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In this paper, the joint input and state estimation problem is considered for linear discrete-time stochastic
systems. An event-based transmission scheme is proposed with which the current measurement is released
to the estimator only when the difference from the previously transmitted one is greater than a prescribed
threshold. The purpose of this paper is to design an event-based recursive input and state estimator such
that the estimation error covariances have guaranteed upper bounds at all times. The estimator gains
are calculated by solving two constrained optimization problems and the upper bounds of the estimation
error covariances are obtained in form of the solution to Riccati-like difference equations. Special efforts
are made on the choices of appropriate scalar parameter sequences in order to reduce the upper bounds.
In the special case of linear time-invariant system, sufficient conditions are acquired under which the
upper bound of the error covariance of the state estimation is asymptomatically bounded. Numerical
simulations are conducted to illustrate the effectiveness of the proposed estimation algorithm.
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1. Introduction

State estimation for stochastic systems is one of the fundamental problems in system and con-
trol theory. Among a variety of estimation schemes, the Kalman filtering and the H∞ filtering
algorithms are two most widely investigated ones that have been extensively applied in practice.
The renowned Kalman filter provides optimal state estimates based on exact values of the system
parameters and known input/output data Anderson & Moore (2005), and the popular H∞ filter
is capable of attenuating and rejecting the influence from the exogenous disturbances to the con-
trolled output up to a given level. However, in practice, the exogenous inputs are usually unknown
disturbances or unmodeled dynamics which may not be known a prior. In this case, both the tra-
ditional Kalman filter and the H∞ filter Basin & Rodriguez-Ramirez (2012); Ding, Wang, Shen,
& Shu (2012); Hu, Wang, Gao, & Stergioulas (2012); Wang, Shen, & Liu (2012) cannot yield an
optimal state estimation for systems with unknown inputs. As such, it is desirable to design a new
kind of filters capable of jointly estimating system states and unknown inputs.
The state and unknown input estimation problems have found wide applications in many ar-

eas such as fault detection and diagnosis Ding (2008), transportation management Yong, Zhu,&
Frazzoli (2016) and geophysics Kitanidis (1987). So far, considerable research attention has been
devoted to the problem of optimal filtering in the presence of unknown inputs and a rich body of
literature has been available. In Kitanidis (1987), an optimal state estimator has been proposed

∗Corresponding author. Email: Zidong.Wang@brunel.ac.uk



December 1, 2016 International Journal of Control Final

for linear system under the assumption without requiring prior information of the unknown input.
In Darouach & Zasadzinski (1997), a parameterized design method has been developed for the
optimal state estimator, and both the stability and convergence conditions have been established
for the designed estimator. Furthermore, the state estimation problem has been investigated in
Cheng, Ye, Wang, & Zhou (2009); Darouach, Zasadzinski,& Boutayeb (2003) for linear system
with direct feedthrough from the unknown input to the output. On the other hand, the simulta-
neous input and state estimation problem has been investigated in Gillijns & Moor (2007); Hsieh
(2000).
It is worth pointing out that, up to now, almost all the results on optimal filtering problem

with unknown inputs has implicitly adopted the time-based strategy whose main idea is to send
the measurement data from the sensors to the filter at a fixed time interval. Due to its simplicity,
the time-based strategy (or called periodic communication strategy) would facilitate the system
analysis/design, and is acceptable for certain engineering systems where the energy supply of
sensor and the bandwidth of the communication network are not a concern. However, in case of
constrained resources, the time-based strategy might lead to unnecessary signal transmission and
therefore cause a waste of energy consumption and bandwidth resource for sensors. For example,
in networked control systems, the sensors are usually powered by batteries with limited capacity
and the wireless communication networks are shared by many sensors with limited bandwidth
Gungor & Hancke (2009); Gungor, Lu & Hancke (2010). As such, there is a need to develop more
resource-efficient communication schemes.
In the past few years, the event-based strategy has become more and more popular for the

