lwoll7, o) + lluolly, + At Z H-anLg(Q) +h7! goax g~ IZ )
n=0 - =

+h! HgNH%Q(O,T;LQ(FN)) )
C(llwollZ,q) + luolly + 1 FI7 0.2 a)) + P~ NONIT o 0.7 Lorw))

_ . 2
+ht ”gNHLQ(O,T;Lz(FN)))
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with large enough aq for some C, furthermore, since m is arbitrary, it is concluded that

N-1 Ny
n+1
Jmax [|[Wh 17,0 + jmax U7 |yv+zoga%xNHsthV+At2)Z; i
n=0 g=
N—-1
HALYJERWIT s W W+ W)
n=0

C(llwollZ, ) + luollyy + 1 FI7 o 0.2:La@)) + P ONIT o 07200 )
_ . 2
+ht HgN”Lg(O,T;Lz(FN)) )
for a sufficiently large ay. O

The discrete stability bounds in Theorem [4.7|and [4.8]indicate that our numerical solu-
tions exist uniquely. Also, the bound constant C' independent of mesh sizes is increasing
in the final time T" but not exponentially since we do not use Grénwall inequalities. As
seen in Chapter 3, use of maximum gives us C' o« T" and so is the vector value problems.
In a similar sense with scalar DG problems, since DGFEM has imposed boundary con-
dition weakly, ™! terms exist but it is not observed in numerical experiments and error
estimations.

Now we shall consider DG elliptic projection in order to use elliptic error estimates.
Let us define DG elliptic projectors R_1 and Ry by for u € [H*(E)]?

R_: [H*(EW)]? — [Dr(ER)]? such that a_; (u,v) = a_y (R_1u,v), Yv € [Dr(&)]4,

Ry : [H*(E)]Y — [Dr(Ex)]? such that a; (u,v) = a1 (Ryu,v), Yo € [Dr(EL)]%

According to [24], [I7], Theorem can be extended in vector-valued functions. Hence
if w € [H*(Ey)]? for s € N such that s > 3/2 and sufficiently large penalty parameters,
ap and By > (d — 1)71, it satisfies

[ = Royully, < CR 0 ), (42.22)

le — Rovul| ) < CR™™ L ]| e, - (4.2.23)
Moreover, with the convex domain {2

o — Ryl ) < CR™ e, (4.2.24)

(14.2.22)-(4.2.24) hold for NIPG elliptic operator R; too but the super-penalisation is
needed for optimal Lo norm. Thus, we could derive error estimates by using (4.2.22))-
(4.2.24]) and a similar argument in the scalar-valued problem. Define

0:=u— Ru, x" :=U} — Riu", w" =W} — Riu",
Vg :=, — R, Sqg =Wy, — Ry, Vge{l,..., Ny},
vy =¢,— R.1¢,, Y, =8y, —R1(y, Vge{l,..., Ny},
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fort € [0,7] and n=0,..., N. Then (4.1.14) implies that equation

XnJrl _ Xn _wnJrl 1 o
At B 2

- &5 — &3, (4.2.25)
forn=0,...,N — 1 where

O(t+ At)+0(t)  O(t+ At) — 0(t)

Ex(t) = 5 - At )
Cu(t+ A —u(t)  alt+ At) + a(t)
E4(t) = - - d .

Note that Galerkin orthogonality helps us to have error estimates theorems, and
continuity of the strong solution and homogeneous Dirichlet boundary condition imply

[0)], 101)], [94(1)], [D4()], [vg(), [4(t)] =0 (4.2.26)
for any ¢, Vg € {1,..., Ny} on I', UT'p. Hence (4.2.26)) gives
[E2(8)], [E5(t)] =0 (4.2.27)
for t € [0, — At]. In addition, yields
a1 (0(1),), a1 (9(t),v> =0, Vv € [Dy(&n)]".

Lemma 4.4. Suppose u € H*(0,T; [C*(Q)])NWL (0, T; [H*(E)]Y) and Bo(d—1) > 1 for
s>3/2. Let Uy, W7 and {\I'Zq}évz“"l be the numerical solution to (S1) forn =20,...,N.
For large enough ag, there exists a positive constant C such that

n n < min (k+1,s)—1 2y
ohax, 1", +OI§1}%XN||X ly < C(h + At7)

Furthermore, if Q is convexr or elliptic reqularity is given with the super-penalisation,
Bo(d — 1) > 3, we have

n n < min (k+1,s) 2y
(19" )+ max X"y < OO 419 4 A2)

Proof. A proof parallels to that of Lemma A difference of (4.2.8) and (4.2.1) for

average between t = t,41 and t = t,, gives

N,
1 1
é (w" ! — ", 'U)LQ(Q) + 50 (x"t' + x",v) — 3 Za—l (sit! + <7 v)
q=1
1 il
N ijgcoﬁo (" + @, v) = & <9n+ _ 97171;) oy TP EL @), (42.28)

Yo € [Dr(&,)]4 for 0 <n < N — 1, where

£y(p) = B A;) tal)  alt+ AAtl)t —r)
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since Galerkin orthogonality and (4.2.26) hold. A choice of v = (x"*! — x™)/At in
(4.2.28) implies

P n 2 n P n n en
oii = M e — =" le) = (= = =" €5) 0

P +1 1 41112 2 1 +1

— L (@ " ) o) + 5 (X = IX) — 55 BOCT LX)
N,
1 z 1
+1 0,0 +1 +1
_w;al(n +§q7X n)_i_ZJoo o(wn _i_wn’wn +wn)
_ 14 (9”+1 _9” n+1 n _ L (9”+1 _9” gn)

2A¢ W La(@) At "2 ) L)

2t on L, P lren _n+l n n en
- p(8?781§)L2(Q)

by using skew symmetric B(-,-), (4.2.25) and (4.2.27). Taking into account summation
fromn=0ton=m—1for 0 <m < N, we have

m—1 Ny
2At || mHL2 ” m”v QAtZZa 1 n+1+<q7x I_Xn)

n=0 g=1

4= Z JaO,BO n+1 _i_wn’wnJrl +wn)

m—1

__r 0|2 1 0|2 P vt _ g _ntl n
=gt 7oy * 57 NI+ 5 20 (677 = 0% b))
m—1 m—1
1% - n+1 A an p -n+1 AT an
At > (9 -0 ’£2>L2(Q) At (0 -0 ’53)L2(Q)
n=0
m—1 m—1
+ g Y (e ), P Z (€1 ED ey — P Y (E1.ED e
n=0 n=0 n=0
p m—1 p m—1
n+1 n n n en
+Ktn:0 (w — ,8 Ktnzo — 783)L2(Q)
1 m—1
+ 557 ; B(x", x"). (4.2.29)

However, a subtraction of (4.2.9) from (4.2.2)) gives

1
tha 1(§Z+1_§q7 )+2a 1 (s n+1+gq7 )_%a_l(XnJrl_i_xn’,v)

=Tq0-1 (EZ’ 'v)

257



by Galerkin orthogonality, for any v € [Dy(&p)]?, where
b, (t+ At) + o, (t t+ At) —ap, (t
Bt T A £ Bt A) ()

E (1) =
(1) 2 At
Whence inserting v = c"“ Y /At and summing for n =0,...,m — 1, we can derive
o m—1
q +1 +1
SAL Za—l (X" =" sy +sy)
n=0
—1
_Pq (m m)_ 1 (m m)_lm (n+1 n+1 n)
Ata 1 (X 7gq 2Ata_1 §q7§q AtQ a—1 gq §q,§q Cq
n=0
- m—1
+ Ea (B ) — A > ay (EFT - E} o (4.2.30)
n=0

for any ¢ by the fact cg = 0 and summation by parts.
By substitution of (4.2.30) into (4.2.29)), multiplying At implies

NLP
p ) 1 s 1a 1
5 1™ y@) + 5 X"y + 5 > —ai (7))
=1 71
m—1 Ny n—i—l n+1 n
T —Sy S — S
At Ta,, g 24 q
vA2L DG, ( VRV

71; Z Jgto,ﬁo (wnJrl + wn7wn+1 + wn)

m—1
P 2 1 2 P R n
=22+ 5 VUL + 25 (8 e o
n=0
o en 0"t _ g gn
—pZ( -0 ,82) —PZ( -0 ’83>L2(Q)
m—1 m—1 m—1
HOALY (B ") 0~ pAL Y (B E) e — oD Y (€T E) e
n=0 n=0 n=0

m—1
+pZ(W" —w", %), +pz -w", EY), +Za1 .50
n=0
Ny . m—1 Ny 1 m—1
q -1 1 1 1
+ ; Sl?qail (Egl agq Z Z 7a7 E”+ E” """ 5 nZ:() B(Xn+ 7Xn)'

n=0 q= ISOq

Hence the definition of SIPG and coercivity allow us to have

N,
1 1
L ™2 ) + 5 X + 22:1 e+ a5 Z
q

cq *Cq

2
anl
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At m—1
T Z J(t))éo,/ﬁo (wn+1 + wnjwn+1 + wn)

P 2 1 2 P gt
|1 Ny + Il + 5 3 (67 - 8 4 )

2 2 = L2(Q)
+1 = o
B n 'n n) . (0" . 0” gn)
’ Z (6 VR nz_% 173 Lo
P m—1 m—1 m—1
1
+ §At Z ( Tll7wn+ + wn)Lz(Q) — pAt Z ( ?78721)[/2(52) — pAt Z (8?7 gg)Lg(Q)
n=0 n=0 n=0
m—1 m—1
1
—i—pz;)(w’H —w”,SS)LZ(Q)—l—pZ%(w” — " 8" +Za 1 ,gq
n= n—=
Ny . m—2 Ny . 1 m—1
+ Z (Piqafl (E;n_l,cq Z Z;qa* En+1 En n+1) + 5 Z B(Xn—kl’xn)
= q n=0 g=1 q n=0
Neo

L s /{Ds ) e} - [s]de

eCFhUFD €

Now, one can show the bounds for (4.2.31)) as following the similar arguments in the

bounds for ([3.3.20)) in vector-valued. But we should also use (4.2.7)), (4.2.6) and elliptic
approximation properties (4.2.22))-(4.2.24)) for vector-valued cases. Consequently, taking

into account maximum, we can obtain for large aq

(4.2.31)

(k+1,5)— 2
([0 ) + max X"y < CEmm Tt 4 Ag),

additionally, if Q is convex or elliptic regularity is satisfied

< min (k+1,s) 2
" 0 + e Xy < OO N

where C' is a positive constant independent of h, At, not increasing exponentially with
respect to T O

In case of the velocity form, we have similar results as following.

Lemma 4.5. Suppose u € H*(0,T;[C?(Q)])) N WL (0,T;[H*(E)]Y) and Bo(d —1) > 1
for s > 3/2. Let us consider the fully discrete solution of (S2). For large enough o,
there exists a positive constant C such that

n < min (k+1,s)— 2y
max (1" oy + s, X"l < OO L a)

Furthermore, if Q is convex or elliptic reqularity is given with the super-penalisation, we
have

< min (k+1,s) 2
" 0 + e [Xy < OO N
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Proof. A proof is shown by the extension of Lemma [3.8] For average between t = ¢,,41

and t = t,,, subtracting (4.2.3)) from (4.2.12)) gives

N,

1 P

e Co A w",v)L2(Q) + %cu (x"™ +x",v) + 3 Z ay (X0 47, )
q=1

1
+ 5J(t)ﬁto,ﬁo (wn—l—l +w",v)

2 (50" 0)

T At La(Q) (€1, 0) 1,0

2

for n € {0,...,N — 1}, Yv € [Dp(&,)]?%, where E;(t) := MHA;H{L@) - u(HAAt?;i‘(t) by
Galerkin orthogonality. By choosing v = W

72—, it is written by
P 2 © 2
o (1= ey = 19" ) + 5z (I = 171

N,
1 <& 1 ..
T oag 2o 0t (05T TG =) g (@ e )
q=1
_ P (pntl an n+1 n) P (on n+1 n
- 2At (0 o, =" +w LQ(Q)+2( L@@ )Lz(ﬂ)
_i(énﬁ—l_én 5”) _L(én—’—l_ .n 8”)
At T2 @) At "3 ) L)
n en n en 0 n n
— P (EL D) Ly() — P(ET ES) Ly + 57, B(X XM, (4.2.32)

by ([@.2.25).
On the other hand, a difference of (4.2.4)) and (4.2.13)) yields for any ¢ € {1,..., N},

Yo € ['Dk (gh)]d

1
Lay (T3 =Y 0) + sans (Y5 4+ 0 0) - oasy (X - X" v)

=Tq0—1 (E;?? U) — Tg¥Pql—1 (gg, U)

by Garlerkin orthogonality where for each ¢

n+1 n
When we put v = w and divide it by 274p,, symmetry of SIPG implies

1
+1 +1
TAtCl/fl (T;l + T;l, Xn — Xn)

n n n n 1
= (a_1 (TqH’TqH) —a-1 (Tq’Tq)) +

27404

1 1
g0 (Bg. Yo +75) + Sa (€5, X7 +717). (4.2.33)

ay (X + 00, X0+ 7))
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Hence taking into account substitution of (4.2.33) into (4.2.32)), summation for n =
0,...,m—1, where m € {1,..., N} and multiplication by At gives us to obtain

Ne

p 2 ©0 2 1 1
Sleo™ 12,0 + S5 IX 5+ 5D —a (X7, X7
2 2 2 po Pq
m—1 Ny
At (T et ey
PSS gty ey
n=0 g=1
m—1
g Jgto,ﬂ()(wn-i-l + " wn+1 +wn)
4 n=0
m—
_P 0/12 0 p n+1 -n "t n
=5 1=, +7) Hv 5 2:0 ( tw )LQ(Q)
n=
P sy s +1
+ =At 8”,w”+1 —|—w < 0" 0" ”)
2 r;()( ' pn—O ’ La()
m—1 1 m—1 m—1
- N N n
- Z (67" - 0" ex) ALY (E1.ED) L) — PAL Y (ELED) Lo
L2() n=0 n=0
m 1N<P 1 m 1 th
Y (BT - Y S (8 )
n=0 g=1 (Pq n=0 ¢g=1

m—1
$0 n+l _n
+5 ZOB(X X")-
n=

Then use of coercivity of SIPG leads us to have

N, 1 Ny
1 ® m—
DI+ 2 I+ 5 30 T + 8030 30yt 4
q=1 n=0 g=1

m—1
J Z Jgéo,ﬁo(wwrl + wn7wn+1 + @)

p P o g o n
<1 e + 5 I+ 5 (6 ) e
m—1 +1
n n+1 TL o 0 n
;:0(81,15 + ") Lo(€) pZ( 0 ,52>L2(Q)
( n+1

m—1 m—1

P At
m—1 ) )
—pz 6" 6 ,8§)L2m)—pAtZO<s?,ss>L2m)—pAtZO< ED) o)

—1 Ny

N,
P e (BT ) - 5 Y e (€5, )

n=0 g=1
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(4.2.34)

As seen in the bound for , we can observe the right hand side of is
bounded. More precisely, use of Cauchy-Schwarz inequalities, Young’s inequalities, in-
tegration by parts (also summation by parts), continuity of SIPG, -,
and Crank-Nicolson approximations allows us to obtain the following result. If
«y is sufficiently large, we have

< min (k+1,s)—1 2
oax (1", + max fIx"y < C(h + ALY,

where C is a positive constant independent of h and At. Once elliptic regularity estimates
hold, we have

< min (k+1,s) 2
(1" oy + mas, X"y < OO +AR).

By Lemmas [4.4] and we can derive a numerical error estimates theorem.

Theorem 4.9. Suppose u € H*(0,T;[C?(Q)]4) N WL (0,T;[H*(E)]?) and the discrete
solutions in [Dy(En)|? satisfy either (S1) or (S2) for s > 3/2,s € N. If we assume the
conditions of Lemmas [1.4] and are satisfied, then we have

Jmax fu(tn) = Uy < CRmm 0714 Ag)

and

min (k+1,s)—1 2
o 1AX, [(tn) = Wil L) < C(h YT+ A

for some positive C'. With elliptic reqularity, it is also observed that

max[i(t) = Wil < O 619 1 Af2)

for some positive C. In addition, we can also see Lo error estimates of a displacement
vector

_ n min (k+1,s)—1 2
max [ulta) ~ Ul < OO +AR).

1If elliptic reqularity is given, it shows

Jmax [u(tn) = Ul o) < OO 4 AR),
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Proof. Our claim have resulted in Lemmas [4.4] and with triangular inequalities as
shown in other error estimates theorems. Lo norm error estimation of a displacement
vector, however, requires Poincaré’s inequality for piecewise H' vector field. For ex-

ample, ((1.4.10) can be extended by
1/2

1
Yo & [H'(E], [[v]lpye) < C | IVllFoe,) + > Tefo 10N,

eCcl',UI'p

and therefore
vo € [HY(E], vl 1, < Clvly
by (4.2.5) with the definition of the DG energy norm. Hence we have

lu(tn) = Ukl ) < 10 @) + 11X 1y < 10,0 + C X"y -

Consequently, Lemmas [.4] and lead us to obtain optimal and suboptimal Ly error
estimates. O

For the existence and uniqueness of fully discrete solutions regardless of internal
variables, sufficiently large penalty parameters are required. Also it is essential for
proper convergence orders. In particular, coercivity, continuity, and the bound of the
skew symmetric part have resulted in a large a and Sp(d—1) > 1. Furthermore, optimal
Lo error estimates need the super-penalisation Sy(d — 1) > 3 due to NIPG.

4.2.2 Numerical Experiments

As in CGFEM, we recall the sufficiently smooth strong solution w the on unit square.
In addition, we set all coefficients as in Section 4.1.2. Note that our spatial domain
guarantees elliptic regularity estimates and hence it is able to observe optimal Ly error
estimates if super-penalised.

First of all, we would like to solve elastic problem with DG. We want to check the
exactness and elliptic error estimates. We want to solve a simple elastic problem as
follow:

—V-e(u) = f.
Example 4.1.

Let u = (x,x) on the unit square. Using both SIPG and NIPG, we can approximate
the discrete solution Uy,. Then the numerical error e, = u — U}, can be computed with
in Ly norm. In Table [£.5] it is described that our numerical scheme shows the exactness
but it requires sufficiently large penalty parameter «g. For the both methods, ||ey,]] La(©)
is small enough to see the exactness when ag = 10.

(67)) ﬁo SIPG NIPG
0.001 1 | 1.848 x 10711  4.004 x 1011
10 1 | 1.779 x 10715 3.0919 x 1015

Table 4.5: Numerical error of elastic problems: uw = (z,x), h =1
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Example 4.2.

Consider a quadratic polynomial as our strong solution. Let u = (xy,0). We solve
the elastic problem by SIPG and NIPG with either linear or quadratic polynomial basis.
Obviously, a numerical solution would be exact to the strong solution when k > 2. As
shown in Table whence we take k£ = 2, the numerical error in Ly norm becomes
quite small even if there are only two triangles on the mesh.

k=1 k=2
a0 Bo SIPG NIPG SIPG NIPG
10 1 [6525x10°2 7.023x 1072 | 4.538 x 10~  3.586 x 10~ 1°
100 1 |9.232x1072 9.277x 1072 | 1.064 x 1071° 4.231 x 10~'°

Table 4.6: Numerical error of elastic problems: uw = (zy,0), h =1

Remark In [67, 16], an adaptive DGFEM for linear elasticity problem is presented.
In particular, as a matter of choice for the penalty parameter, oy can be selected by
ap = O(10) [I6]. More details in terms of how large ag must be, are shown in [67].

Example 4.3.

Now, we consider a hyperbolic problem without internal variables, i.e. solve
—V-e(u)=Ff.

We set an exact solution by u = (t?zy,0). According to our error estimates theorems our
numerical solution has first order accuracy with linear polynomial basis and the exactness
with higher degree of polynomials with respect to spatial domain meshes, since we use
the second order scheme in time. For k = 1, Table indicates that the approximate
solution converges with almost second order in Ly norm, respectively for spatial meshes
and it has the exactness in time. On the other hands, with quadratic polynomial basis,
Table shows the numerical solution has exactness in time and space.

SIPG

NG 1 1/2 1/4 1/8
1 7.6669e-02 7.2265e-02  7.0970e-02  7.0639e-02
1/2 2.6789e-02 2.4357e-02 2.4052e-02 2.4073e-02
1/4 7.7162e-03 6.7678e-03 6.6023e-03  6.5882e-03
1/8 2.1078e-03 1.8321e-03 1.7802e-03 1.7720e-03

NIPG

2 1 1/2 1/4 18
1 7.6070e-02 7.2027e-02  7.0825e-02 7.0518e-02
1/2 2.6252e-02 2.4116e-02 2.3895e-02 2.3937e-02
1/4 7.4285e-03 6.6318e-03 6.5088e-03  6.5053e-03
1/8 2.0055e-03 1.7812e-03 1.7439e-03 1.7394e-03

Table 4.7: Numerical error of dynamic elastic problems:
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SIPG

At | 1/2 1/4 1/8
1 1.9955e-15 1.5804e-15 1.7381e-15 7.1551e-15
1/2 | 32284e-15 1.0502-15  4.5765e-15 9.8627e-15
1/4 5.6848e-15 3.4841e-15 4.3158e-15 4.3146e-15
1/8 1.7948e-14 1.6016e-14 1.6074e-14 1.4737e-14

NIPG

At | 1/2 1/4 1/8
1 1.8634e-15 1.4061le-15 1.8040e-15 7.9326e-15
1/2 1.2710e-15 2.2216e-15 1.3763e-15 1.3226e-14
1/4 | 65714e-15  5.0503-15  T.8005¢-15  9.3680e-15
1/8 3.4030e-14  2.5324e-14 1.9076e-14 1.8736e-14

Table 4.8: Numerical error of dynamic elastic problems: ag =10, fg =1, k =2

Remark Recall the matter of condition number in the previous scalar DG problem. [64]
presents the performance of various DG methods including standard/super-penalised
NIPG. The condition number of the stiffness matrix follows O(h~(fo+1)). However, it
is necessary for optimal Lo error estimates to introduce the super-penalisation. While
we want to get Lo optimality, we have severe difficulty in solving the linear system
by iterative methods. More precisely, our linear solvers in FEniCS (biconjugate gradi-
ent method and GMRES) encounter critical issues for fine meshes, despite theoretical
stability bounds. In practice, increasing condition numbers by smaller h force the per-
formance of iterative methods to be deteriorated. Therefore, it is essential to improve
linear solvers. For instance, we can develop and use some Krylov methods e.g. multigrid
algorithms [65], [68] and preconditioners such as Schwarz algorithms [69] in FEniCS.

Turning back to viscoelastic problems, we set the model problem as in CGFEM. Let
us define
u(z,y,t) = (xyel_t, cos(t) sin(xy))

on the unit square with two internal variables where
Yo = 05, Y1 = 0.1, Y2 = 04, T — 05, T2 — 1.5.

Moreover, we assume an identity fourth order tensor as our D. As seen in Example 4.3,
the penalty parameter may follow g = O(10) and so we will choose ag = 50 and Sy
with varying penalisation (standard one 5y = 1 and super one 5y = 3).

We solve it in two ways; the displacement form (S1) and velocity form (S2), re-
spectively. The resulting linear system is dealt with by biconjugate gradient method as
a linear solver and incomplete LU as a preconditioner provided in FEniCS.

Due to the sufficiently smooth exact solution, Theorem gives

ler ||, = O(h* + At?), &y

= O(h* + A%, [le})|| ) = O(h* + AP?)

Iy a0
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when [y = 1. If it is super-penalised, we can achieve optimal Lo error estimates, which
gives higher order k + 1. Here is the list of numerical results:

e Standard penalisation (8y = 1): Tables 14.10} {4.13] [4.14]

e Super-penalisation (fy = 3): Tables |4.11} 4.12] |4.15] |4.16|

Linear polynomial basis (k = 1): Tables [4.10 4.11} [4.12]

Quadratic polynomial basis (k = 2): Tables |4.13] |4.14] 4.15] 4.16|

Displacement form (S1): Tables |4.11} 4.13] [4.15]

e Velocity form (S2): Tables [4.10} [4.12] |4.14] |4.16|

Remark Although DG energy error estimates have been shown, the DG energy norm
is defined but depends on penalty parameters. Large penalty parameters force to obtain
bad numerical errors. However, if we consider the broken Sobolev norm ||-[|| ;1(g, ), the
broken Sobolev norm of error is independent of «g and SBy. Note that we have known
vl g1,y < Cllvlly for any v € [H'(E)]¢. Thus, we may want to use the broken H'
norm for the sake of energy error estimates, instead of DG energy norm.

In Tables and numerical errors are seen with respect to broken H' norm
and Lo norm. In spite of the standard penalisation, Lo optimality is observed for odd k
(here k = 1) as in the scalar analogue. The numerical convergence orders are given by
!HethHl(gh) = O(h+ At?) and HéhNHLQ(Q) + HehNHLQ(Q) = O(h? + At?) for both forms of
internal variables, respectively. In a similar way, Tables [£.13] [4.14], [.15] and [4.16] exhibit
higher order of accuracy with respect to spatial meshes.
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llen llm e,

At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 1.0868e-01  9.1713e-02 8.0739e-02  7.7117e-02 7.5810e-02  7.5383e-02
1/4 6.6597e-02 5.4713e-02 5.1119e-02  4.9823e-02 4.9430e-02  4.9260e-02
1/8 4.3360e-02  2.3067e-02 1.9834e-02 1.9466e-02 1.9070e-02 1.8900e-02
1/16 3.4807e-02 1.1931e-02 7.6583e-03 6.9356e-03 6.7179¢-03 6.5676e-03
1/32 3.2742e¢-02  9.0545e-03  3.5144e-03  2.5530e-03  2.4159e-03  2.3699e-03
1/64 3.2331e-02  8.3849e-03  2.3490e-03 1.0793e-03 8.7818e-04 8.4373e-04

1881 2, 0
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 1.0868e-01  9.1713e-02 8.0739e-02 7.7117e-02 7.5810e-02  7.5383e-02
1/4 6.6597e-02 5.4713e-02 5.1119e-02 4.9823e-02 4.9430e-02  4.9260e-02
1/8 4.3360e-02  2.3067e-02 1.9834e-02 1.9466e-02 1.9070e-02  1.8900e-02
1/16 3.4807e-02 1.1931e-02 7.6583e-03 6.9356e-03 6.7179e-03 6.5676e-03
1/32 3.2742e-02  9.0545e-03  3.5144e-03  2.5530e-03  2.4159e-03  2.3699e-03
1/64 3.2331e-02  8.3849e-03  2.3490e-03 1.0793e-03 8.7818e-04 8.4373e-04

len | La(Q)
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 6.5933e-02  6.3264e-02 6.2418e-02 6.2184e-02 6.2123e-02 6.2107e-02
1/4 3.1698e-02 2.6774e-02 2.5048e-02 2.4598e-02  2.4484e-02 2.4456e-02
1/8 1.4192e-02  9.3287e-03  7.9063e-03  7.5300e-03  7.4401e-03  7.4180e-03
1/16 9.3382e-03  3.9591e-03 2.4566e-03 2.1083e-03  2.0255e-03  2.0062e-03
1/32 8.3825e-03  2.7346e-03 1.0234e-03 6.2661e-04 5.4132e-04 5.2186e-04
1/64 8.1828e-03 2.4836e-03 7.0961e-04 2.5686e-04 1.5626e-04 1.3601e-04

Table 4.9: Numerical errors of (S1): k=1, a9 =50, 5y =1
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llen llm e,

SO 1/4 1/8 1/16 1/32 1/64
1/2 2.5888e-01 2.6378e-01 2.6514e-01 2.6528e-01 2.6529e-01  2.6529e-01
1/4 1.1966e-01  1.1654e-01 1.1596e-01 1.1605e-01 1.1608e-01  1.1609e-01
1/8 5.7056e-02  5.3453e-02 5.3247e-02 5.3104e-02 5.3002e-02  5.2962e-02
1/16 3.0760e-02 2.5697e-02 2.5168e-02 2.5107e-02 2.5121e-02 2.5121e-02
1/32 2.1402e-02 1.3106e-02 1.2186e-02 1.2134e-02 1.2120e-02 1.2117e-02
1/64 1.8624e-02 7.6873e-03 6.0814e-03 5.9586e-03 5.9482e-03 5.9451e-03

188 1l 20
At

A 1/2 1/4 1/8 1/16 1/32 1/64
1/2 8.6421e-02 6.7983e-02 6.1000e-02 5.8659e-02 5.8115e-02 5.8028e-02
1/4 4.9095e-02  3.5258e-02 3.1542e-02 3.0497e-02 3.0133e-02  3.0006e-02
1/8 3.2486e-02  1.4991e-02 1.1592e-02 1.0991e-02 1.0722e-02 1.0604e-02
1/16 2.7437e-02 8.6092e-03 4.5458e-03 3.7999e-03 3.6148e-03 3.5266e-03
1/32 2.6216e-02  7.0585e-03 2.3508e-03 1.4147e-03 1.2696e-03 1.2320e-03
1/64 2.5945e-02  6.7006e-03 1.7977e-03 6.6628e-04 4.6503e-04  4.3286e-04

len | La(Q)
At

h 1/2 1/4 1/8 1/16 1/32 1/64
1/2 4.1788e-02  4.2084e-02 4.1996e-02 4.1922e-02 4.1898e-02 4.1892e-02
1/4 1.8372e-02 1.6265e-02 1.5572e-02 1.5404e-02 1.5361e-02 1.5351e-02
1/8 8.3800e-03 5.4831e-03 4.6907e-03  4.4926e-03  4.4443e-03 4.4321e-03
1/16 5.8529e-03 2.3815e-03 1.4468e-03 1.2419e-03 1.1955e-03 1.1847e-03
1/32 5.3824e-03 1.7074e-03 6.1798e-04 3.6936e-04 3.1831e-04 3.0705e-04
1/64 5.2859e-03 1.5730e-03 4.4313e-04 1.5611e-04 9.3088e-05 8.0447e-05

Table 4.10: Numerical errors of (S2): k=1, a9 =50, 5y =1
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llen llm e,

Aty 1/4 1/8 1/16 1/32 1/64
/2 | 3.11490-01 3.04860-01 3.04330.01 3.04126.01 3.0104-01 3.04026-01
1/4 1.5639e-01 1.3894e-01 1.3420e-01 1.3360e-01 1.3350e-01 1.3348e-01
1/8 | 7.3551e-02 6.33916:02 6.2308¢-02 6.17760-02 6.1388¢-02  6.1259¢-02
1/16 4.0271e-02  3.0343e-02 2.8698e-02 2.8458e-02 2.8439e-02 2.8457e-02
1/32 3.0349e-02 1.5681e-02 1.3621e-02 1.3481e-02 1.3425e-02 1.3406e-02
1/64 | 2.77966-02 9.9357c-03  6.83250-03 6.54000-03 6.50916-03 6.49740-03

[ [P

;

1/2 1/4 1/8 1/16 1/32 1/64
1/2 1.0868e-01 9.1713e-02 8.0739e-02 7.7117e-02 7.5810e-02 7.5383e-02
1/4 6.6597e-02 5.4713e-02 5.1119e-02 4.9823e-02 4.9430e-02 4.9260e-02
1/8 | 433600-02 2.3067¢-:02 1.98346-02 1.9466e-02 1.9070e-02 1.8900¢-02
1/16 | 3.4807¢-02 1.1931e-02 7.6583¢-03  6.93560-03 6.7179¢-03 6.5676e-03
1/32 | 3.27426-02  9.05450-03 3.51440-03  2.55300-03 2.4159¢-03  2.3699e-03
1/64 3.2331e-02 8.3849e-03  2.3490e-03 1.0793e-03 &.7818e-04 8.4373e-04

HehN||L2(Q)
Al

1/2 1/4 1/8 1/16 1/32 1/64
1/2 6.5933e-02 6.3264e-02 6.2418e-02 6.2184e-02 6.2123e-02 6.2107e-02
1/4 3.1698e-02 2.6774e-02 2.5048e-02 2.4598e-02 2.4484e-02  2.4456e-02
1/8 1.4192e-02 9.3287e-03  7.9063e-03  7.5300e-03 7.4401e-03 7.4180e-03
1/16 9.3382¢-03  3.9591e-03 2.4566e-03 2.1083e-03  2.0255e-03  2.0062e-03
1/32 | 8.38250-03 2.7346e-03 1.02340-03  6.26610-04 5.41326-04  5.2186e-04
1/64 | 8.1828¢-03 2.4836e-03 7.0961c-04 2.56866-04 1.56260-04 1.3601e-04

Table 4.11: Numerical errors of (S1): k=1, ap =50, fp =3
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llen llm e,

At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 2.5887e-01 2.6376e-01 2.6516e-01 2.6530e-01 2.6531e-01 2.6532e-01
1/4 1.1968e-01  1.1654e-01 1.1594e-01 1.1603e-01 1.1606e-01  1.1607e-01
1/8 5.7106e-02 5.3510e-02  5.3303e-02 5.3162e-02  5.3058e-02  5.3017e-02
1/16 3.0794e-02 2.5732e-02 2.5204e-02 2.5145e-02  2.5159e-02  2.5159e-02
1/32 2.1416e-02 1.3125e-02 1.2207e-02 1.2155e-02 1.2141e-02 1.2138e-02
1/64 1.8629¢-02  7.6962e-03 6.0923e-03  5.9696e-03 5.9594e-03  5.9562e-03

1881 2, 0
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 8.6214e-02 6.8003e-02 6.1261e-02 5.8967e-02 5.8148e-02  5.8026e-02
1/4 4.9060e-02 3.5369e-02 3.1727e-02 3.0748e-02 3.0462e-02  3.0300e-02
1/8 3.2479¢-02  1.5001e-02 1.1633e-02 1.1050e-02 1.0792e-02 1.0692e-02
1/16 2.7436e-02  8.6099e-03 4.5516e-03 3.8116e-03 3.6295e-03  3.5439e-03
1/32 2.6215e-02 7.0585e-03 2.3513e-03 1.4168e-03 1.2729e-03 1.2362e-03
1/64 2.5944e-02  6.7007e-03 1.7979e-03 6.6606e-04 4.6582e-04 4.3346e-04

len | La(Q)
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 4.1681e-02 4.1968e-02 4.1884e-02 4.1812e-02 4.1788e-02 4.1782¢-02
1/4 1.8325e-02  1.6204e-02 1.5509e-02  1.5340e-02 1.5297e-02  1.5287e-02
1/8 8.3699¢-03  5.4700e-03 4.6758e-03 4.4773e-03 4.4289e-03 4.4166e-03
1/16 5.8501e-03 2.3780e-03 1.4433e-03 1.2384e-03 1.1921e-03 1.1813e-03
1/32 5.3816e-03 1.7065e-03  6.1703e-04  3.6844e-04 3.1739e-04 3.0616e-04
1/64 5.2857e-03 1.5727e-03 4.4309e-04 1.5519e-04 9.3352e-05  7.8896e-05

Table 4.12: Numerical errors of (S2): k=1, ap =50, fp =3
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llen llm e,

At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 3.1943e-02  1.7812e-02 1.7455e-02  1.7428e-02 1.7164e-02 1.6942e-02
1/4 2.5935e-02 7.6937e-03 4.2905e-03 4.2251e-03 4.3743e-03  4.5193e-03
1/8 2.6585e-02 7.1461e-03 1.8255e-03 1.0447e-03 1.0211e-03 1.0254e-03
1/16 2.6859e-02 7.3545e-03  1.8200e-03 4.5171e-04 2.4497e-04 2.5126e-04
1/32 2.6934e-02 7.4221e-03 1.8716e-03 4.5524e-04 1.1366e-04 5.9667e-05
1/64 2.6953e-02 7.4400e-03 1.8882e-03 4.6886e-04 1.1378e-04 2.7975e-05

1881 2, 0
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 3.3635e-02 1.2567e-02 1.0570e-02 9.5225e-03 9.4485e-03  9.7771e-03
1/4 3.2163e-02  8.4701e-03 3.1325e-03 2.3636e-03 2.3057e-03 2.1951e-03
1/8 3.2181e-02  8.2049e-03  2.1029e-03 7.3171e-04 5.6389e-04  5.4555e-04
1/16 3.2206e-02  8.2117e-03 2.0608e-03  5.2569e-04 1.7826e-04 1.3336e-04
1/32 3.2214e-02  8.2184e-03 2.0646e-03  5.1604e-04 1.3064e-04  4.3885e-05
1/64 3.2216e-02  8.2203e-03  2.0664e-03 5.1716e-04 1.2908e-04  3.2662e-05

len | La(Q)
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 6.6017e-03  2.5598e-03 2.8489e-03 3.0997e-03 3.1661e-03 3.1822¢-03
1/4 7.4754e-03 1.8607e-03 5.7956e-04 7.4937e-04 8.3085e-04 8.5300e-04
1/8 7.9479e-03 2.2464e-03 4.8079e-04 1.4440e-04 1.9171e-04 2.1239e-04
1/16 8.0766e-03 2.3674e-03 5.8420e-04 1.2114e-04 3.6291e-05 4.8422¢-05
1/32 8.1096e-03  2.3989e-03 6.1470e-04 1.4739e-04 3.0337e-05 9.1024e-06
1/64 8.1179e-03  2.4069e-03 6.2257e-04 1.5504e-04  3.6929e-05 7.5861e-06
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llen llm e,

At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 2.2940e-02 1.3229¢-02  1.3050e-02  1.2830e-02 1.2719e-02  1.2609e-02
1/4 1.7586e-02  5.4845e-03  3.2666e-03 3.2082e-03 3.1778e-03  3.2170e-03
1/8 1.7543e-02  4.8059e-03 1.3438e-03 8.0480e-04 7.7457e-04  7.7799e-04
1/16 1.7621e-02  4.8465e-03 1.2223e-03 3.3462e-04 1.9624e-04 1.9163e-04
1/32 1.7647e-02  4.8700e-03  1.2344e-03 3.0604e-04 8.3816e-05 4.8398e-05
1/64 1.7653e-02  4.8768e-03 1.2404e-03 3.0938e-04 7.6517e-05 2.0840e-05

1881 2, 0
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 2.6318e-02 8.2155e-03 5.6917e-03 5.0936e-03 5.0372e-03  5.1985e-03
1/4 2.5832e-02 6.6781e-03 2.0591e-03 1.2787e-03 1.2123e-03 1.1599e-03
1/8 2.5845e-02  6.5935e-03  1.6702e-03 4.9586e-04 3.0660e-04  2.8850e-04
1/16 2.5857e-02 6.5976e-03 1.6568e-03 4.1799e-04 1.2233e-04 7.3264e-05
1/32 2.5860e-02 6.6003e-03 1.6583e-03 4.1484e-04 1.0429e-04  3.0356e-05
1/64 2.5861e-02 6.6010e-03 1.6589¢-03 4.1525e-04 1.0376e-04 2.6078e-05

len | La(Q)
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 4.2771e-03  1.4817e-03 1.6788e-03 1.8449e-03 1.8913e-03 1.9030e-03
1/4 4.8533e-03 1.1642e-03 3.0221e-04 4.3095e-04 4.8799e-04  5.0324e-04
1/8 5.1486e-03 1.4278e-03 2.9889e-04 7.3457e-05 1.1006e-04 1.2476e-04
1/16 5.2287e-03 1.5064e-03 3.7055e-04  7.5180e-05 1.8396e-05 2.7821e-05
1/32 5.2492e-03  1.5267e-03  3.9054e-04 9.3449e-05 1.8814e-05 4.6119e-06
1/64 5.2543e-03  1.5318e-03  3.9565e-04 9.8477e-05 2.3410e-05 4.7038e-06