sake of energy-saving because it provides the possibility of maintaining system performance under
limited communication resources. With the event-based strategy, a sensor is triggered to send the
measurement data if and only if certain events occur. Recently, the event-based state estimation
problem has attracted considerable research interest and a number of research results have been
reported Hu & Yue (2012); Liu, Wang, He, & Zhou (2014, 2015); Meng & Chen (2014); Shi, Chen,
& Shi (2014); Sijs & Lazar (2012); Suh & Nguyen (2007); Wu, Jia, Johansson, & Shi (2013); Zhang
& Han (2015). Nevertheless, the event-based transmission scheme does complicate the estimation
problem considerably especially when no measurements are received by the estimator between two
consecutive event-triggered instants. For this reason, a common assumption made in the literature
is the Gaussian approximation which simplifies the estimator design. For example, in Suh & Nguyen
(2007), a modified Kalman filter has been proposed for the discrete time-invariant system with a
send-on-delta (SOD) event triggering mechanism. In Sijs & Lazar (2012), with a general description
of the event-based strategy, an event-based estimator has been designed for the discrete time-
invariant system using Gaussian sum approximations. Very recently, the maximum likelihood event-
based estimation problem has been investigated in Shi et al. (2014). The assumption of Gaussian
approximation, unfortunately, leads to the estimators with only approximate minimummean square
error, and one of the motivations of this paper is therefore to remove such an assumption by
developing an efficient event-based estimator design algorithm in the presence of unknown inputs.
In the context of event-based estimation, by far, much research has been done for linear sys-

tem, but the corresponding estimation problem coupled with unknown input has not yet received
adequate research attention due mainly to the difficulty in handling the unknown input with no
prior information. In addition, when the adoption of the event-based mechanism, the unbiasedness
of both the input and the state estimate cannot be guaranteed in general, and the traditional
time-based unbiased input/state estimator design methods are no longer applicable. As such, we
are motivated to challenge the design problem of the joint input/state estimators according to the
event-based strategy by employing a SOD concept Miskowicz (2006). Our aim is to obtain the joint
input/state estimates that are precise within a known confidence interval even though only partial
measurements at the event-triggered instants are accessible by the estimator.
The main contributions of this paper are highlighted as follows: 1) a joint input and state esti-

mator is proposed for linear time-varying systems with unknown input based on a novel event-based
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transmission scheme; 2) the event indicator variable is introduced to reflect the triggering informa-
tion and reduce the conservatism in the analysis of estimation performance; 3) upper bounds of the
estimation error covariances are obtained recursively and then reduced by choosing proper scalar
parameters and estimator gains according to a given procedure; and 4) the asymptotic boundedness
of the obtained upper bounds is analysed for the linear time-invariant systems.
Notations. The notations used throughout the paper are standard. Rn and Rn×m denote the

n-dimensional Euclidean space and the set of all n ×m matrices, respectively. For a matrix P ∈
Rn×m, P T , Rk{P}, P+ ∈ Rn×m represent its transpose, rank and Moore-Penrose pseudo inverse,
respectively. For square matrix A, A−1 (where A is invertible), Tr{A}, and ρ(A) represents its
inverse, trace and spectral radius, respectively. I and 0 represent the identity matrix and a zero
matrix with appropriate dimension, respectively. diag{X1,X2, . . . ,Xn} stands for a block-diagonal
matrix with matrices X1,X2, . . . ,Xn on the diagonal. Sn+ is the set of n× n positive semi-definite
matrices. When X ∈ Sn+, we simply write X ≥ 0. Similarly, X ≥ Y means X − Y ≥ 0.

2. Problem Formulation And Preliminaries

Consider the following linear discrete time-varying system:

{

x(k) = A(k − 1)x(k − 1) +G(k − 1)d(k − 1) + ω(k − 1)

y(k) = C(k)x(k) + ν(k)
(1)

where x(k) ∈ Rn is the system state, d(k) ∈ Rp is the unknown system input and y(k) ∈ Rm is
the measurement output. The process noise ω(k) ∈ Rn and the measurement noise ν(k) ∈ Rm are
assumed to be mutually uncorrelated, zero-mean random signals with known covariance matrices
W (k) and R(k), respectively. The initial value x(0) has mean x̄(0) and covariance P (0|0). Without
loss of generality, we follow Darouach & Zasadzinski (1997); Gillijns & Moor (2007); Kitanidis
(1987), and assume that m ≥ p and Rk{C(k)G(k − 1)} = Rk{G(k − 1)} = p.

2.1 Traditional unknown input and state estimator

Up to now, lots of results have been developed with respect to the estimation problem with unknown
input. The traditional unknown input and state estimator has the following general form:

E1 :











d̂t(k − 1) = Mt(k)
(

y(k)− C(k)A(k − 1)x̂t(k − 1|k − 1)
)

x̂t(k|k − 1) = A(k − 1)x̂t(k − 1|k − 1) +G(k − 1)d̂t(k − 1)

x̂t(k|k) = x̂t(k|k − 1) +Kt(k)
(

y(k)− C(k)x̂t(k|k − 1)
)

(2)

where d̂t(k − 1) is the estimate of the unknown input at time instant k − 1, x̂t(k|k − 1) is the
one-step prediction of x(k) at time instant k−1, and x̂t(k|k) is the estimate of x(k) at time instant
k with x̂t(0|0) = x̄(0). Mt(k) and Kt(k) are the estimator gain matrices to be determined at time
instant k.
So far, to the best of the author’s knowledge, almost all established results on unknown input

and state estimation problem have been obtained according to the time-based mechanism whose
idea is to send the measurements to the estimator at every time instant. Due to the resource limits
on energy-consumption and communication bandwidth especially in wireless communication, the
control system needs more energy-efficient and lower bitrate data transmission mechanisms than
the time-based one. The event-based data transmission mechanism stands out as a promising
solution to this issue because, with such a mechanism, only important measurements (rather than
all measurements) are transmitted to accomplish the control/estimation tasks.
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2.2 Event-based unknown input and state estimator

In order to reduce the energy consumption and communication burden, the measurement y(k) is
transmitted only when certain event generator is triggered. In this paper, the send-on-delta (SOD)
triggering mechanism is adopted and characterized as follows.
Assume that the event triggering instants are k0, k1, . . . , where k0 = 0 is the initial time. Define

ye(k) = y(kj) for k (kj ≤ k ≤ kj+1) with the subscript “e” indicating event triggering. The sequence
of event triggering instants 0 = k0 ≤ k1 ≤ · · · ≤ ki ≤ . . . is determined iteratively by

ki+1 = min{k ∈ N|k > ki, ‖ye(k)− y(k)‖2 > σ} (3)

where the threshold σ is a positive scalar.
Define δ(k) = ye(k) − y(k). Under the event-based strategy, δ(k) will be reset to zero if the

triggering condition is fulfilled. Consequently, the following inequality holds all the time:

δT (k)δ(k) ≤ σ. (4)

With the event-based communication strategy, a recursive estimator for the system (1) is given
as follows:

E2 :











d̂e(k − 1) = Me(k)
(

ye(k) −C(k)A(k − 1)x̂e(k − 1|k − 1)
)

x̂e(k|k − 1) = A(k − 1)x̂e(k − 1|k − 1) +G(k − 1)d̂e(k − 1)

x̂e(k|k) = x̂e(k|k − 1) +Ke(k)
(

ye(k)− C(k)x̂e(k|k − 1)
)

(5)

where d̂e(k − 1) is the estimate of the unknown input at time instant k − 1, x̂e(k|k − 1) is the
one-step prediction of x(k) at time instant k−1, and x̂e(k|k) is the estimate of x(k) at time instant
k with x̂e(0|0) = x̄(0). Me(k) and Ke(k) are the estimator gain matrices to be determined at time
instant k.
In the event-based estimator E2, the input estimate d̂e(k − 1) is first obtained from ye(k) since

ye(k) is the first event-triggered measurement that contains information about de(k − 1). Then,

using both d̂e(k − 1) and the state estimate x̂e(k − 1|k − 1), the a prior estimate x̂e(k|k − 1) is
obtained. Finally, a posteriori estimate x̂e(k|k) is obtained by updating x̂e(k|k−1) with a correction
term.
Substituting the first two equations into the last one in (5) leads to

x̂e(k|k) = A(k − 1)x̂e(k − 1|k − 1) + Le(k)
(

ye(k)− C(k)A(k − 1)x̂e(k − 1|k − 1)
)