Table 4.14:

Numerical errors of (S2): k=2, ap =50, 5y =1
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llen llm e,

At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 2.5887e-01 2.6376e-01 2.6516e-01 2.6530e-01 2.6531e-01 2.6532e-01
1/4 1.1968e-01  1.1654e-01 1.1594e-01 1.1603e-01 1.1606e-01  1.1607e-01
1/8 5.7106e-02 5.3510e-02  5.3303e-02 5.3162e-02  5.3058e-02  5.3017e-02
1/16 3.0794e-02 2.5732e-02 2.5204e-02 2.5145e-02  2.5159e-02  2.5159e-02
1/32 2.1416e-02 1.3125e-02 1.2207e-02 1.2155e-02 1.2141e-02 1.2138e-02
1/64 1.8629¢-02  7.6962e-03 6.0923e-03  5.9696e-03 5.9594e-03  5.9562e-03

1881 2, 0
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 8.6214e-02 6.8003e-02 6.1261e-02 5.8967e-02 5.8148e-02  5.8026e-02
1/4 4.9060e-02 3.5369e-02 3.1727e-02 3.0748e-02 3.0462e-02  3.0300e-02
1/8 3.2479¢-02  1.5001e-02 1.1633e-02 1.1050e-02 1.0792e-02 1.0692e-02
1/16 2.7436e-02  8.6099e-03 4.5516e-03 3.8116e-03 3.6295e-03  3.5439e-03
1/32 2.6215e-02 7.0585e-03 2.3513e-03 1.4168e-03 1.2729e-03 1.2362e-03
1/64 2.5944e-02  6.7007e-03 1.7979e-03 6.6606e-04 4.6582e-04 4.3346e-04

len | La(Q)
At

1/2 1/4 1/8 1/16 1/32 1/64
1/2 4.1681e-02 4.1968e-02 4.1884e-02 4.1812e-02 4.1788e-02 4.1782¢-02
1/4 1.8325e-02  1.6204e-02 1.5509e-02  1.5340e-02 1.5297e-02  1.5287e-02
1/8 8.3699¢-03  5.4700e-03 4.6758e-03 4.4773e-03 4.4289e-03 4.4166e-03
1/16 5.8501e-03 2.3780e-03 1.4433e-03 1.2384e-03 1.1921e-03 1.1813e-03
1/32 5.3816e-03 1.7065e-03  6.1703e-04  3.6844e-04 3.1739e-04 3.0616e-04
1/64 5.2857e-03 1.5727e-03 4.4309e-04 1.5519e-04 9.3352e-05  7.8896e-05

Table 4.15: Numerical errors of (S1): k=2, o =50, fp =3
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llen llm e,

At

A 1/2 1/4 1/8 1/16 1/32 1/64
1/2 2.3011e-02 1.3311e-02 1.3120e-02 1.2902e¢-02 1.2787e-02 1.2675e-02
1/4 1.7601e-02 5.5138e-03  3.3086e-03  3.2496e-03 3.2198e-03  3.2593e-03
1/8 1.7544e-02  4.8096e-03  1.3525e-03 8.1838e-04 7.8770e-04 7.9125e-04
1/16 1.7622e-02  4.8470e-03 1.2233e-03 3.3720e-04 2.0004e-04 1.9540e-04
1/32 1.7647e-02  4.8701e-03  1.2346e-03 3.0632e-04 8.4497e-05 4.9422e-05
1/64 1.7653e-02  4.8769e-03  1.2400e-03  3.0934e-04 7.5534e-05  2.0786e-05

1881 2, 0
At

A 1/2 1/4 1/8 1/16 1/32 1/64
1/2 2.6321e-02 8.2226e-03 5.7066e-03 5.1113e-03  5.0550e-03  5.2138e-03
1/4 2.5832e-02 6.6793e-03 2.0602e-03 1.2794e-03 1.2157e-03  1.1620e-03
1/8 2.5845e-02 6.5938e-03  1.6704e-03 4.9546e-04 3.0576e-04 2.8778e-04
1/16 2.5857e-02  6.5976e-03 1.6569e-03 4.1802e¢-04 1.2215e-04 7.2862e-05
1/32 2.5860e-02 6.6003e-03 1.6583e-03 4.1486e-04 1.0432e-04 3.0344e-05
1/64 2.5861e-02 6.6010e-03 1.6586e-03 4.1536e-04 1.0269e-04 2.6212e-05

len | La(Q)
At

h 1/2 1/4 1/8 1/16 1/32 1/64
1/2 4.2814e-03 1.4907e-03 1.6835e-03 1.8483e-03 1.8942e-03 1.9058e-03
1/4 4.8557e-03 1.1667e-03 2.9989e-04 4.2688e-04 4.8390e-04 4.9915e-04
1/8 5.1496e-03 1.4290e-03 2.9986e-04 7.2021e-05 1.0818e-04 1.2289e-04
1/16 5.2290e-03 1.5067e-03 3.7091e-04 7.5461e-05 1.7972e-05 2.7277e-05
1/32 5.2493e-03  1.5268e-03  3.9063e-04  9.3546e-05 1.8890e-05 4.5296e-06
1/64 5.2544e-03  1.5319e-03  3.9544e-04  9.8483e-05 2.2740e-05 4.6244e-06

As we mentioned before in Chapter 3.4, on account of super-penalisation to get op-
timal Lo errors, there may exist a difficulty in solving large linear systems. Poor condition
numbers degrade the performance of DGFEM for fine spatial meshes. In our computa-
tional works, as h decreasing, iterative solvers have serious difficulty in getting appropri-
ate solutions. Especially, super-penalisation yields much worse condition numbers of its
global matrix. Table and Figure [£.T]illustrate the comparison of condition numbers
between the standard and super-penalisation. As a result, ill-conditioned matrices by
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super-penalised degenerate numerical convergence for fine spatial meshes. More pre-
cisely, we can experimentally observe that the condition number of the global matrix is
of order O(h™2 + At) and of order O(h™* + At) for standard and super-penalisation,
respectively. Even though h = 1/32, the condition number of super-penalisation is quite
big about 10% so that the iterative methods may not work properly for small h. For
instance, if h = 1/512, the condition number becomes O(10'?). Accordingly, in order to
resolve this issue, we need to enhance linear solvers in FEniCS.

Condition number with fixed At

101 T
e 5 =1At=1
10°He—e =1 At=1/8 .
—a =1 At=1/32
9 - P
0°H . g =3,A1=1 PPt
N “- =3, At=1/8 Rt
g 1037 ({]_ _, ’)‘,,//
2 Go=3,At=1/32 T
2
c 107
S
E
g 10°
10°
104
103 . L . L L L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
log(1/h)
109 Condition number with fixed &
* F=1h=1
108 F o
oo G=1h=1/8
107} —a F=1h=1/32]]
== fh=3h=1
_ 10° = =3 h=1/8
lli
Qo
=3,
E 10° o
5
E= A R -
< Tee-a
S
10° F\‘\‘\k\,\_‘
102
10t
100 . L . L L L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
log(1/At)

Figure 4.1: Graph of condition numbers with respect to space/time meshes; Stand-

ard(solid line) and Super-penalised(dash line)
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Standard penalisation

2 12 1/4 1/8 116 1/32
1 2.54e+02 1.71e+02 9.32e+01 4.81e+01 2.54e+01 1.44e+01
1/2 1.01e+03 7.47e+02 5.10e+02 3.00e+02 1.65e+02 8.58e+01
1/4 3.77e+03 2.31e4+03 1.54e+03 1.13e+03 7.37e+02 4.16e+02
1/8 1.47e4+04 8.54e+03 4.43e4+03 2.97e+03 2.26e+03 1.57e+03
1/16 5.85e+04 3.37e+04 1.69e+04 8.45¢+03 5.79e+03 4.48e¢+03
1/32 2.34e+05 1.35e+05 6.74e+04 3.28¢4+04 1.64e+04 1.14e+04
Super-penalisation
L Al 1 1/2 1/4 1/8 1/16 1/32
1 1.29¢+02 8.66e+01 4.80e+01 2.57e+01 1.45¢+01 9.03e+00
1/2 2.02e+03 1.49¢+03 1.02e+03 5.97e+02 3.25e+02 1.67e+02
1/4 3.0le+04 1.84e+04 1.23e+04 9.02¢+03 5.87e+03 3.29e¢+03
1/8 4.71e4+05 2.73e+05 1.42e4+05 9.50e+04 7.24e4+04 5.00e+04
1/16 7.48e4+06 4.32e+06 2.17e4+06 1.08e+06 7.40e+05 5.73e+405
1/32 1.20e+08 6.89e+07 3.45e4+07 1.68e+07 8.41e4+06 5.83e+06
Table 4.17: Condition numbers of a global matrix with ag = 50
Summary

We have studied linear viscoelastic problems with CGFEM and DGFEM. We have for-
mulated variational problems with respect to two types of internal variables for each
finite element method. In the meantime, using similar arguments for proofs in Chapter
2 and 3, stability analysis as well as error analysis have been presented. Regardless of
finite element methods and forms of internal variables, well-posedness and optimal error
estimates have been shown without Gronwall constants as seen in scalar analogue. In
terms of numerical simulations, optimal convergence orders are observed. However, as we
concerned before, ill-conditioned linear system arises in super-penalised DG for spatially
fine meshes. The number of degrees of freedom for vector-valued problem is dimension
d times more than that of scalar cases. Hence the size of linear system is bigger than
scalar case, so improvement of linear solvers is necessary for DG approximations.
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Chapter 5

Fractional Order Viscoelastic Wave
Propagations

Many phenomena in reality are modelled as integro-differential equations. Viscoelastic
materials are also able to be described by the integro-diffential equations with fractional
order [I}, 2], [4 [70]. We consider the viscoelastic models with fractional order based on
numerical approaches such as FEM and FDMs (e.g. see [71], 33| 34} [72], [73, [74], 10]).

In reality, many experimental results have shown that viscoelastic materials exhibit
approximately linear response of relaxation over large time range on log-log scale [4].
It was a reasonable choice to propose the power law form by Nutting [75]. In [41], the
authors presented an elastomer 3M-467 obeys the power law form and Koller described
applications of fractional calculus to viscoelastic phenomena [70]. As a result, it is
possible to generate a rich variety of relaxation functions of much more complexity than
the power law form which provided the original stimulus for the approach [4].

Mittag-Leffler type kernels were employed in a natural manner to formulate the
fractional order viscoelastic model, on account of analytic solutions of fractional order
differential equations, e.g. see [71,33] and more references therein. A variety of numerical
approaches based on spatial Galerkin methods [71, [33 B4], have also been presented.
Numerical simulation of the quasi-static and damped responses of a viscoelastic ballast
material was investigated in [76].

In contrast, power law type kernels can be used for the sake of conciseness. McLean
and Thomée studied a parabolic type equation with a positive type memory term [§].
Recently, improved works of fractional order viscoelasticity were regarded in [77,[9]. More
general cases, also known as a time fractional Oldroyd-B fluid problem, were studied,
see e.g. [78] and references therein.

In this chapter, we formulate numerical schemes to solve the fractional order vis-
coelasticity problem of the power law type kernel in the same manner as generalised
Maxwell solid. Moreover, we introduce some numerical technique for the integral form
of constitutive relation. A priori error estimates are also presented. Finally, we carry out
numerical experiments of fractional order viscoelasticity based on CGFEM and DGFEM,
respectively.
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5.1 Preliminary

According to [28| 29] [79], we can define the following definitions to give a framework of
fractional calculus.

Definition Gamma function
Gamma function is defined by

I'(z) = / t*~le~tat, Re 2> 0, z e C.
0

Definition Beta function
Beta function B(z1, 22) is defined by

1
B(z1,292) = / 1711 — )2 e, for Re z; > 0 and Re 23 > 0.
0

B(z1, z2) is symmetric and it has the following property [80, pp. 253-294]

F(Zl)F(ZQ)

Blz1, 22) = (21 + 22)

Definition Riemann-Liouville fractional derivative and integral

Let f be a function defined on [a, b] and o € R*. « can be written uniquely by @ = ng+qa
for no, € NU {0}, ¢o € [0,1). A left Riemann-Liouville derivative of order « is defined

by
D010 = ot () [ Fe— it s

where n = n, + 1. In this manner, the right Riemann-Liouville derivative of order « is
defined by

a 1 n a—1
Dy f(t) = Tn—a) < > / [ dt', t <b.
If f € Li[a,b], we can define
JOf /f = tdt' | t > a,

and

I () /f ) tdt', t < b.

Remark Let o € (0,1). For a function f on [a,b], it holds

d
dt*

d

11—«
().

WDFf(t) = —ali"f(t),  Dif(t) =
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Also, Df* f(t) can be expressed by

DU =F oy / F(E) 6~ )"t

F(l —a) dt 0 f(t—u) du

(cletu=t—t)

:F(ll—oz) (f(a)(t—a)”‘—i—/ot a%f(t—u) adu)

(" by Leibniz integral rule)

— (f(a)(t ot

t—a

ft— u)uadu>

0

S

Definition Caputo fractional derivatives
A left Caputo fractional derivative of order a € R*\N on [a, b] is denoted by & D¢ f(t)
which is defined by

CDpf(t) = /f<" — ety = ), > a,

where f(™ is n-th derivative of f and n = no + 1. In a similar way, a right Caputo
fractional derivative is given by

£ = 10 [ O e =y, e
If « € NU {0}, Caputo derivatives are defined by
SDRF(t) = fO), and FDRF() = (1)),

Remark Let o € (0,1). We can observe the relation between Riemann-Liouville differ-
ential operator and Caputo differential operator as following. By Leibniz integral rule,
we have

DE(f(t) = f(a)) =¢DRf(t)  and Dy (f(t) — f(b)) = { Dy f(t)-

Remark Let us consider fractional order derivatives for a € RT\IN. We have the fol-
lowing properties.
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o If f € Looa,b], then

CDP IR f(t) = f(t) and { DI f(t) = f(2).

(5.1.1)

e If f is absolutely continuous on [a,b] and its m-th derivatives are also absolutely

continuous on [a,b] for m =1,...,n — 1, then
GI? ;,If Z JZ’ - a)k7
m=0
and .
T D (1) z el <>b_x>.
=0

e If a € (0,1), integration by parts in fractional order gives

b b
/ o(t) CDg (1) dt = / F(1) CDEg(t) dt + (DI g(t)]=

and

b b
/ ot) SO (1) di = / F(6) €Dgg(t) dt — f(t)all—g(t)[=

Remark Fractional integration of polynomials
Let « > 0 and k£ > —1. Then we have

e _akzi _ -l k 41
Af - = [0 - o

_(t= a)ite

1
—w)* Nk du
00

/

("let u = tt —% then dt’ = (t — a)du)
(t — a)i*e
= k+1).
By a property of Beta function, we have
I'(k+1) ;
JOt—a) = T (¢ g)ite
t( CL) F(Oé+k‘+1)( CL)

Definition Mittag-Leffler function
We can define a Mittag-Leffler function by for z € C

Z a, B > 0.
k:OF ka—i—ﬁ
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However, we consider only 8 = 1 hence we have

Sk

Ey(2) =) —"—, .
(2) l;)F(ka+1) a>0

Mittag-LefHler function is so important to solve fractional differential equations. It could
be the exact solution to a fractional differential equation[30), BI]. For instance, the
solution of the fractional differential equation (Df'y = ay is y = AE,(at®) for given
constant ¢ and 0 < a < 1 where A is an arbitrary constant. Moreover, fractional order
differential equations can be represented by convolutions involved by Mittag-LefHer type
kernel [81] [82] [10].

We now introduce numerical approaches for the fractional integration and derivative.
Consider a time discretisation for [0, 7] such that

O=tog<tr <---<ty=T, At =T/N, t; =iAt fori=0,1,..., N.

Theorem 5.1. Linear Interpolation to a Fractional Integral [74]
Let y € C?[0,t,] and a > 0 for N > n € N. Then the fractional integral of order o for
y can be written by

At &
Ify(t) = =——— Y Bniy(ti) + O(A# 5.1.7
OIE) = Frg 737 2 Bast(t) + O(AF) (5.1.7)
where
n*(a+1-n)+ (n—1)>+, i=0,
Bni={ (n—i—1)°2" 4 (n—i+1)*" —2(n -4t i=1,...,n—1,
1, 1 =n.

By Theorem we can approximate the fractional integration by

At
oIfy(t) ~ > Buay(ti)  fort € [ty 1,tn].
=0

I'a+2) 4

Lemma 5.1. Let (By,;), be given in Theorem 5.1 Then By ; is positive and bounded
for any i such that 0 < B, ; < 2.

Proof. For i = n, our claim is clearly true. Let us consider ¢ = 0. B,, o can be rewritten
as Bpo =n%(a+1) —n®" + (n — 1)®L. Define a function f by f(z) = 2*™!. Then we
can write
Bpo = f'(n) = f(n) + f(n—1).
Note that for x > 0
f(@), f'(z), f(z) > 0.

In addition, mean value theorem leads us to have
Bno =f'(n) = f(n) + f(n—1)
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) - L) =0 =D)
/() = f'(z0)

for some x,, € (n — 1,n). Since f’ is increasing when x > 0 and n > x,,,

0< f'(n) = f(zn) = By.o-

Similarly, for i = 1,...,n —1 B, ; can be rewritten as

Bni=f(m+1) =2f(m) + f(m 1),

where m =n — ¢ > 1. Thus the mean value theorem implies

Bni=f(m+1) = 2f(m)+ f(m—1)
_fm+1) = f(m)  f(m) = f(m—1)
1

1
:f,(:Eerl) - f/(fEm) > 0,

since f”(x) > 0 for z > 0 and @y, 41 > @y, where x,, € (m —1,m) and x,,41 € (Mm,m + 1).
Furthermore, let us consider their upper bounds. When ¢ = n, B, , = 1 clearly. If
n =1, Bip=a < 1. Suppose 2 < n. Use of Taylor theorem implies that

Bao = /() = f(n) + f(n = 1) = 3" (za),
where z,, € (n — 1,n). Since 1 <n —1 <z, and f’(z) = a(a + 1)z*1

1 1
Bn’gzia(a—i—l) <§ ala+1) <1

for 0 < a < 1. When we take into account ¢ = 1,...,n — 1, Taylor theorem leads us to
have

Bui= £/m) + 3" () = £1m) + 3 " (m) = 5 (" (me) + fm))

where m =n—i > 1, for some x,, € (m —1,m) and x,,11 € (m,m +1). If m =1, that
ist=n-—1,
B, =2 —2<2

Otherwise, since 1 < ,, < Ty41,

1
Bni = jala+ (%t +28 ) <ala+1) <2
Therefore, we can conclude that forany 0 <i<néeNand0<a<1

0< Bp;<2.

282



On the other hand, we can also use quadrature rules to approximate the fractional
calculus. In [83], we can observe that Crank-Nicolson method is applied to a fractional
derivative. Hence the numerical scheme is given as follows.

Theorem 5.2. Crank-Nicolson Method for a Fractional Derivative [83]
Suppose y € C%(0,T) and « € (0,1). Then we can derive forn =0,...,N —1

n+1
1
Cna-n __ ) ) 2«
SDeg = AFTE—a) Zzgwly(tl) + O(AE>), (5.1.8)
where
(n—1/2)172 — (n+1/2)t7, i=0,
) ==t —2(n—i+ /) + (n—i+3/2), i=1,...,n—1,
o (3/2)17 = (1/2)'7 — (1/2)1—, i=n,
(1/2)t, t=n+1.

Thus, we can have the following approximation

+1
€ pogn 0 DEY(tne1) +GDRY(ta) AL nzwy(t-)
0t 2 F(a+2)i:0 A

5.2 Fractional Order Viscoelastic Models by Power Law
Recall the equation of viscoelastic model problem. We have
pu—V-o=f,

where p is a density of mass, u is a displacement vector, o is stress and f is a volume
load. A constitutive equation between stress and strain is defined with respect to a
given model. In particular, the model by power law contains a fractional order derivative
[4, 1, 10]. In a intermediate sense between elasticity and viscosity, for example stress
is proportional to strain in elastic solid or to rate of strain in viscous liquid, we can
formulate the constitutive law in viscoelastic materials by

o(t) = De(t) + oDf (De(t)), (5.2.1)
where D and D are fourth order tensors, € is strain and « € (0,1), since the stress is
proportional to the strain in solid and the stress is proportional to the rate of the strain
in fluid (see e.g. [3, 1, 2]). To simplify , we assume D and D are piecewise constants,
which means the fourth order tensors are independent of a spatial variable. For example,
in a classical elastic models, these fourth order tensors denotes Hooke’s tensors. In this
manner, D and D are defined by

Dz’jkl = 2ﬂ5ik5jl + j‘éijfskl and Dijkl = 2ﬂ5ikdjl + :\5ij5kl for i,j, k,l = 1, ooy d,

283



where fi, \, fi, A are Lamé parameters [5], hence we have
(De(t))ij = 2ficij + Mr(e(t)di5,  (De(t))i; = 2fiei; + Mr(e(t))dij, Vi, j=1,...,d.

Whereas (5.2.1)) consists of a fractional derivative in Riemann-Liouville derivative, Mittag-
Leffler type kernels can be introduced as in [10} [71} B3] B4]. The constitutive equation
is given by

o(t) = De(t) — /O B(t —t")De(t')dt', (5.2.2)

where

a—1
B(t) = —%Ea (— (/7)) = % <i> E, (= (t/7)%) for some positive 7.

The hyperbolic equations with the constitutive law with respect to the Mittag-Leffler
type kernels have been dealt by finite element methods in [10, [71, B3], [34]. In a similar
way, we will take into account by introducing finite element methods. One can
give a weak form then a stability analysis and an error analysis would be shown. However,
can be also written with fractional integration by

De(0
I'l—a)
Comparing with , we could observe that consists of the strain of
the displacement vector in the integral form. , however, contains the strain of
the velocity vector involved in fractional integration. Note that when the stress consists
of the strain of displacement vector in memory term, we call it the displacement form.
Otherwise if the strain-rate tensor is in memory terms, then we call it the velocity form.
Thus, in a general sense of the constitutive relations and , we can call
the constitutive equations, (5.2.1)) and (5.2.3)), a displacement form and a velocity form
in a fractional order, respectively.

Interestingly, if we suppose D is a zero tensor, we can reduce the order of differenti-
ation. For example, let us denote w = u then the model problem is rewritten as

o(t) = De(t) + 7 + ol (DE()). (5.2.3)

pw(t) — v a(t) = f(t), (5.2.4)
a(t) = FD(f(_uf;))t“ + oI} *(De(w(t))), (5.2.5)

with sufficiently smooth ug. For simplicity, we assume that ug = 0. Thus, we consider
pw(t) — V- oI} *(De(w(t)) = £(t), (5.2.6)

and taking into account fractional differentiation and (5.1.1)), using identity property,
yields

p § D} iv(t) — V - (De(w(t))) = § DI (1) == F(0). (5.2.7)
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It is necessary to assume sufficiently smooth and bounded w and f for the existence of
(15.2.7)).

We now formulate a weak form of in two ways using CGFEM and DGFEM.
Hence we recall the CG/DG bilinear form and the test spaces with regular subdivisions
with respect to vector-valued function spaces as we concerned in Chapter 4.

5.3 Model Problem with Fractional Integral

Let us assume a spatial domain and a time domain as before. For convenience of notation,
let D < D. Hence we have the following model problem such that

pw(t) — V- oI}~ *(De(w(t)) = (1), on (0,T] x Q, (5.3.1)
ol{ " (De(w(t))) - n = gy (1), on [0,T] x I'y, (5.3.2)

w(t) =0, on [0,T] x T'p, (5.3.3)

w(0) = wo, on €, (5.3.4)

where o € (0,1), D is a symmetric positive definite piecewise constant fourth order
tensor and data terms, f, g, and wy, are sufficiently smooth as in Chapter 4.

5.3.1 CGFEM for Fractional Order Viscoelastic Problem

In a typical way, we can derive a variational form by multiplying by H' functions and
using integration by parts. First of all, let us recall V. = {v € [H*(Q)]? | v(z) =
0 on I'p}. When we suppose w(t),v € V, we have

/Q—V “oli " (De(w(t))) - v d€ :AOItl_a(DE(w(t))) 1e(v) d2 = (gn (1), V), 0y
by integration by parts.
Remark By Leibniz integral rule, we can observe that
oly ~*(De(w(t))) = De(ol, "“w(t)).

Hence we can obtain the following weak problem:
(T) Find w(t) € V for all t € [0,T] such that satisfies

(pw(t),v)p,(q) +a (oI} “w(t),v) = F(t;v), vt € (0,T], (5.3.5)
a(w(0),v) = a(wo,v), (5.3.6)

for any v € V' where a(+,-) and F are defined by
0(v.w) = [ De(v) : e(w)a
Q

and
F(t; v) = (f(t), U)Lg(Q) + (gN(t>7 v)LQ(FN) :
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Remark Recall the facts regarding the bilinear form and the linear form in the previous
Chapter. Since and hold, the bilinear form is coercive and continuous.
Also, the energy norm induced by the bilinear form is equivalent to H' norm. Further-
more, the linear form is continuous.

Note that the fractional integral is defined as Volterra integral equation with a weakly
singular kernel. Hence we should deal with it very carefully in stability and error analysis.
More precisely, we have to use the following remark.

Definition Positive definite kernel
Let 5(t) be a real valued kernel in L1 (0,7T) for T > 0. Then the kernel is positive definite
if

T t
/ ¢(t)/ Bt —to(t)dt'dt > 0, V¢ € C[0,T).
0 0

Remark According to [84], we have a positive definite kernel t=* for 0 < a < 1.
Consequently, we can derive for T' > 0

T t T t
| et [e=oreowara= [ [ a—eyowiomara o, vo e co,
(5.3.7)
and hence

T T t
/ ol{ T p(t)p(t)dt = r(ll—a)/o /O (t —t") " (t")p(t)dt'dt > 0. (5.3.8)

0

Theorem 5.3. Suppose that f and wg are smooth enough. In addition, to simplify, we
assume either g = 0 or zero measure of I'y. Then there exists a positive constant C
such that

pllwl? o rinaiay <C (2 lwolls + 1130710000 -

Proof. Let v = w(t) in (5.3.5) then it gives
pd

57 0Ol +a (oL} w(t), w(t)) = Flw(t)). (5.3.9)

Taking into account the second term of the left hand side of (5.3.9)), the definition of the
fractional integral gives

1

a (oI} *w(t),w(t)) = F(l—a)/o (t—t) "% (wt'),w(t)) dt, (5.3.10)

by Leibniz integral rule. By substitution of (5.3.10) into (5.3.9), integrating over time
yields

D

(w0 oy = 10O sey) + g [ [ (=) (w(e) w(o) dva
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- / Flw(t))dt, (5.3.11)
0

for 0 < 7 < T. In the double integral, we can expand the bilinear form and take spatial
integration outside so that we have

/T/t(t_t’)—aa (w(t'), w(t)) dt'dt
0o Jo
Tt
:/ /(tt')_a/Ds(’w(t')) : e(w(t))dQdt dt
o Jo Q
://T/(tt/)_aDe(w(t'))rs(w(t))dt’dtdg
aJo Jo
:/ /T/ (t_t/)_aljl/zg(w(t/)) 321/2§(w(t))dt’dtd(2
aJo Jo
>0

where D'/2D'? = D for i, j,k,l,=1,...,d, by (5.3.7). As a consequence (|5.3.11)) yields
P P ’
£ ()10 <5 IOl 0 + [ Pl (5312

As we concerned before, we can observe a bound of the last term in ([5.3.12f) such that
T T
| Pyt < [ 15000 000 o

T
<Jlwlly_ orma@) /0 1£ )

<lwll,orL.) VT 11 o000 (92)
T

2
2 1F 11700009

€a 2
§5 ||w HLOO(D,T;Lz(Q)) T

by Cauchy-Schwarz and Young’s inequality for any positive €¢,. Since 7 is arbitrary, we
can complete the proof by choice of €, = p/2 and therefore we have

p
0l oicatan <C (10O + IR 07100000 ) (53.13)

where C' is a positive constant depending on the final time 7' but not exponentially
increasing. Moreover, coercivity and ([5.3.6) imply that Hw(O)H%Z(Q) <C Hw0||%/ hence
the theorem is proved. ]

Remark Here, we need to assume zero traction g,y or pure Dirichlet boundary problem.
When we, at a first glance, consider the bound for its trace, it is essential to use trace

inequality, especially (4.1.23)). More precisely, we can obtain

/0 (g (1) (1)) 1y 1y dt < /0 195 (O ey 10 () e
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< /0 lgn Bl ) C ()] dt

by Cauchy-Schwarz inequality and (4.1.23]). However, as seen in (5.3.12)), we only have
L5 norm of w so that we cannot reduce the energy norm part. Nevertheless, in case of

a discrete problem, we can deal with the energy norm of w by inverse polynomial trace
theorem although we use Continuous Galerkin method.

Once we recall the finite dimensional test space V" which is a set of a continuous
piecewise polynomial of degree k from Chapter 4, Theorem shows the well-posedness
of a semidiscrete formulation as well. The key of the proof is using the positive def-
initeness of kernel . However, in a fully discrete problem, it is necessary to use
numerical integration for the fractional integral and hence the weak singularity of the
kernel may matter.

In comparison with the linear viscoelastic models with internal variables in Chapter
4, the power-type Volterra integral should be dealt by quadrature rules or some other
numerical integrations rather than use of auxiliary equations governed by internal vari-
ables, for example , , etc. However, in terms of fractional integral OItl_O‘,
our kernel is weakly singular at ¢ = 0. Therefore, we should be cautious when using
numerical integrations with the singular kernel. As in Theorem we can choose the
following numerical approach by linear interpolation such that

Atl_a n
Tia =ta D Bniw(ti At?) = At?
where
n'=¥2 —-a—n)+ (n— 1), i=0,
Bri={ (n—i—1)2" 4+ (n—i+1)2*=2(n—i)>" i=1,....,n—1,

1, 1 =n.

Consequently, we can formulate the fully discrete formulation with the above numerical
integration for fractional order integral. Let us denote our fully discrete solution by Wy
for n = 0,..., N when At =T/N > 0. Finally, Crank-Nicolson method yields a fully
discrete form of (T) as follows.

(T) Find W7}, € V" for n =0,..., N such that satisfying for any v € V",

wrtl _wn w w _
(ph h,v) +a (q"“( n) ¥ 4n(W) v> = F(v),  (5.3.14)
At 2
L2(Q2)

Yn=0,...,N—1, and
a(Wh,v) =a(wo,v). (5.3.15)

Next, we want to carry out its stability analysis. One can show the discrete stable
bound then we also obtain the existence and uniqueness of the solution. We use the
same arguments as before to show bounds for linear form but we have to deal with more
the numerical integration part.
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Theorem 5.4. Let W7} be a fully discrete solution to (T) forn =0,...,N. Suppose
data terms, (gn,wo, and f), are sufficiently smooth then there exists a positive constant
C such that

n At2 ¢ n
Jmax WL, ) + G ) 2 Z Wi+ Wil

<C<Honv+AtZ||f 2 + At~ ZHgN HMN))

SC( lwoll} + ||f”%oo(0,T;L2(Q)) +h! ”gNHioo(O,T;LQ(FN)) >

Proof. Let m € {1,...,N}. A choice of v = 2At(WZ+1—|—WZ) in (5.3.14)) with summing
from n =0 ton=m — 1 yields

m—1
2p (HWZLH%Q(Q) - HWgui/Q(Q)> + Al Z a (qn+1(Wh) + QH(Wh)’ WZ+1 + WZ)
n=0
m—1
=AY (f(tar) + F(ta). Wi+ WE) o)
n=0
m—1
+ ALY (gn(tasn) + gn(ta) Wit + W) (5.3.16)
n=0
Expanding gq,, allows us to rewrite as
Aprme L
2p W3 HLz(Q) (7 Z (Wit + W Hv
m—1
=20 [ Wil ey + A D (F(tasa) + F(t), W+ W) Lo
n=0
m—1
+ At Z (QN( n+1) + gn(tn), Wn+1 + Wn) Lo(Tx)
n=0
At2 o s i n+1 n
G X Z ZBnmwh + ZBM LW W) (5.3.17)

From now on, in a similar technique, we shall find the bounds of the right hand side of

(-3.17).
0112
* Wil
Since (5.3.15)) holds, we have

WA < W2l lewolly
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by Cauchy-Schwarz inequality and so

[Wh <|ws <C|wily, < Cllwolly

a0 0 Iy

for some positive C' by (4.1.12)).

m—1
o At 20 (f(thrl) + f(tn)’ WZ+1 + WZ)LQ(Q)
Use of Cauchy-Schwarz and Young’s inequalities gives

m—

Z n+1 + .f( ) Werl + WZ)LQ(Q)

smz (zea 176 By + 2 IWRIE, Q))
T+ At
A e L) + L2 s (W0
n=0 a

for any positive ¢,.

o At E (gN(tn+1) +gn(tn), Wn+1 +Wn)L2(FN)

Whlle using the same approach as the above, we can also derive

m—1

At Z (gn(tnt1) + gn(tn), Wit + WZ)L2(FN)

n=0

<At22€b lgn ()70 n) +Atz ||W [

n=0
<At Z 26, g (tn) Iy 0y + At Z :bCh_l W31,
n=0 n=0
al 2(T + At)
2 -1
<At ;2% lgn () lI7, @y + Ch T ol W1,

by inverse polynomial trace theorem, for any positive ;. Note that if we use a
general trace inequality such as , it is necessary to deal with the energy
norm estimates but we cannot handle the energy norm by Ls norm. Hence we
have to introduce inverse polynomial trace theorem rather than .

From the above bounds, (5.3.17) can be written by

Ao

2 IWEla0) + 55—y 2o Wi + Wil
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N

2(T 4+ At
<pC ool + 88D 260 £ ) 3y + 202 ma W0,
n=0 a
N
Ch=12(T + At)
2
+ At;)%b lgn (Ea) Ty + - Jmax W [

2—aq ™M1

At2 o« T i n+1 n
::R—F(TZ (ZBn+MWh+ZBn, LWL W)L (5.3.18)

Now, the last term of ([5.3.18]) remains to show its boundedness. Note that R in (5.3.18))
is independent of m. Hereafter, we would like to use mathematical induction to derive
the upper bound of the last term. Our claim to be shown by induction is

Ao '
20 [WillZ, 0 +Wz Wit Wi |2 < O(R + A8 |Wh%), (5.3.19)

for some positive C, Vm. For m = 1 in the last term of (5.3.18]), we have

—a (B oW, W} + WY) <

Bioﬁ WO 2 1 Wl WO 2

5 IWhlly + 5 W+ Willy
by Cauchy-Schwarz and Young’s inequality with any positive €. Hence, proper ¢, for
example € = 1, allows us to have

A2« B, At*

2 2
ZpHW}LHLQ(Q)—l—WHWh—kW o < R+ =22 2 T3 HW ;- (5:3.20)

In case of m = 2, (5.3.18)) gives

2 At?~ 2
20[[WillLy0 + 1“(37 (IW3+ WL + [ Wh -+ WhlL)
AtQ—a
<R — e (BoaW ), + BogW + B oWh, Wi + W})
AtQ—Oé

- a(Bi W2 W! + w9 .
F(3—a)a( 1LoWh, Wi, + W3)

Using Cauchy-Schwarz and Young’s inequalities, we can have
—a (BQJW}L + B270W2 + BL()WO, W%L + W}L)

< (max(By1, By + Bio))
- 2¢

§ 1 02 € 2 1112
W+ Willy + 5 Wi+ Wally
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and
B
—a (BLoW}, Wi+ Wi) < LWL + S ||Wh + Wil

for any p081tlve e. Hence coupling with ((5.3.20) which provides the bound for

HWh + W9 ‘ v» and choosing € = 1, for m = 2 becomes
At~ n o
2pHW%HZ<m+W2HW P Wil < OR A (WL,

for some positive C. As following induction method, let us assume that ([5.3.19) holds
for m = j < N so that

AN R

7 2
QPHW}LHLQ(Q) W3 —a) &

ZHW”“+WZHV <C(R+ A [WE).

Taking into account the case of m = j + 1, we have
7 n ' n—1 '
> a (Z Bns1iWi + ) BuiWi, Wit + WZ)
n=0 \i=0 i=0
=Y a (Z By (Wit + W) With 4 W;;)
n=0 i=1
J
+Y " a(BnoW$ + Buy1oWh + Bo1a Wi, Wi + W)
n=0
=3 Y Buia (Wi + Wi, Wit + W)
0

n=0 =1

(2
J

J
+ > a(Buyra(Wh + Wh), Wit + wp)

n=0 i=1
L (BGPE g2 1 e
+ 3 (S W+ o e W

J 2y
3 (G WL+ 5w wl )
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here 0 < G = max B,; < 2 by Lemma [5.1, for any positive Thus, we
w omax B N r any positive e, €, €. Wi

can obtain the boundedness of Z E HWZJrl + Wi HV since Z HWerl + W HV is

n=0 1=1
bounded for 0 < i < j by the induction assumption. Consequently, appropriate choice

of (e, ¢€,¢€) yields

At2 «

2 ]+1‘
P H Ly(Q) * 2I(3 —

SO Iwr Wil < (R ae wil )

Thus we can complete the induction and hence (5.3.19)) holds. Turning to main goal,
when we consider maximum in (5.3.19)), since HWC < |Jwo||y, as well as m is arbitrary,

Iy

(5.3.19)) can be written as
K)AtQ @ —~ +1

20 35, Wl o)+ 575 — 07 2 Z [witt+ Wil

<20 2+ A 3 2 2 2T + A wh

<20( ol + 203026 1 @)y + == s, IWE

n—
al ) h=12(T + At) -
+ ALY 26, [lgn (ta) Ty + A Wiz, )-

n=0 -

Therefore, choosing €, = 8C(T + At)/p and €, = 8SCh™ (T + At)/p gives

A
P omax (IWhlL,0) + 5rm— o

n+1
0<n<N 2I‘( Z Wi+ wh HV

<o(||worv +At§j TSI +At2h gn (). m)

SC( lwolly + 1F117 072000y + 77" HgNH%OO(O,T;Lg(I‘N))>

for some positive C. O

In spite of using CGFEM, the stability bound in Theorem contains h~! term.
Unless using inverse polynomial trace theorem, we cannot analyse trace of the discrete
solution in Ly(2) norm. However, as we concerned before, h~! term has no effect on
the well-posedness. Therefore, Theorem implies the existence and uniqueness of the
discrete solution.

For a fully discrete problem, we use the Crank-Nicolson finite difference method in
time discretisation. However, in order to attain optimal second order accuracy, it is
essential to assume sufficient smoothness of an exact solution, for instance

w(t + At) —u(t)  alt + Ab) + a(t)
At B 2

= O(At?),

293



when u € C3. Hence the optimal convergence order in time requires H> smoothness in
time. More precisely, the bound of |u(®(t)| is necessary. However, our primal model
problem contains weak singularity on the fractional order integration so that it is
necessary to check regularity of solutions before giving a supposition on the smoothness.

Remark (Regularity of solutions)
Let us recall the primal equation (5.3.1). We can rewrite

pw(t) =V - oI}~ *(De(w(t))) + f(t)
=6+ Dw(t) + f(t)

where ((t) = 1,(’51_7_2) is a weakly singular kernel, D = V - De is a linear differential
operator on the spatial domain and % denotes Laplace convolution such that

t
fisto= [ Ale-O)h)ar
0
By Young’s inequality for the convolution, we can observe that

||P111HL2(0,T) §||5||L1(0,T)||Dw||L2(0,T) + ||f||L2(o,T)-
Since § is L integrable, if w and f are Lo integrable in time, so is w. Differentiating
(5.3.1) in time gives
piv(t) =B(t)Dw(0) + B * Div(t) + f(t).

W is L; integrable with sufficiently smooth f but it is also Lo integrable only if Dw(0) =
w(0) = 0. In a similar way, we can consider a third time derivative of w. Then we have

pw® () =B(t)Dw(0) + B(t)Dw(0) + B8 % Diw(t) + f(t).

Note that 3(t) is non-integrable in L; and Ly so is the third derivative if Dw(0) # 0.
That is, we cannot make sure boundedness of the third derivative. As concerned, due
to the weakly singular kernel, it is unable to take full advantage of the second order
schemes in terms of time discretisation. However, in [§], the spatial Ly norm of the third
time derivative is bounded by the initial condition and f. In our sense, we have

"w(t +AY) —w(t)  w(t+ A+ w(t)

At 2

for any t € [0,T — At] where f € W(0,T; L2(Q)) N H%(0,T; L2(£2)). Furthermore,
the optimal convergent order, which is of At?, is only given when we can ignore the
singularity on ¢ = 0. For example, if w(0) = w(0) =0,

‘w(t +AY) —w(t)  w(t+ A+ w(t)

' = O(At*™), (5.3.21)

At 2

To sum up, as we suppose a sufficiently smooth f, the solution satisfies with our
initial and boundary conditions. However, the certain assumption such as zero initial
data or w € ker(D) leads the solution to fulfil where ker(D) is a kernel set of
the differential operator D.

’ = 0(A?). (5.3.22)
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Next, we state and prove a priori error estimates by recalling elliptic approximations

(4.1.31)) and (4.1.32)). Hence recall the elliptic projection operator R in (4.1.30) and
define

0(t) == w(t) — Rw(t) t € 0,7, X" =W} — Rw(t,) forn=0,...,N.
Besides, we assume the elliptic regularity for optimal Lo error estimates.
Lemma 5.2. Suppose

w e C%0,T; [H* ()Y NnWL(0,T;V)

and (WZ)Q[:O satisfies the fully discrete formula (T). Then we have

N-1 1/2
n —a n nl||2 r —«
s i (887X st} = o st

where r = min(s, k + 1). Moreover, if w(0) = w(0) = 0 or w € ker(D), then we have

N-1 1/2
n 2—o n+1 n||2 _ T 2
OglanNHx Iz + (At Z:O X"+ x Hv> = O(h" + At?).
n=

Proof. For m € {1,..., N}, subtracting (5.3.5)) for average between t = t,,1 and t = ¢,
from (5.3.14) where 0 < n < m — 1 gives

Wit —wi w4 an
— v
P At 2 ’

L2 ()

1— 1—
+ a (qn+1(Wh) + qTL(Wh) OItn+Oléw + OItn aw v> _ 0
2 2 )

for any v € V". By definitions of @ and X, as adding numerical integration of the
fractional integral of w, we can rewrite it by

1

Aﬁt (Xn+1 -x", ’U)LQ(Q) + ia (an(X) +q,(x), v)
1 1
:Ait (9714-1 _ en,v)Lg(Q) + §CL (qn+1(9) + qn(G), 'v) + 5@ (en-I—l + en’ ,v)
+,0(8”,U)L2(Q) ) (5.3.23)

where e" := q,,(w) — o} “w and E(t) := w(HA;)er(t) — w(HAAt?;w(t) for t € [0,T — At].

Galerkin orthogonality reduces ([5.3.23)) to

1

P - Xn, v>L2(Q) + 5“ (anrl(X) + qn(X)ﬂ ’U)

E (Xn+1
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n n 1 n n n
=\ (0 19 ,’U)LQ(Q) + 24 (e tlie ,v) +p (€ V) Ly @) ) (5.3.24)

Once we put v = 2At(x" ' +x") in (5.3.24)), summing from n = 0 to n = m — 1 implies

m—1

At2 “ n+1
20 |x™ ||L2(Q)+(—ZHX +x"|y

m—1

2l 20 2 (0 -0 ),
n
m—1 m—1

+AEY a(e et " x") + 2008 Y (X X))
n=0 n=0

AtQ—oc m—1 n ; n—1 . .
TTG-a) > a (Z BusriX' + ) Buix' X" X" | (5.3.25)
n=0 =0 =0

For the sake of estimations, we shall show the bounds of ([5.3.25) as following.

0112
* XL,
(5.3.14) and Galerkin orthogonality lead us to have

a (XO, ’U) =a (WO — Rwy, 'v)
=a (W), — wo + wo — Rwy, v)
=a (W} — wo,v) + a(wy — Rwy,v)
=0

for any v € V", Tt implies that
2 2 2
XMz < 11X = C X"l = 0,
by the coercivity .

m—1
° Z (0n+1 _ en7 Xn+1 4 Xn)L2(Q)
n=0
Since w belongs to H'! in time, we can write

m—1

Z (0n+1 _ en n+1 + Xn)LQ(Q)
n=0
/tn+1 . / n+1 n ) dt/
X Ly (2)

,_a

Hcv

n+1

Ix +X”HL2(Q) dt’

2(?)
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€a tm |, , 2
2 Jo

Lo (2)
9‘2 + 2UN max x>
L2(0T5L2(Q))  2€q  0<n<N L2()

112 oT )
9‘ 2 n
LaOTiLa() | €a Og%XNHX Iz
<<om)+ 2L max x|

2 €q 0<n<N Ly (2

w0+ 25 ot e

%, X X HLQ(Q)
n=0

€a

2

€a

2

<

by Cauchy-Schwarz inequalities, Young’s inequality and (4.1.32) for any positive
€q where r = min(k + 1, s).

At E ( n+1 _‘_en7Xn+1 +Xn)
We follow&, the simple fact:

a (en+1 +e”, v) = (—V : D§(6n+1 +e"), U)Lz(ﬂ)

by integration by parts. Hence using Cauchy-Schwarz inequalities and Young’s
inequality, we can obtain

—_

3

At

(]

(—V . Qs(e"+1 +e"), X"+ Xn)LQ(Q)

n
-1

<At) [V De(e 4 €| o) (X 510

L

0
:1—1 e ) ) m—1 ) 9
<At) |V De(e™ + e[ + ALY % I+ X1,
n=0 n=0
i, €p n+1 ny||2 2T
SAtZ §|‘V'D§(e +e )HL2(Q)+?boglla<XN Ix" HL2
n=0

for any positive ¢, since mAt < NAt = T. Recall the linear interpolation error
then we have e” = O(At?). Note that each component of O(At?) is an order of
At? and our domain is bounded and so Ly norm of O(At?) with respect to the
spatial domain is bounded by CAt? for some positive C. Therefore, we have

m—1
At Z (—V -Q§(6n+1 +en)’xn+1 +X”)L2(Q)

n=0

N— 1
2T
4 n| 2
SAtn > Lot )+€—b0r<na<xNHx 17,0
4 2T ny 2

=, TO(At*) + P X" 1750

297



m—1
n=0
Note that (5.3.21]) implies HS””LQ(Q) = O(At*>=®) foranyn = 0,..., N — 1. In this

manner, Cauchy-Schwarz inequalities and Young’s inequality yield

m—1
At Z (8”, Xn—i—l + Xn)LQ(Q)
n=0

m—1
+1
SALY E Iy X+ X" Ly
n=0
m—1 m—1
€ 2 1 +1 2
<At Z B €17, ) + At Z 2 X"+ XnHLQ(Q)
n=0 n=0 ‘
N-1 N-1
€ 2 2 2
<AL S IEM Ty + A Y = max X7,
n=0 n=0 -

Te. 4—2a 2T 2
§C7O(At )+ o oA, X" 170

for any positive e..

Combining the above results then (5.3.25) has a bound as

A2-e ]

20 X" 700 + TG-a) 2) I+t + x|l
-

_ 4pT
2r 4 4—2a n|2
<peaO(h?") 4+ e,O(AtY) + e.O(At )+—6a omax {11, o)

2T 2 4pT 2
2 a0+ 2 max X"

€ 0<n<N €. 0<n<N
Ap2—a mIl o/ n el |
TTB-a) > a (Z Buy1ix' + ) Buix, X"+ x”) : (5.3.26)
n=0 =0 =0

As seen in the proof of Theorem [5.4] using mathematical induction shows the bound of
the last term of (5.3.26[). As proved before, coupled with HXOHV = 0, we can obtain

9 mi2 At27a s n+1 nl|l2
plxX™ 7, + ABa) T;O X"+ x"|5
40T 2T 4pT
<0 (pa01) + a0t + corar) + (32 + 20+ ) a1l
a b c

0<n<N
(5.3.27)
for some positive C'. Whence we consider maximum on (|5.3.27]), we have

AtQ—a

N-1
2
2p max X" 7, + ME—a) HZ:% I+l

0<n<N
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4pT 2T  4pT
<20 (pea0(h2’“) + 0(AtY) + e O(AL* %) + <P Lty P)

a n2
T E ) o I )

0<n<N

therefore choosing €,, e, = 32CT and ¢, = 8CT'/p implies

2 At2ia i 41 2
P max, X" 1750 + MB—a) ;:0 Ix™ ™+ x|,
<O(h*) + O(AtY) + O(At*2).

As a consequence, we can conclude that

N-1 1/2
n —« n n||2 T -«
ogzagXNHX HLQ(Q) + <At2 go HX 14y Hv) = O(h" + At?79).

Besides, with higher regularity of the solution in time such that is fulfilled,
then we could take second order accuracy in time. To be specific, when we suppose
w(0) = w(0) = 0 or w € ker(D), implies [|€"|1, ) = O(At?). Therefore,
O(At?>~®) can be replaced by O(At?) so that we have

N-1 1/2
n 2—« n+1 n|l2 _ r 2
Og%xNyyx o) + (At ;0 [x™ '+ x Hv> = O(h" + At?).

O]

Next, we state that our discrete solution has optimal energy error as well as Ly error
with respect to the space but its numerical error regarding time is suboptimal. We
prove it by Lemma and we can also observe second order error in time with further
suppositions.

Theorem 5.5. Assume that
w e C20,T; [H*(Q)]) N WL(0,T: V)

and (WZ)gzo is a sequence of the fully discrete solution of (T). Then we can observe

optimal Lo error as well as energy error estimates with fixed order accuracy in time.
Therefore,

omax w" = Wil = O(h" + A,
max "~ Wiy = O+ AP,

where r = min(s, k + 1).
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Proof. For any n =0,..., N, using triangular inequality, we have
[w" = Wl = 10" = Xl
<116"[I £, () + IX" | Ly -
By and Lemma it is concluded that
0" = Wl ) =O07) + O + A=) = O(K + AP®),
and so on account of arbitrary n,

n n _ r 2—a
OQ%XNHW — Wil =0 + At"™).

In this manner, we can obtain

[w™ = Willy <110"ly + [Ix"llv

so that (4.1.31)) and ((1.4.11]) lead us to have

" = Willy <10"y +Ch X"y = O + AE).

Thus, we have

1 2
max[lw" = Willy = O(h! + At2),

O]

Corollary 5.1. Under the same conditions in Theorem suppose (5.3.22)) holds.
Then we can obtain optimal results of Crank-Nicolson scheme i.e.,

pmax [[w” = Wiy, q) = O + AF),
max [w" — Wi, = O + AR,

where 7 = min(s, k + 1).

Proof. As shown in Theorem 5.5 triangular inequalities combined with (4.1.31)), (4.1.32)
and Lemma [5.2] with higher regularity complete the proof. O

Note that w(0) = w(0) = 0 or w € ker(D) is a sufficient condition for (5.3.22).

We can solve the fractional order viscoelastic problem in a weak way, viz. using
CGFEM and Crank-Nicolson method. The weak solution exhibits optimal spatial error
estimates but generally lose a full advantage of the second order scheme. At least H3
smoothness in time is the necessary condition for second order accuracy in time so that
we may need to assume either w(0) = w(0) = 0 or w € ker(D) for higher regularity.
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5.3.2 DGFEM for Fractional Order Viscoelastic Problem

Turning back to (5.3.1)-(5.3.4]), we now consider DG approximation, especially using
SIPG, to the fractional order viscoelastic problem. In the first place, let us recall a

broken Sobolev space [H*(£,)]¢. Then we can derive a weak formulation in DG as we
done before in Chapter 4.2. The weak form is given as Vv € [H*(&,)]%,

(pw(t),v) 1) + a1 (oI} ~w(t), v) + J3P (w(t),v) = F(t;v), Yt € (0,T], (5.3.28)
a_1 (w(0),v) = a_1 (wo,v), (5.3.29)
where s > 3/2 and

F(t;v) = (F(1),0) ) + . (n(1):0) 0 -

ECFN

If a strong solution and its fractional integration, which belong to [H*(&)]¢, are con-

tinuous on  for any t € [0,7], the strong solution satisfies ((5.3.28)) and (5.3.29)) in a

similar way with non-fractional order problems.
Let us consider finite dimensional spaces then we can formulate the semidiscrete form
as following.

Remark Recall Theorems and For a sufficiently large ap and fp(d — 1) > 1,
the DG bilinear form of SIPG is coercive and continuous on [Dg(E)]%.

(U) Find wy,(t) € [Dy(Ex)]¢ for all ¢ € [0, 7] such that satisfying Yo € [Dy(&5)]%,

(pwn (t),v) 0 + a1 (01} wi(t), v) + J§ O (wy (), v) = F(t;v), (5.3.30)

a—1 (wp(0),v) = a_1 (wo,v). (5.3.31)

Theorem 5.6 (Stability Analysis: semidiscrete formula). Suppose wy, is a solution of
(5.3.30)-(5.3.31) and

gy € La(0,T; [La(Tw)]7),
.f € LZ(O’Ta [LZ(Q)]d)v
wo € [H' ()] N [H* ()]

If we assume Bo(d — 1) > 1 and sufficiently large g, there exits a positive constant C
such that

T
plwnll oaaon + [ 50 onl) wn(0)d

2 2 - 2
<C (/) lwolly, + 1 £ 072000y + 5 ”gNHLQ(O,T;LQ(FN))> :
Proof. Let v = wy,(t) for t € (0,7]. Put it into (5.3.30) then we have
pd —a ao,
oG lwn ()7, + a1 (o} wn(t), wi (1)) +J5°% (wa(t), wa(t)) = F(wh(t)).
(5.3.32)
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Taking into account the second term of the left hand side of (5.3.32)), the definition of
the fractional integral gives

a—1 (oI ~*wp(t), wp(t)) = ! ] /Ot(t — 1)1 (wi(t), wp(t)) dt’,  (5.3.33)

'l -«

by Leibniz integral rule. By substitution of ((5.3.33)) into ([5.3.32)), integrating over time
yields

N

2 . 2 1 /T /t _ h\—a ’ /
(lwn (M) |70 ||wh(0)HL2(Q))+F(1_a) s (t —t")"a—y (wp(t"), wn(t)) dt'dt
+ / TP () (), wp (£))dt = / F(wn(t))dt, (5.3.34)
0 0
for 0 < 7 <T. Consider
1 T t
F(la)/ /(t—t’)_aa_l (wi(t), wi(t)) dt'dt.
- 0 0
By (5.3.8)), we can derive
1 T t
T(l—a)/o /O (t —t")"%a—1 (wi(t), ws(t)) dt'dt > 0,
so that (5.3.34) can be written as
p T a0, P T
S lwn (o + [T wnle) won(0)at <5 fuwn O)1F 0y + [ Flaon(e)
<pCllwnl}y+ [ Fluwno)ie, (5:33)
0

where C' is a positive constant governed by piecewise Poincaré inequalities, and continuity
and coercivity of SIPG, since, with ((1.4.10)),

wlwn(0)[f% < a1 (wn(0), wi(0)) = a—y (wo, wn(0)) < K awolly, [[wn(0)]ly -

Then we shall show that the last term in ([5.3.35|) is bounded. Use of Cauchy-Schwarz
inequalities and Young’s inequality implies

| @00y < [ 1Ol l0n0) 00
, 1/2 T 1/2
<([1508w) ([ 100l )
<G 1 o maon + 5 | 1000
g 1/ 1L2(0T5Le 2, Jo 2
<G I s maon * 5 |, 1081020
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€ 2 T 2
<M F I aora@) + 5 1wWallT . 0.1:2000) »
2 2¢,4

for any positive €,. On the other hand, for e C Iy, Cauchy-Schwarz inequality gives

(@GN (@), wn(t)) ey S NGND) o) lwn)l Ly ey »

hence Young’s inequality and the inverse polynomial trace theorem yield

/ Z gn(t), wi(t )Lg(e)d

eCl'y

/ S lgn @)l o) 0n 0110
eCl'y
6b

/ S w2, +f§j||wh M2
GCFN CCFN
6b _

<[22 lan0l + 5000 S Twnt)lm
eCFN EEgh

Ol

. Ch
_ /0 lgn (I3 ) dt

€p 2 Ch
<5 lanOlzo0rrama) + 5, / w7 0.0y

€p 2 Ch_lT
25||9N(75)”L2(0,T;L2(FN))+ %, ”whHLoo(O,T;Lg(Q))

where C' is a positive constant governed by Theorem for any positive €,. Thus, we

can obtain the bound

/0 TF(fwh(t))dt: /0 ' (F(1),wn(0) ) + D (Gn(8),wa(t))p, () dt

eCl'y
€ 2 €b 2
Sga HfHLQ(O,T;Lg(Q)) + 9 HgNHLQ(O,T;LQ(FN))
< T Ch™'T
_|_

2
e + 2% ) HwhHLoo(O,T;M(Q))'

(5.3.36)

By substitution (5.3.36]) into (5.3.35), we have

p [—
S (D)o + [T (o) a0

2
<pCllwolly + S 11 7a0rzacay + 5 lonll:
2 2(0,TL2(92)) NIIL2(0,T;L2(TN))
T Ch'T 9
+ <2€a + %, > lwnllz . 0.7:150)) »
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since 7 is arbitrary, taking into accounts supremum on the left hand side implies

T
P o,
ol oy + [ To (0. w0 (0)

2 2 2
<2pC [[wolly, + €a | F 2, 0,:00)) T € N1INITo 0,752,000

T Ch-lT 2
+ - + o H’whHLoo(o,T;M(Q)) :

a

Consequently, the proper choice of €, and €,, for example ¢, = 8T /p, ¢, = 8CTh™!/p,
gives

T
p b
4HwhH%m(0,T;L2(Q))+/O J5 O (i, (t), wi(1))dt

2 2 - 2
<C (P lwolly, + 1 £z, 071200 T P ! HgNHLg(O,T;LQ(FN))>

for some positive C' that is independent of h and the solution. C'is increasing in final
time T" but not exponentially due to avoiding use of Grénwall’s inequality. 0

In Theorem the semidiscrete solution is bounded by data terms, which means
the existence and uniqueness of the solution is shown. Here, h~! is also observed in the
bound because of the weakly imposing boundary condition, however it does not matter
in a practical sense.

As seen in before, introducing SIPG DG elliptic operator R_; leads us to use the

approximation properties (4.2.22))-(4.2.24) so that we are able to derive error estimates.
Let us define for ¢t € [0, T

0(t) :==w(t) — Rjw(t), x(t) := wp(t) — R_qw(t).
Note that DG Galerkin orthogonality gives for any ¢
a_1(0(t),v) =0, Yv € [Dr(EL)]Y,

and so it yields

eCl'p,Ul'p
- > / {De(v) - ne} - [} *0(t)de + T30 (oI} ~0(t), v)
eCTUl'p V€
1 ¢ N—a Ny . v
i [ (EZS [ Detort) s etw) i
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- ¥ [(De) e} (vlae

eCl'yUl'p

- ¥ /{Ds('v)-ne}-[0(t’)]de+J8‘°’6°(0(t’),v)>dt'

eCI',UI'p ¥ €

1 ! N —a / !/
) /0 (t—t) "% (0(t'),v)dt
=0.

Lemma 5.3. Let w € H'(0,T;[C?(Q)]4) N WL (0,T;[H*(&EL)]?) with conver Q. When
we suppose oy is sufficiently large and fo(d — 1) > 1, we have the following convergence
order such that

T 1/2
quLm(o,T;LQ(mﬁ(/o JSO’ﬁo(x(t),x(t))dt) —o(n)

where r = min(s, k + 1).

Proof. Consider subtraction of (5.3.30) from (5.3.28]). It gives for ¢t € (0,7], Vv €
[Dk(En))?

(P60~ X(0),0) | +as (oI (8 — x)(0),0) + TP (B(1) — x(1),w) = 0.

L2(Q)

DG Galerkin orthogonality implies

(P (), ) L) + a1 (01}~ *x (1), v) + Jg* ™ (x(1), v)
= (pb(0),0), o+ IO, V),

and, since [@(t)] = 0 on I'y, UT'p for any ¢ by the continuity of w and the homogeneous
Dirichlet boundary condition,

(PX (1), 0) () + a1 (oI} “x(t),v) + TooP (x(t), v) = (Pé(t)W) L@ (5.3.37)
Put v = x(t) into (5.3.37)) then integrating with respect to time leads us to have
o / / (1 — 1) a_y (x() x(1))
JEO% (x (1), x (¢ £ /T 0(t), x(t dt
+ [ et xa = § IO + [ (0Ox0)
for 0 <7 <T. By (5.3.8), we can obtain

LX) + [ IO x(O)e <5 Ix O 0+ [ (B0, .
(5.3.38)
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It is easy to show that [|x(0)]|., ) = 0 by using (5.3.31)) and a broken Sobolev analogue
of Poincaré’s inequality. For any v € [Dy(&)]%,

0= a_y (wo — wi(0),v) = a_1 (B(0) — x(0),v) = —a_1 (x(0), v)

by DG Galerkin orthogonality and hence /<cHx(O)H%, < 0 where v = x(0). Thus,

[x(0)[l, = 0 with (1.4.10) implies that |[x(0)] .,q) = 0
On the other hand, use of Cauchy-Schwarz inequality and Young’s inequality makes

| (orxw), e [Tobo], o Ix@e
1/2 T 1/2
< ([l o) ([ ot )"

< Hp ‘ LaOT5La() \/THXHLOO(O,T;Lz(Q))

<€ 0‘
=9 Hp

for any positive €. Therefore, the left hand side of ([5.3.38) is bounded by

0

2
L3(0,T;L2()  2€ ”X||L°°(07T%L2(Q))

S IX )+ [ I8 et X0

€ . 112 T 2
<-— — 0.
<5 1811, 0 ppen * 26 X orizace (5.3.39)

and since 7 is arbitrary

T
P ap,
21 oirszaten + / JE0B0 (x (1), x(8))dt

T
= Hpe‘ T HXH%M(O,T;LQ(Q)) . (5.3.40)

Lo (0,T3La(S2))

Choosing € = T'p/4 and applying (4.2.24]) impose that

T
p o0, )
PUxI? _orzaan + [ TP (c(t), x(t))dt < Ch?,
1 oriza@) +

where 7 = min(s, k + 1) and C' is a non-exponentially increasing positive constant inde-
pendent of h. Consequently, we have

T 1/2
1l e + ( / Jé"o’ﬁ“(x(t),x(t))dt> — o).
OJ

Now, we can derive semldlscrete error estimates by using Lemma [5.3| and the ap-

proximation propermes m
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Theorem 5.7 (Error Analysis: semidiscrete formula). Suppose w satisfies Lemma .
With large enough ag and (d—1) > 1, optimal Ly error estimates are given. In addition,
we can also observe optimal DG energy norm of the error. Therefore,

lw —whlly_ 071500y = OB, and |w — w0y = OB ™),
where r = min(s, k + 1). In addition, it holds |[w — whl;_o.rv) = O(h™1).
Proof. Clearly, triangular inequality gives

Jw — whHLOO(O,T;LQ(Q)) =|lw - R_jw — (wp, — R—lw)”Loo(O,T;LQ(Q))

=160 — xllz0.7:1.0))

<101l 0,000 T IXI Lo 07520 (02)) -

By (4.2.23)), (4.2.24)) and Lemma it is concluded that

lw —wall_0,1:0,0)) <C",

where C' is a positive constant independent of h.

Whereas Lg error estimates with respect to the spatial domain are seen directly by
triangular inequalities and Lemma [5.3] DG energy estimates are not clear to show in the
same way. In order to show that, it is necessary to introduce the vector-valued analogue

of inverse inequality ((1.4.11) and (4.2.5). By the definition of DG energy norm, for any
v € [Dy(&n)]%,

v} = 3 [ De(w): e0)ab + 13 (0,0

Ecéy
<C Z ]v!%l(E) + JS‘O’BO (v,v) by (4.2.5) for some positive C,
Ecé&y

<Ch 2 ||}, + J6 " (v,0) by (LAII).
Since x(t) € [Dr(&)]? for any ¢ € [0, T,

IXOIF < Ch? X 7,0) + Jo°"™ (x(0): x(2),
()

hence we have

2
lw — w7, 07
2
=6 - XHLQ(O,T;V)
2 2
<2617, 0,7y + 211Xl 7, 0.70)

T
<2017, 0wy + 2 (Oh‘? X7 0,7 2a(52)) + /0 J5o% (x(b), x(t))dt>

Sc(hZ(rfl) +h2(7’71) _’_h27')7
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for some positive C' by (4.2.22)) and Lemma With Sobolev embedding theorem. As a

consequence we can obtain
r—1
lw — whHL2(0,T;V) <Ch".

Furthermore, [|w(t) —wy(t)|, is, indeed, uniformly bounded in time so that we can
conclude that [[w — wal|,_ o1y < Chr—1. O

Next, we shall consider time discretisation. To derive a fully discrete formulation, we
use Crank-Nicolson method as well as numerical approach of fractional order integration
by linear interpolation. Our fully discrete problem is given as
(U) Find W7 € [D(&)]? for n =0,..., N such that satisfying for any v € [Dy(E)]4,

wort _wr W W
<p ; h’v> +a_l<qn+1< W)+ an h>7,0>
Lo2(Q)

At 2
Wn+1 wn B
+ JSO,ﬁO ( h 2+ 7h , 'U) — Fn(’U), (5341)
forn=0,...,N -1, and
a—q (W%, ’U) = a_-1 (wo, ’U) . (5.3.42)

In the fully discrete solution, the fractional order integration is replaced by Theorem
and so we now have to introduce a discrete case of (5.3.8]) in order to analyse a discrete
stability bound and error bounds.

Theorem 5.8 (Stability Analysis: fully discrete formula). Let W7 be a fully discrete
solution to (U) forn =0,...,N. Suppose data terms are sufficiently smooth and penalty
parameters in SIPG are large enough. Then there exists a positive constant C' such that

ni2 At2_a N-1 il nll2
25 WRlEo) + 5 =gy 2 Wi+ Wil

N-1
LAt Z Jgoaﬁo(WZ—i—l + Wn’ WZ+1 + WZ)

n=0

N N
SC( lwolly + At > 1F )70 + Aty h! HQN(tn)”%Q(FN))

n=0 n=0
<C 2 2 ol 2
<C| [lwolly, + 1 £ 0.m0000)) + 9N 7o 0,702000)) )

Proof. Let 1 < m < N in N. When we choose v = 2At(WZ+1 + W7) in (5.3.41)),
summing from n =0 to n = m — 1 yields

m—1

20 (IW 31 7000) = WA Ly0)) + DD 0t (@uer (W) + @, (W), Wit 4 W)

n=0
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m—1

ALY TR W W W W)
n=0
m—1

=At Z (f(tngr) + Fltn), Wit + WZ)LQ(Q)
n=0
m—1

+ At ZO (gn(tns) +gn(ta) Wi+ WE) 0 (5.3.43)

The second terms of (5.3.43)) can be written as

Atg a m—1 n+1 )
Za 1<ZBn+1ZWh+ZBm ;,W;+1+W;;>.

As we concerned before, we shall consider a bound for bilinear form terms. Since
B, , =1, we have

n+1

Za | (ZBn+MWh+ZBm 2,Wz+1+wz>
(Z Bny1iWh + Z B Wi, Wit 4 WZ)
=0

(Wit + Wi Wit + W)

SSh

n=0
m—1 m—1 n ) n—1 .
> E HVV"Jrl + W3 Hv Z a—1 (Z Bpi1,W3, + Z B, Wi, Wit 4 WZ)
n=0 n=0 =0 =0
by coercivity. Thus, becomes

kA2 ]

2p ‘|W?‘|%2(Q) + F(3 Z HWnJrl + Wi HV

m—1
ALY R W W W+ W)
n=0
m—1

<2p[[WhI 7,0 + A D (Ftasn) + F(t), Wi+ W) o
n=0
m—1

A Z() (gN(tn-H) + gN(tn)7 WZ—H + WZ)LZ(FN)

AtQ a m 1 '
Za1<ZBn+1th+ZBm z,Wz“+W;:>- (5.3.44)
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As seen in the previous manner, let us consider the bounds for the right hand side of
(15.3.44]).

2
o Wil
A choice of v = Wh in leads us to have
KW Hv<a 1(W W3) = a1 (wo, W}) < K [[woll, [W3,,
and hence implies
W17, < Cllwoll}

for some positive C.

o At Z (f(tnsr) + £ (), Wi WH) o)
Use of Cauchy-Schwarz inequalities and Young’s inequalities gives

m—1

ALY (Fltarn) + £, Wi+ W) o

n=0

<) (2l + 2 Wil

2(T + At
<At226a\\f Wy + 2520 e (W2, 0

€a 0<n<N

for any positive ¢,.

m—1

. Al z_:o (gn (tnsr) + g (tn), Wit + WZ)LQ(FN)

m—1
In the same way with At Y. (F(tnt1) + Ftn), Wit + w3, we can also
n=0

2(9)’
derive
m—1
At Z (gn (tns1) + gn(tn), Wi + WZ)LQ(FN)
n=0
SAtZQEngN( HL2 FN)"‘AtZ Z W5 HL2
n=0 = ECFN
<A1 26, g (1) B + AtZ O Y Wil
n=0 € Eeé,
Ch=12(T + At)
2
gAtnz_:ozeb lgn () 17,0 x + ” Jmax W 1750

by the inverse polynomial trace theorem, for any positive €.
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As following the above bounds, (5.3.44)) is bounded by

kAP
20 IW i+ 15—y 2 IWH + Wi 12
m—1
+AtzJgo’ﬁo(wz+l+wn,wz+l+WZ)
n=0
ol 2T + At)

2 2 2
<pC |lwolly, + Atz_;)2€a 1 () |70 ) B Wil
A al ) Ch='2(T + At) -

+ t22€b||gN(tn)HL2(FN)+ . Og%XNHWhHLQ(Q)

n=0

At2 o m—1 ' 1
T(3-a) 4 a-1 ZBn+1th+ZBm LW W (5.3.45)

Now, the last term of (5.3.45) remains to show its boundedness. Note that the right
hand side terms of ([5.3.45)) are independent of m except the last one hence let us denote

them by R then we can rewrite ([5.3.45)) as
kAP

20 | Wil +F(372 Wit +wi Hv

m—1
+AL Z Jgo’ﬁO(WZJrl + WY, WZ+1 +W)
n=0

AtQ = P n+1 n
SR— F(B a_1 (Z Bn+1 1Wh+Zan h’Wh+ +Wh . (5346)

For m =1 in the last term of (|5.3.46|), we have

0 1 0 K ZB%OE 2 1 1 0n2

—a1 (BLoWh, Wi, + Wy) < — == [|[Wil), + 5 [ W), + Wi,

by the continuity of SIPG and Young’s inequality with any positive . Hence, proper e,
for example € = 1/k, allows us to have

20| Wl[2 0 +£(A;_HWh+W Iy, + Atgge o (Wi + Wi, Wi + W)
K?B, A2~ 2
<R+ %loF(g HW 15, - (5.3.47)
In case of m = 2, gives
KA 2 2
20 WAl o) + g (IWE+ WIS+ W+ WR)
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1
HALY GO (Wt Wi W+ W)

n=0

_ A~ 1 0 0 w2 1
<R TG3= a)a—1 (B2,iW, + Bo oW + B1 oW, , Wi, + W)

AtQ—a
- = 4.+(B 0 1 0 )
r'(3— a)a 1 ( 1LoWh, Wi, + Wh)

Using the continuity and Young’s inequalities, we can have
—a_1 (BQ 1Wilz =+ BQ (]W(})L + Bl owg, W2 + W;ll)

K2(maX(Bg 1, BQ ,0 + Bl 0
2e

2 112
%
HWh+W I+ 5 W3+ Wil

and

KQB% 0

S (BWh W W) < S W+ (W W

for any positive €. Hence coupling with (5.3.47)) and choosing ¢ = &, (5.3.46)) for m = 2
becomes

kAL

2
20 (Wil + W

Z Wi+ Wil

1
+ ALY TR W+ W W+ W)
n=0
<C(R+ A [WY[3),

for some positive C. As following induction method, let us assume that it holds for
m = j < N € N such that

KA iz

(12
2pHWgZHL2(Q) 2I°(3 — ZHWHIJFW HV

7j—1
+ Atz JS(O,,BO(WZJA T+ WP, WZ+1 + W)
n=0
2—
<C(R+ At [|[W) HV
Taking into account the case of m = j + 1, we have

Za 1 (ZBn+1ZWh+ZBm g,wg“+wz)

n=0
J n—1 . '
= a, <Z Bui(With + W), With + W;;)
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J
+ a1 (BugWh + BurroW) + Bup1a Wi, Wit + W)
J n—1 ‘ ‘
=D Buia (Wi + Wi, Wit - W)
0i=1
J
+ Z a—1 ((Bn,() + BnJ’,l’O — Bn+1,1)W2, WZ+1 + WZ)

j
+Za 1 (Bni11 (W} + W), W"+1+W”)

n—1

d K G € i+1 n+1
<> Wit + Wi+ HW + Wil
n=0 =1
J
2(3G)2%e
3 (B il o - w)
n=0
K2G?¢
o3 (B s wil - Wy )
n=0
where 0 < G = 0<£2?1§N B, ; < 2 by Lemma [5.1] for any positive ¢, €,€é. Thus, we can

obtain the boundedness of Z Z HVV”rl + Wi Hv since E HWZ+1 + Wi Hv is bounded

for 0 <4 < j by the mductlon assumptlon Consequently, approprlate choice of (¢, ¢€,¢€)
yields

KAL?

L I
P n L()+2F(3

Z (Wit Wil

j
+ALY R Wt W Wt W)
n=0
—a 2
SC(R+ AP~ W[, (5.3.48)

When we consider maximum in ([5.3.48)), since HW HV < Ejwyll,, as well as j is arbit-
rary, (5.3.48) can be written as

AN R i

n 2 — n+1 n|l2
20 max IWhlL@ + 575 g ZO Wit + Wi
n=

by
N-1
LAt Z J(())‘()aﬁo (WZ+1 + an WZ—H + WZ)

n=0

N
2(T + At
<30 (wolf + A 3 26 £ (0o + 255 s W 0

n=0
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N
+ Aty 26 lgn ()7 ry) +

n=0

h=12(T + At) 2
o ol Wiz, )-

Therefore, choosing ¢, = 12C(T + At)/p and ¢, = 12Ch~ (T + At)/p gives

kA2 N2

1
n n 2
(B —a) 2 Wi+ Wil

=0

2
P max. Wil +

N-1
LAt Z J(()XO”BO(WZ—H + Wn’ WZ+1 + WZ)

n=0

N N
sc( ol + AES ()20 + A A |rgN<tn>|ri2<pN>)

n=0 n=0
<C 2 2 . 2
<C| llwolly, + 1 £ 0. 0000)) + 9NN oo 0,1 00(00))

for some positive C. 0

Remark In the discrete stability bound, h~! is seen but it does not matter in a prac-
tical sense, which means only weakly imposed boundary conditions. Here, introdu-
cing maximum, rather than using discrete Gronwall’s inequality, leads us to have non-
exponentially increasing C' in time. Furthermore, the bound constant C' is independent
of h and the solution. As a result, the fully discrete stability bound implies the existence
and uniqueness of the fully discrete solution.

In a similar way in the semidiscrete case, we can analyse error estimates. However,
since the fractional integration replaced by numerical integration, we should concern
carefully the difference error between the exact and discrete solution. When we recall
SIPG elliptic projection, let us define for n =0,..., N

0(t) :=w(t) — R_jw(t) for t € [0, T, X" =W —R_jw(ty).
Lemma 5.4. Assume that aq is large enough and Bo(d — 1) > 1. Suppose
w € C*(0, T; [C*(Q))7) N W (0, T; [H(,)]7) N WE O, T [H?(€)])
and (WZ)gZO satisfies the fully discrete formula (U) for s >3/2, N € N. Then we have

N—1 1/2
w1 + (Ma 3 [+ xnui)

0<n<N
=n= n=0

N-1 1/2
+ (At Z TP (x4 X X+ Xn)> = O(h" + At*™),

n=0

where r = min(s, k + 1).
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Moreover, if w(0) = w(0) = 0 or w € ker(D), then we have

N-1 1/2

_ 2

qulﬁgXN ||Xn”L2(Q) + (At2 « z;] Hxn+l + XHHV>
n=

N-1 1/2
+ (At DI X X+ x")) = O(h" + At?),

n=0
where r = min(s, k + 1).

Proof. Let m € {1,...,N}. Consider the subtraction of (5.3.28]) for average between
t =tn41 and t = t,, from ([5.3.41]) where 0 < n < m — 1. Then we have

<W2+1 . W;ll wn+1 + " >
P - , U
La(2)

At 2

<qn+1<wh>+qn<wh> ol Sw + ol “w )
+a_q 5 - 5 , U

+ J0:Po <WZ+1 + Wi _ w4 w" v) =0
0 2 2 Y

for any v € [Dy(&)]%. With use of @ and x, when applying linear interpolation approach
to the fractional integral of w, we can rewrite it by

p
A X

_r
At

1
+ 578 OO 1+ 0", v) + p (E",0) 0 » (5.3.49)

1 1
ntl _ Xnv v)LQ(Q) + ia*1 (anrl(X) + qn(X)av) + 5J50750(Xn+1 + Xn¢v)

1 1
(0n+1 - Hn’ v)L2(Q) + 50’*1 (anrl (0) + qn(a)’ ’U) + iafl (en—l-l + enj ’U)

where e" := q,,(w) — oI} “w and E(t) := w(HA;)er(t) — w(HAAtz*w(t) for t € [0,T — At].
Note that e" is of C? with respect to the spatial domain since w(t) € C?(2). Moreover,
it is easily to see that e™(x) = 0 on 9f2. Hence we can write

a1 (" +e",v) = (-=V - De(e" +e"),v) (5.3.50)

Lo2(Q)

by the integration by parts and continuity over the space. Due to DG Galerkin orthogon-
ality, continuity of the strong solution, the homogeneous Dirichlet boundary condition

and (5.3.50]), we can obtain

n n 1 1 @ n n
& (X = X" 0) ) 501 (804100 + €u(x).0) + 557 (" + X" w)
_ P n+1 n 1 n+1 n n
—E (0 —9 7U)L2(Q)+§(_VQ§(6 +e )7’0)L2(Q)+P(£ ’U)LQ(Q)'

(5.3.51)
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By substitution of v = 2At(x"*! + x") into (5.3.51)), adding together from n = 0 to
n=m — 1 gives

m—1

201X 17, () + A Y a1 (@1 (X) + @ (), X"+ X")
n=0
m—1
+AL Z Jgovﬁo (Xn-‘rl + Xn, Xn-‘,—l + Xn)
n=0
m—1
_2pHXOHL +2pz Gn-i—l anjxn-i-l_‘_x )L2( o
n=0
m—1 m—1
+1 +1 +1
+ At Z (=V-De(e™ +e"),x"" + X”)L2(Q) + 2pAt Z (&7 X" + Xn)LQ(Q) .
n=0 n=0
(5.3.52)
Use of coercivity and the definition of q implies
HAt2 a m—1 m—1
20 X" sty + g —qy 2 X+ 80 3 A0 x4
n=0
m—1
<2pHXOHL +2pz 9n+1 0" x" + x )LQ( o
n=0
m—1 m—1
+ALY (=V-De(e" +e"), X"+ X") ) F 2080 ) (EN X X)L
n=0 n=0
AtQ—a m—1 n . n—1 ‘ )
“TE ) 2 O | 2 B + ) Baax X X (5.3.53)
n=0 =0 =0

Now, we shall consider the bounds for the right hand side of (5.3.53|) as following.

° HXOH;(Q)
By , XOH;(Q) <C HXOHi for some positive C. Also, and the DG

Galerkin orthogonality lead us to have

a_q (XO, ’U) =a_—1 (W% — Rfl’wo, 'v)
=a_q (W% —wy + wy — R_qwy, U)
=a_1 (W} —wo,v) + a_1 (wyg — R_1wo, v)
=0

for any v € [Dy(E,)]%. It implies that
2 2
XN ey < ClIX°Iy = Camt (x",X°) = 0.
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m—1
o > (0mT -0 XM+ Xn)LQ(Q)
n=0
Since w belongs to H' in time, we can write

m—1

S

bt ! +1 /
= ot " "
/t ( ), x""" +x >L2(Q)dt

n=0 v °""n
m—1 tnt1 . 1
<> [ e e
> [ o XXy
tm . 2 At m—1
€a / / 1 2
<2 ot dt' + — nt n
=2 Jo ( ) La() + 2, Z HX +X HLQ(Q)
€a || 2112 At
<& 9‘ —4N
-2 L2 (0,T;La(9)) + € ) 0SnEN X" ”L2
€a || 5|2 2T 9
5 0‘ - n
2 Lo(0,T;L2()) + €a og%XNHX ||L2(Q)
€ 2T
<SO(*) + = max_[x"%,@)

2 €q 0<nEN

by Cauchy-Schwarz inequalities, Young’s inequality and (4.2.24) for any positive
€q where r = min(k + 1, s).

o At Z (=V - De(e"™ +em),x" ! +x”)L2(Q)

USlng Cauchy Schwarz inequalities and Young’s inequality, we can obtain

m—1
At Z (—V ‘Q§(6n+1 4 en)7xn+1 +Xn)L2(Q)
n=0
m—1
<At) [V De(e™ + )|, o) X"+ X" 10
n=0
m—1 m—1
€ n ny|[2 1 n n||?
<Aty JIV-De(e !+ e[+ ALY 36 X X0
n=0 n=0

<At S F 7 Dele ™+ )+ 2 s

for any positive €, since mAt < NAt = T. Recall the numerical integration error
then we have e” = O(At?). Note that each component of O(At?) is an order of
At? and our domain is bounded and so any norm of O(At#?) with respect to the
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spatial domain is bounded by CAt? for some positive C. Therefore, we have

m—1
Aty (-V-De(e™ +e"), X" +x") )
n=0
N-1

€p 4 2T 2
<Aty SO(A) + ol X" 1750
n=0 o

2T
=6, TO(AtY) + o olax, X" 70

m—1
[ ] At z_:o (8n, Xn+1 + Xn)L2(Q)

Note that (5:3:21) implies [|€"] ) = O(A2™®) for any n = 0,..., N — 1. In this
manner, Cauchy-Schwarz inequalities and Young’s inequality yield

m—1
At Z (gn’ Xn+1 + Xn)LQ(Q)
n=0

m—1
+1
<At Z HgnHLg(Q) Hxn + XnHL2(Q)
n=0
m—1 p m—1 1 9
2
<At Z 50 1E™ L, () + At Z %. [Ix" + XnHLQ(Q)
n=0 n=0 ¢
No1 N-1,
c n2 ni2
SAtY S IE @ + ALY < omax X"z
n=0 n=0
< (6% - n
<C—-O(A) + o ol X" 1700
for any positive e..
Tidy up the above results then ([5.3.53|) becomes
kA2 T 2 s
2 1 . 1 1
201X Wit + 15—y 2 I X+ A 3 TR X X
n=0 n=0
4pT 2T
2r n 2 4 n 2
<peaO(h7) + Ten 0SnEN X" 12 (0) + 0O (ALT) + ey 0EnEN X2 0
40T
4—2a n||2
+ ecO(At") + e 02X, X" 1750
AtQ,a m—1 n ' n—1 ‘ "
- _ Bni1ixX' Bnix', x" . 5.3.54
F(S — Oé) Z a_—1 ; nt1:X T+ ; n,3X » X +X ( )
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As seen in the proof of Theorem the boundedness of the last term of ((5.3.54) can
be shown by mathematical induction. In addition, since HXOHV = 0, we can obtain

1
2 kAL +1 N 00,60 (4 n 1 +1
2p||XmHL2(Q)+2P(TZHXn +x" HV—FAt%J X" XX+ x")
_ 4pT 2T  4pT
< 2r 4 4—2a =t
<C (pea0t®) + @08t + O + (L4 20 WY i
(5.3.55)
for some positive C'. Whence we consider maximum on (|5.3.55)), we have
nAt @
+1
2p Jmax, X117, 0 Z I+ x5,
N—-1
+ At Z J(()Xo,ﬁf)(xn—i-l + XnaXn+l + Xn>
n=0
<3C (peaO(hZT) + 6 O(AtY) + €.0(At2)
4pT 2T  4pT 2
F (T D) e e ).
therefore choosing €,, €. = 48CT and ¢, = 12CT/p implies
P o X rae) + Z I+ x|
N-1
1 At Z JSCOWBO (Xn+1 + Xn7xn+1 + Xn) < O(hQT) + O(At4) + O(At472a).
n=0

As a consequence, we can conclude that

N—1 1/2
_ 2
omax X"y o) (At2 « EOZ I+ +x”HV)
n=

N-1 1/2
+ (At D IO (M 4 x X+ x”)) = O(h" + At*™9).
n=0

On the other hand, if the strong solution has more smoothness in time such that
(5.3.22) is fulfilled, then we could take second order accuracy in time. To be specific,
when we suppose w(0) = w(0) = 0 or w € ker(D), implies ||E"(| ) = O(At?).
Therefore, O(At?>~%) can be replaced by O(At?) so that we have

N-1 1/2
_ 2
onax Xz, + (Atz “ Z) Ix" +X"Hv>
n=

319



N-1 1/2
+ (At Z JS‘O’*@O(X"J"I _|_Xn’Xn+1 _|_Xn)> _ O(hr +At2).

n=0

Theorem 5.9 (Error Analysis: fully discrete formula (U)). Assume that
w € C(0, T [C*()]) N Weo (0, T3 [H*(€0)]) N WE (0, T; [H* (€n)]%)
and (WZ)N satisfies the fully discrete formula (U) for s > 3/2, N € N with large

n=0
enough oo and Bo(d — 1) > 1. Then we can observe optimal Lo error estimates as well

as optimal DG energy error estimates with fixed order accuracy in time. Therefore,

oax, [w" = Wil ) = O + A7),
max " — Wil = O+ Ai-9),

where 7 = min(s, k + 1).
Proof. For any n=0,..., N, we have
[w" = Wil =llw" = Raw” — (Wi — Raw")| 1, q)

=10" —x"ll 1,
< ||9nHL2(Q) + ”XRHLQ(Q) :

By and Lemma it is concluded that

"~ Wil 1,0y =O(K) + O + A=) = O( + AP,
and so since n is arbitrary,

n n _ r 2—a
Og%XNHw — Wil =0 + At"™).

As shown in the semidiscrete case, DG energy estimates can be given by the vector-
valued analogue of inverse inequality (1.4.11]), (4.2.5) and Lemma Thus, we have

Jmax, [lw" = Wl = O~ + AP,

O]

Corollary 5.2. Suppose the condition of Theorem holds. In addition, we assume
that w(0) = w(0) = 0 or w € ker(D). Then the error estimates can be given by

n n _ r 2
oA, [w" = Wi, ) =0(h" + At%),

—1 2
max [[w” = Wi, =0 + AL,

regardless of «, where r = min(s, k + 1).

Proof. A proof parallels to the proof of Theorem but we can take full advantage of
the second order scheme, since we have the regularity of solution in time. It improves
the time order accuracy to At?. Hence our the above statement is true. O
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5.3.3 Numerical Experiments

We solve (5.3.1)-(5.3.4) in two ways (CG/DG). We consider two examples; one is an
example that is not of class H3 in time but the other is a smoother case. We set our
spatial domain as the unit square, T'=1 and oo = 1/2.

Example 5.1.
Let us define

sin(mz) sin(my)
zy(1 —x)(1 —y).

Then w € C?(0,T; [C>(Q)]?) NWE(0, T; [C>(2)]?) with homogeneous Dirichlet bound-
ary. Also, we can derive data terms which satisfy by using . Note that
w®(t) is not bounded and not integrable in time so that we cannot fully take an ad-
vantage of second order schemes thus we may observe sub-optimal results with respect
to time.

Let Wi and WP be approximation solutions of (T) and (U), respectively. We
define numerical errors by ed = w(t,) — Wig and e}y = w(t,) — Wpg. By error
estimates theorems for both solutions, each energy norm of numerical error is of order
1.5 in time and k with respect to spatial meshes, where k is a degree of polynomials.
Similarly, in case of Ly norm,

w(zr,y,t) = (t+ 1)

letcll Ly = OB + At'), and [lefgllL, ) = OB + At'?).

To compare both numerical errors in energy norm, we have to replace and match the
norms. We consider H! norm (broken Sobolev H! norm for DG solutions) of numerical
errors. Note that we consider SIPG for DG approximation so that we no longer use the
super-penalisation. Hence we set the penalty parameters as ag = 50 and [y = 1.

As a result, numerical simulations give us the following error tables with respect to
spatial approximation methods and degrees of polynomial basis. The results in Table
indicate that the errors are O(h + At'®) and O(h%? + At!®) in H! norm and L norm,
respectively for both CG and DG. On the other hand, as the degree of polynomials
increasing, the order of accuracy in terms of h is also growing but the convergent order
in time is fixed by 1.5. Thus, we can observe that H! norm and Ly norms of errors are
O(h? 4+ At1®) and O(h? + At!®), respectively.

Let us consider At ~ h. Then, regardless of the degree of polynomial basis, the
convergent order of Ly norm is fixed by O(h'?). In the same sense, H' errors are given
by O(h) if k = 1 or O(h'5), otherwise. Figure illustrates the comparison between
CG and DG. Both finite element approximations have same convergent orders. DG
solutions, however, encounter loss of accuracy for fine meshes. As we concerned before,
the global matrix becomes ill-conditioned so that it may deteriorate solving the linear
systems. Main reason is that DGFEM requires much more degrees of freedom than
CGFEM.
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H' error of CG

n At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 2.768e-01 2.842e-01 2.869e-01 2.877e-01 2.879e-01  2.880e-01  2.880e-01
1/4 1.447e¢-01  1.476e-01  1.490e-01  1.495e-01 1.497e-01  1.497e-01  1.498e-01
1/8 7.438e-02 7.353e-02  7.396e-02 7.419e-02 7.428e-02 7.431e-02  7.432e-02
1/16 4.192e-02 3.727e¢-02  3.693e-02 3.698e-02 3.701e-02 3.703e-02 3.703e-02
1/32 2.866e-02 1.983e-02 1.859¢-02 1.849¢-02  1.849e-02 1.850e-02  1.850e-02
1/64 2.425e-02  1.205e-02 9.573e-03  9.275e-03  9.247e-03  9.247e-03  9.247e-03

1/128 2.301e-02 9.116e-03 5.311e-03  4.703e-03 4.631e-03 4.624e-03  4.624e-03
Lo error of CG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 3.199e-02  3.083e-02 3.054e-02 3.046e-02  3.044e-02 3.043e-02  3.043e-02
1/4 9.663e-03  7.467e¢-03  6.956e-03 6.827e-03 6.789e-03 6.776e-03  6.772e-03
1/8 5.735e-03  2.700e-03  1.842e-03 1.641e-03  1.589e-03 1.574e-03  1.569e-03
1/16 5.117e-03  1.899e-03  7.976e-04 4.861e-04 4.100e-04 3.905e-04  3.847e-04
1/32 4.995e-03 1.767e-03  6.201e-04 2.464e-04 1.342e-04 1.052e-04  9.793e-05
1/64 4.967e-03  1.739¢-03 5.893e-04 2.062e-04 7.890e-05 3.861e-05 2.757e-05

1/128 4.960e-03 1.733e-03 5.827e-04 1.989e-04 6.974e-05 2.600e-05 1.160e-05
H! error of DG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 2.770e-01  2.844e-01 2.870e-01 2.878e-01 2.881e-01 2.882e-01 2.882e-01
1/4 1.441e-01  1.470e-01  1.484e-01 1.489e-01  1.490e-01 1.491e-01 1.491e-01
1/8 7.401e-02  7.310e-02 7.352e-02 7.374e-02 7.383e-02 7.385e-02  7.386e-02
1/16 4.171e-02  3.701e-02  3.665e-02 3.670e-02 3.673e-02 3.675e-02  3.675e-02
1/32 2.857e-02 1.969e-02 1.843e-02 1.833e-02 1.833e-02 1.834e-02 1.834e-02
1/64 2.422e-02  1.199e-02  9.492e-03  9.190e-03  9.162¢-03  9.161e-03  9.162e-03

1/128 2.301e-02  9.095e-03  5.274e-03  4.659e-03  4.587e-03  4.580e-03  4.579e-03
Lo error of DG

. At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 3.196e-02  3.081e-02  3.052e-02 3.043e-02 3.041e-02  3.040e-02  3.040e-02
1/4 9.617e-03  7.419e-03 6.906e-03  6.776e-03  6.736e-03 6.724e-03  6.719e-03
1/8 5.726e-03  2.691e-03 1.831e-03 1.630e-03 1.578e-03 1.562e-03 1.557e-03
1/16 5.115e-03  1.897e-03  7.950e-04 4.830e-04 4.066e-04 3.871e-04 3.813e-04
1/32 4.995e-03 1.766e-03  6.196e-04 2.457e-04 1.333e-04 1.043e-04  9.697e-05
1/64 4.966e-03  1.739¢-03  5.892e-04 2.061e-04 7.874e-05 3.839e-05 2.732e-05

1/128 4.960e-03 1.733e-03 5.827e-04 1.988e-04 6.971e-05 2.596e-05 1.155e-05

Table 5.1: Numerical errors; Example 5.1; k£ =1
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H' error of CG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 8.013e-02 7.963e-02 8.015e-02 8.040e-02 8.049e-02 8.053e-02  8.054e-02
1/4 3.087e-02  2.309e-02  2.209e-02 2.203e-02  2.204e-02  2.205e-02  2.205e-02
1/8 2.323e-02 9.671e-03  6.234e-03  5.730e-03  5.673e-03  5.668e-03  5.668e-03
1/16 2.263e-02  8.025e-03 3.015e-03 1.687e-03 1.460e-03 1.432e-03  1.428e-03
1/32 2.259¢-02  7.909e-03  2.683e-03 9.713e-04 4.734e-04 3.734e-04  3.596e-04
1/64 2.259¢-02 7.901e-03 2.661e-03 9.077e-04  3.230e-04 1.399e-04  9.699e-05

1/128 2.259e-02  7.901e-03  2.659¢-03  9.036e-04 3.111e-04 1.098e-04 4.365e-05
Lo error of CG

, At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 7.027e-03  4.850e-03  4.421e-03 4.338e-03 4.318e-03 4.312e-03  4.310e-03
1/4 5.052e-03  1.899e-03 9.149e-04 7.094e-04 6.761e-04 6.701e-04 6.687e-04
1/8 4.962e-03  1.736e-03  5.907e-04 2.194e-04 1.147e-04 9.419e-05 9.109e-05
1/16 4.958e-03 1.731e-03  5.809e-04 1.973e-04 6.864e-05 2.623e-05 1.426e-05
1/32 4.957e-03 1.731e-03  5.806e-04 1.967e-04 6.748e-05 2.339¢-05 8.266e-06
1/64 4.957e-03 1.731e-03  5.806e-04 1.967e-04 6.745e-05 2.334e-05 8.127e-06

1/128 4.957e-03 1.731e-03  5.806e-04 1.967e-04 6.745e-05 2.333e-05 8.124e-06
H! error of DG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 8.002e-02 7.953e-02 8.006e-02 8.031e-02 8.040e-02 8.044e-02  8.045e-02
1/4 3.068e-02  2.289¢-02  2.190e-02 2.184e-02 2.185e-02 2.186e-02 2.186e-02
1/8 2.317e-02  9.595e-03  6.141e-03 5.639e-03  5.584e-03  5.580e-03  5.580e-03
1/16 2.262e-02 8.011e-03  2.993e-03 1.659e-03 1.432e-03  1.404e-03 1.401e-03
1/32 2.259e-02  7.906e-03  2.679e-03  9.662e-04 4.661e-04 3.656e-04  3.520e-04
1/64 2.259¢-02  7.901e-03  2.660e-03  9.068¢-04 3.218¢-04 1.381e-04  9.495e-05

1/128 2.259e-02 7.901e-03  2.659e-03  9.034e-04 3.109e-04 1.096e-04  4.325e-05
Lo error of DG

. At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 7.016e-03  4.838¢-03  4.409e-03  4.326e-03  4.305¢-03  4.299e-03  4.297e-03
1/4 5.050e-03 1.895e-03 9.075e-04 7.001e-04 6.664e-04 6.603e-04 6.589¢e-04
1/8 4.961e-03 1.736e-03  5.903e-04 2.183e-04 1.128¢-04 9.186e-05 8.868e-05
1/16 4.958e-03 1.731e-03  5.809e-04 1.972e-04 6.857e-05 2.606e-05 1.395e-05
1/32 4.957e-03 1.731e-03  5.806e-04 1.967e-04 6.748e-05 2.339¢-05 8.257e-06
1/64 4.957e-03 1.731e-03  5.806e-04 1.967e-04 6.745e-05 2.334e-05 8.127e-06

1/128 4.957e-03 1.731e-03  5.806e-04 1.967e-04 6.745e-05 2.333e-05 8.124e-06

Table 5.2: Numerical errors; Example 5.1; k£ = 2
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Figure 5.1: Numerical convergent order; Example 5.1

Next, we will consider some example of Corollaries and i.e. we additionally
assume zero initial condition, which allows us to get second order accuracy in time.
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Example 5.2.
Let

_ 35 sin(mx) sin(my)
zy(1—2)(1—y)

be our analytic solution. Obviously, Example 5.2 has higher regularity than Example
5.1. Using , we can obtain source term f.

According to Corollaries[5.1]and [5.2] both numerical solutions take a full advantage of
the second order finite difference method, since w(0) = w(0) = 0. Thus, the convergent
orders are given by O(h* + At?) in energy norms and O(h**! + At?) in Lo norms,
respectively.

With each linear polynomial basis, both numerical approximations show similar er-
rors in Table We can observe that

lecalpgy = Oh+Ae%) [ lepcllgig) = Oh+AF)
lecalln,@ = O+ At%) lepclip,) = OB + At%)

w(z,y,t)

Table indicates that both numerical solutions have optimal convergent orders for
k =2 such as O(h? + At?) in H! norm and O(h® + At?) in Ly norm, respectively.

As seen in the above, time convergent order is fixed by 2. More precisely, Figure [5.2
illustrates orders of convergence where At =~ h. As a result, for the linear polynomial
basis, the energy error estimates show first order. On the other hand, regardless of a
degree of polynomials, Lo norm of errors has second order accuracy.

To sum up, we have optimal spatial error estimates in theoretical and practical
results using not only CGFEM but also DGFEM. However, due to weak singularity in
fractional order calculus, there is restriction on second order schemes such as Crank-
Nicolson method. Nevertheless, we can obtain optimal second order accuracy in time
if certain conditions are satisfied, for example zero initial condition. Furthermore, as
we concerned before, fine spatial meshes generally deteriorate solving linear systems due
to huge size of matrix if iterative solvers used. Especially, DG requires to solve much
bigger matrices than CG so that it is necessary to improve linear solvers to reduce large
condition number matters.

Remark Even though using SIPG, DG approximation requires many degrees of freedom
as well as ill conditioned matrices to solve for fine spatial meshes. In case of time
independent problems, the order of condition numbers depends on penalty parameters,
for example O(h*(ﬁ‘)“)). However, SIPG provides optimal Lo error estimates even if
standard penalised. Thus, we can take the benefit of lower condition numbers rather
than super-penalised NIPG.

Remark In generalised Maxwell model, hereditary memory terms were dealt with by
introducing internal variables rather than numerical integration (e.g. quadrature rules).
In other words, we replaced the memory terms with internal variables. In the fully
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discrete case, the current solution was only used to obtain next time level. For instance,
to solve linear system for time step t,41 requires only previous solution t,. To be
simplified, when we consider to solve Ax,4+1 = by, b, consists of only data terms such as
the initial condition, the traction and the source term, and current solution corresponding
to t,. In contrast, the numerical schemes of fractional order model were given with
numerical integration technique such as linear interpolation for the memory terms. Hence
it was necessary to use all history solutions. Thus, b,, contains more previous solutions
corresponding to tg,...,t,. It implies that fractional order model may need much more
memory. Roughly speaking, the required physical memory for hereditary terms would
be

Maxwell solid model : # of degree of freedoms x # of internal variables

Fractional order model : # of degree of freedoms x # of timesteps.

As a result, for long time period simulations, fractional order model needs huge memory
in practice. However, it does not affect the size of linear system (the global matrix). Note
that the size of global matrix is (# d.o.f.) x (# d.o.f.), regardless of model problems.

Summary

In Chapter 5, we have studied fractional order viscoelasticity problems modelled by
power law with using two finite element methods. Both spatially finite element approx-
imations give optimal errors with respect to energy norm and Ls norm. In a similar
way with Maxwell model, Crank-Nicolson finite difference scheme is used for time dis-
cretisation. However, we no longer introduce auxiliary ODEs for Volterra integral parts
in the power law model. Hence it is necessary to use numerical integration. Moreover,
due to weak singularity of kernel, we use linear interpolation technique to derive second
order accuracy in time for the sake of Crank-Nicolson method. Nevertheless, the weakly
singular kernel restricts regularity of solutions so it has effect on loss of benefit of second
order schemes. Although we cannot fully take an advantage of second order methods,
further suppositions such as zero initial conditions lead our numerical approximations
to be optimal. In the end, we can prove stability as well as optimal error estimates
theorems.
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H' error of CG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 1.749e-03  1.340e-03  1.253e-03  1.233e-03  1.229e-03  1.227e-03  1.227e-03
1/4 1.199e-03 7.269e-04 6.460e-04 6.311e-04 6.277e-04 6.269e-04 6.267e-04
1/8 9.475e-04  4.063e-04 3.197e-04 3.083e-04 3.063e-04 3.059¢-04  3.058e-04

1/16 8.726e-04 2.781e-04 1.656e-04 1.533e-04 1.518e-04 1.515e-04 1.515e-04

1/32 8.530e-04  2.360e-04 9.541e-05 7.736e-05 7.577e-05 7.559¢-05 7.556e-05

1/64 8.480e-04 2.243e-04  6.744e-05 4.042e-05 3.797e-05 3.778e-05  3.775e-05

1/128 8.467e-04 2.213e-04 5.840e-05 2.342¢-05 1.921e-05 1.890e-05 1.888e-05
L error of CG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 1.716e-04 1.223e-04 1.201e-04 1.204e-04 1.205e-04 1.205e-04 1.205e-04
1/4 1.702e-04 4.835e-05 2.600e-05 2.474e-05 2.486e-05 2.491e-05 2.493e-05
1/8 1.808e-04 4.676e-05 1.226e-05 5.822e-06 5.417e-06 5.450e-06 5.466e-06

1/16 1.838¢-04 4.767e-05 1.181e-05 3.050e-06 1.400e-06 1.292e-06 1.301e-06

1/32 1.845e-04  4.795e-05 1.193e-05 2.937e-06 7.577e-07 3.458e-07 3.187e-07

1/64 1.847e-04  4.803e-05 1.198e-05 2.960e-06 7.291e-07 1.885e-07 8.613e-08

1/128 1.848e-04  4.804e-05 1.199¢-05 2.969e-06 7.344e-07 1.813e-07 4.697e-08
H* error of DG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 1.751e-03  1.341e-03  1.254e-03 1.235e-03  1.230e-03  1.229¢-03  1.229e-03
1/4 1.195e-03 7.233e-04 6.431e-04 6.282e-04 6.250e-04 6.242e¢-04  6.240e-04
1/8 9.454e-04  4.045e-04 3.182e-04 3.069e-04  3.049e-04 3.044e-04 3.043e-04

1/16 8.720e-04 2.773e-04 1.647e-04 1.524e-04 1.510e-04 1.507e-04 1.507e-04

1/32 8.528e-04  2.358¢-04 9.498e-05 7.688e-05 7.530e-05 7.512¢-05 7.509e-05

1/64 8.479e-04  2.243e-04 6.728e-05 4.018e-05 3.773e-05 3.753e-05 3.751e-05

1/128 8.467e-04 2.213e-04 5.835e-05 2.331e-05 1.908e-05 1.877e-05 1.875e-05
Lo error of DG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 1.714e-04 1.221e-04 1.198e-04 1.201e-04 1.203e-04 1.203e-04 1.203e-04
1/4 1.703e-04  4.828e-05 2.583e-05 2.456e-05 2.468e-05 2.474e-05 2.475e-05
1/8 1.808e-04 4.676e-05 1.225e-05 5.797e-06 5.388e-06 5.421e-06 5.438e-06

1/16 1.838e-04 4.767e-05 1.182e-05 3.048e-06 1.393e-06 1.285e-06 1.293e-06
1/32 1.845e-04  4.795e-05 1.194e-05 2.937e-06 7.572e-07 3.439e-07 3.165e-07
1/64 1.847e-04  4.803e-05 1.198e-05 2.960e-06 7.292e-07 1.884e-07 8.562e-08
1/128 1.848e-04 4.804e-05 1.199e-05 2.969e-06 7.344e-07 1.813e-07 4.693e-08

Table 5.3: Numerical errors; Example 5.2; k£ =1
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H' error of CG

A At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 9.604e-04 4.283e-04 3.442e-04 3.328e¢-04 3.307e-04 3.302e-04 3.301e-04
1/4 8.550e-04  2.421e-04 1.080e-04 9.185e-05 9.037e-05 9.019e-05 9.015e-05
1/8 8.468e-04 2.218e-04 5.999e-05 2.702e-05 2.343e-05 2.316e-05 2.314e-05
1/16 8.464e-04  2.204e-04 5.539e-05 1.487¢-05 6.751e-06 5.891e-06 5.832e-06
1/32 8.463e-04  2.203e-04 5.508e-05 1.374e-05 3.692e-06 1.686e-06 1.475e-06
1/64 8.463e-04  2.203e-04 5.506e-05 1.366e-05 3.410e-06  9.189e-07  4.212e-07

1/128 8.463e-04  2.203e-04 5.506e-05 1.366e-05 3.391e-06 8.481e-07  2.290e-07
L error of CG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 1.808e¢-04 4.931e-05 2.034e-05 1.730e-05 1.718e-05 1.719e-05 1.720e-05
1/4 1.844e-04 4.797e-05 1.220e-05 3.943e-06 2.756e-06 2.677e-06 2.674e-06
1/8 1.848e-04 4.804e-05 1.199e-05 2.989e-06 8.192e-07 4.082e-07  3.694e-07
1/16 1.848e-04 4.805e-05 1.199e-05 2.972e-06 7.384e-07 1.889¢-07 6.541e-08
1/32 1.848e-04  4.805e-05 1.199e-05 2.972e-06 7.372e-07 1.834e-07  4.600e-08
1/64 1.848e-04 4.805e-05 1.199e-05 2.972e-06 7.372e-07 1.833e-07  4.564e-08

1/128 1.848e-04 4.805e-05 1.199¢-05 2.972e-06 7.372e-07 1.833e-07  4.564e-08
H* error of DG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 9.607e-04 4.283e-04 3.440e-04 3.325e-04  3.304e-04  3.300e-04  3.298e-04
1/4 8.554e-04  2.421e-04 1.075e-04 9.126e-05 8.976e-05 8.957e-05 8.953e-05
1/8 8.470e-04  2.219e-04 5.998e-05 2.683e-05 2.318e-05 2.290e-05 2.288e-05
1/16 8.464e-04  2.204e-04 5.541e-05 1.486e-05 6.696e-06 5.815e-06  5.753e-06
1/32 8.463e-04  2.203e-04 5.509e-05 1.374e-05 3.690e-06 1.671e-06 1.454e-06
1/64 8.463e-04 2.203e-04 5.506e-05 1.366e-05 3.411e-06 9.184e-07 4.173e-07

1/128 8.463e-04 2.203e-04 5.506e-05 1.366e-05 3.392e-06 8.484e-07  2.289e-07
Lo error of DG

h At 1/8 1/16 1/32 1/64 1/128 1/256 1/512
1/2 1.809e¢-04  4.930e-05 2.030e-05 1.725e-05 1.713e-05 1.714e-05 1.714e-05
1/4 1.844e-04 4.798e-05 1.219e-05 3.922e-06 2.725e-06 2.645e-06 2.642¢-06
1/8 1.848e-04  4.804e-05 1.199e-05 2.988e-06 8.161e-07 4.017e-07  3.622e-07
1/16 1.848e-04 4.805e-05 1.199e-05 2.972e-06 7.384e-07 1.887e-07 6.461e-08
1/32 1.848e-04  4.805e-05 1.199e-05 2.972e-06 7.372e-07 1.833e-07  4.599e-08
1/64 1.848e-04  4.805e-05 1.199e-05 2.972e-06 7.372e-07 1.833e-07 4.564e-08

1/128 1.848e-04 4.805e-05 1.199e-05 2.972e-06 7.372¢-07 1.833e-07 4.564e-08

Table 5.4: Numerical errors; Example 5.2; k = 2
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Figure 5.2: Numerical convergent order; Example 5.2

329



Conclusion

We have studied viscoelastic wave problems with finite element methods. One of our
main achievements showed that our numerical solutions are applicable for long time in-
tegration. On account of absence of Grénwall’s inequality in proofs, the bound constants
of stability and error bounds depend on the final time but not exponentially increas-
ing. As a result, we could simulate viscoelastic wave propagation for a long period of
time. Not only have well-posedness been proved, but also optimal error estimates. We
could obtain fixed second order accuracy in time as well as optimal energy norm er-
ror (H! norm). At the same time, elliptic regularity estimations allow the numerical
approximations to give optimal Lo error estimates.

When we considered generalised Maxwell solid model, this rheological model gave
an idea of internal variables as partial constitutive relations. Hence we could define two
types of internal variables and so we solved the model problem in two ways, which gov-
erned with integration by parts. In the meantime, we have derived variational problems
of scalar/vector-valued wave problems with CG and DG. Regardless of finite element
methods, we observed sufficiently good stability analysis and optimal error analysis.
However, use of NIPG enforced us to have more restrictions in proofs. For example,
since we used the nonsymmetric bilinear form, we had more difficulty in changing order
in the bilinear form. Nevertheless, as shown in the proof of coercivity, we could derive
the boundedness of interior penalty terms so that we could also deal with skew symmet-
ric parts. As a result, appropriate stability and error bounds were controlled by penalty
parameters, in other words, it required sufficiently large ag and By. Turning back to
discussion of forms of internal variables, there was no significant difference between CG
and DG. All analysis results needed same conditions such as smoothness of data and
regularity of solutions. Hence a choice of internal variables is a matter of taste. How-
ever, in a practical sense, global matrices resulted by linear systems vary with internal
variables. In this thesis, we do not investigate it in detail but it may become future
works to decide which form of internal variables is better.

Not only have we shown theoretical results, but also numerical experiments. A
variety of examples have been carried out based on FEniCS since FEniCS provides
many useful and powerful tools for finite element methods such as various linear solvers,
mesh generators, function spaces, etc. On account of the good environment platform,
we could easily check our numerical schemes and theorems. To be specific, in case of
symmetric cases, indeed CGFEM, conjugate gradient method has been used as a iterative
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linear solver with successive over-relaxtion for preconditioning. A number of examples for
CGFEM exhibited optimal convergence rates with respect to time and space. In contrast,
the linear systems by DGFEM was defined with nonsymmetric global matrices so linear
solvers for symmetric problems were no longer used. Thus, biconjugate gradient stabilized
method has been introduced with incomplete LU factorization for preconditioning. In
a similar way with CGFEM, numerical results of DGFEM fulfilled stability and error
analysis theorems. Interestingly, regardless of penalisation, numerical solutions had
optimal Ls norm errors for odd degrees of polynomials. Our theorems demonstrated
only that DG schemes required super-penalised NIPG for elliptic regularity estimations.
Thus, it still remains to prove how standard penalisation works for optimal Lo error
estimates with odd degrees of polynomials. Moreover, solving the linear systems had
serious issues for fine spatial meshes. As shown in numerical experiments sections,
iterative solvers encountered ill-conditioned linear systems for small h. In particular,
super-penalised DG has seriously worse condition numbers than standard DG and CG.

At the final stage, we investigated fractional order viscoelastic model problems in CG
and DG. A choice of power law led memory terms to be fractional order calculus. This
weakly singular kernel imposed many restrictions on regularity and time integration. In
case of generalised Maxwell model, internal variables have been introduced to replace
memory terms with auxiliary ODEs, whereas the weakly singular kernels could not have
generated auxiliary terms by differentiating. To be more precisely, using the fact that
a derivative of exponential function is also exponential, we can derive some auxiliary
ODEs by differentiating convolution with exponentially decaying kernels. However, a
derivative of power law type convolution has strong singularity, which gives difficulty in
dealing with stability analysis. Hence it was necessary to apply numerical integration for
time in discrete cases. Linear interpolation in time was employed to replace fractional
order integration with second order accuracy. We showed well-posedness and error es-
timates theorems for semidiscrete problems as well as fully discrete problems. Due to
properties of positive definite kernel, we completed the proofs of semidiscrete cases. On
the other hand, we proved some analysis theorems for fully discrete formulations by
mathematical inductions. As we noted before, loss of regularity of solutions occurred in
the fractional model. In spite of second order schemes in time, the model problem could
not guarantee second order accuracy. Nevertheless, zero initial conditions or kernel of
spatial differential operator allowed our discrete solution to have optimal convergence
rates in time as well as space. In comparison with use of internal variables, numerical
approximations of Maxwell model involved only current data for next time step but fully
discrete schemes of the fractional order model required to store all past history data. In
practice, computer memory is limited hence shortage of memory issue may happen in a
large number of time steps. Even if long time travel allowed in the theory, the machines
encounter huge memory requirements. Keeping this issue in mind, we developed be-
spoke code implementations in FEniCS and carried out numerous examples. Although
orders of convergence with respect to the space domain are the same as the generalised
Maxwell solid model, we could not take a full benefit of Crank-Nicolson method. It was
only observed that the example of zero initial conditions had second order accuracy in
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time. Also, it was necessary for us to improve iterative solvers for super-penalised DG.

Future Works

As we concerned, numerical approaches are so useful and good tools to solve complicated
model problems in real world. Especially, finite element analysis allows us to solve and
simulate various PDE models with many advantages, for example conservation law of
mass, complex geometry, local physical effects and the benefit of algebraic expressions.
Therefore, we can also apply our numerical schemes to more practical viscoelastic model
problems. Beyond this thesis, we are going to consider the following further studies.

e Simulation of viscoelasctic wave propagations: In this thesis, we presented nu-
merical experiments of analytic solutions given in 2D. Hence we could verify our
approximate schemes are applicable enough for the certain models. For the next
stage, this leads us to simulate a number of viscoelastic wave propagations in indus-
trial areas, even in 3D. For instance, we can understand and simulate viscoelastic
behaviours of half elastic and half viscoelastic material. Moreover, we can assume
not only simple domains but also complex geometry on demand.

e Fractional order viscoelastic models with fractional order derivatives: Recall @
Instead of dealing with fractional integration in the constitutive law as in @,
use of identity of fractional calculus gives 1 + « order differential equations. In
a similar way with the fractional integration problems, we can derive variational
forms and show existence and uniqueness of solution as well as error estimates
theorems with Theorem However, the typical approaches as we used before
may not work properly such as integration by parts for fractional derivative in Lo
inner product. Therefore, we need more cautions to 1 + « order time derivatives.

e Preconditioning and iterative solver for super-penalised DG: As shown in previ-
ous numerical experiments of DG, solving linear systems encountered ill-condition
problems. To be specific, for spatially optimal Lo norm error, it is necessary to
use super-penalisation so that the linear system becomes ill-conditioned according
to condition numbers of global matrices. Therefore, we have to improve its linear
solver for fine spatial meshes. In [65] [68 [69], we can find a various linear solver
algorithms and preconditioners. For example, Multigrid method may be possible
remedy to solve fine spatial mesh problems. We are going to implement and apply
it to resolve high condition numbers on super-penalised DG.

e Optimal L9 error with standard penalisation: We noted that NIPG requires super-
penalisation for elliptic regularity estimates. However, the standard penalised
NIPG with odd degree of polynomial basis also provides optimal Lo convergence.
This is only theoretically shown in rectangular meshes or on 1D in [61], 62] 63].
We still have a big curiosity in case of triangular meshes in higher dimensions.
The key is using similar techniques in 1D cases and finding geometric properties
of triangular(or tetrahedral) meshes.
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e Code improvements in FEniCS: In a practical sense, the number of the degrees of
freedom are significantly important to solve linear systems and allocate memory.
Many computational issues may occur with huge linear systems, for instance non-
negligible round-off error and out of memory. FEniCS is of high quality to assemble
variational problems and solve linear systems with a number of solvers. Neverthe-
less, it has to be improved more for large systems. My aim is to develop iterative
solvers and multigrid preconditioning. On the other hand, in terms of running time
to simulate, we want to enhance speed-up so that we would like to consider parallel
computing. FEniCS is compatible with MPI which is one of parallel computing
methods. Therefore, it is able to implement codes applied with MPI.

e Other interests: I believe finite element method is powerful tool to understand and
solve many mathematical models and physical phenomena in real world. Particu-
larly, I am so interested in multi-scale FEM (see e.g. [85 86]). My goal is devel-
oping multi-scale DG approach to air pollutions of PM(Particular Matter)[87]. A
huge number of people have seriously suffered from PM in air and it deteriorates
not only their health conditions but also financial problems. I hope our mathem-
atician’s contributions could help to manage this issue. On the other hand, I have
studied machine learning as well. From various resources, we are able to learn key
ideas of machine learning and use many applications in science. At some point,
this machine learning approach is more effective to solve more realistic problems
[88] than FEM.

There are a large number of challenging questions to sort out. Even though our contri-
bution is tiny, I wish it makes our world better. I would like to conclude this thesis with
the following quotes.

Great things are not done by impulse, but by a series of small things brought together.
- Vincent Van Gogh -
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