(6)

where

Le(k) , Ke(k) + E(k)G(k − 1)Me(k), E(k) , I −Ke(k)C(k). (7)

Letting x̃e(k|k) = x(k)− x̂e(k|k), we have the following system that governs the estimation error
dynamics:

x̃e(k|k) =A(k − 1)x(k − 1) +G(k − 1)d(k − 1) + ω(k − 1)

−A(k − 1)x̂e(k − 1|k − 1)− Le(k)
(

ye(k)− C(k)A(k − 1)x̂e(k − 1|k − 1)
)

.
(8)
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Noting that

ye(k)−C(k)A(k−1)x̂e(k−1|k−1) = C(k)
(

A(k−1)x̃e(k−1)+G(k−1)d(k−1)+ω(k−1)
)

+ν(k)+δ(k),
(9)

(8) can be written as follows:

x̃e(k|k) =
(

I − Le(k)C(k)
)(

A(k − 1)x̃e(k − 1) +G(k − 1)d(k − 1) + ω(k − 1)
)

− Le(k)(ν(k) + δ(k)).
(10)

To eliminate the effect of the unknown input d(k − 1) on the state estimation error x̃e(k|k) in
(10), the following lemma is needed.

Lemma 1: For the designed event-based estimator E2 in (5), the estimation error x̃e(k|k) is un-
related to the unknown input d(k) if the gain matrix Me(k) satisfies

Me(k)C(k)G(k − 1) = Ip. (11)

Proof. If the condition

(I − Le(k)C(k))G(k − 1) = 0 (12)

holds, then (10) can be written as follows:

x̃e(k|k) =
(

I − Le(k)C(k)
)(

A(k − 1)x̃e(k − 1) + ω(k − 1)
)

− Le(k)(ν(k) + δ(k)), (13)

which shows that the estimation error x̃e(k|k) is unrelated to the unknown input d(k). In the
following, we try to prove that if condition (11) holds, then (12) holds as well.
Noting Le(k) = Ke(k) + E(k)G(k − 1)Me(k) and E(k) = I − Ke(k)C(k), it follows from (11)

that

(I − Le(k)C(k))G(k − 1) = G(k − 1)−Ke(k)C(k)G(k − 1)− E(k)G(k − 1)

= 0,
(14)

and then the proof is complete.

Remark 1: As pointed out in Gillijns & Moor (2007), in the traditional time-based estimator
design, the estimator E1 is unbiased if and only if (11) is satisfied. It can be clearly seen that
there exists at least one solution Me(k) to (11) under the assumption that m ≤ p and m ≥ p and
Rk{C(k)G(k− 1)} = Rk{G(k− 1)} = p. On the other hand, in the event-based scenario, the state
estimation error is not affected by the unknown input d(k) when (11) holds.

Letting d̃e(k − 1) = d(k − 1) − d̂e(k − 1), assume that condition (11) holds. Then, the input
estimation error d̃e(k − 1) is given as follows:

d̃e(k − 1) = −Me(k)
(

C(k)A(k − 1)x̃e(k − 1|k − 1) + C(k)ω(k − 1) + ν(k) + δ(k)
)

. (15)
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For presentation convenience, we denote

d̃ue (k) = E{d̃e(k)}, d̃se(k) = d̃e(k)− d̃ue (k),

x̃ue (k|k) = E{x̃e(k|k)}, x̃se(k|k) = x̃e(k|k) − x̃ue (k|k),
Σu
e (k) = d̃ue (k)(d̃

u
e (k))

T , Σs
e(k) = E{d̃se(k)(d̃se(k))T },

Pe(k|k) = E{x̃e(k|k)(x̃e(k|k))T }, Σe(k) = E{d̃e(k)(d̃e(k))T },
P u
e (k|k) = x̃ue (k|k)(x̃ue (k|k))T , P s

e (k|k) = E{x̃se(k|k)(x̃se(k|k))T },

and then (13) and (15) can be rewritten in the following form:

x̃se(k|k) = (I − Le(k)C(k))(A(k − 1)x̃se(k − 1|k − 1) + ω(k − 1)) − Le(k)ν(k), (16)

x̃ue (k|k) = (I − Le(k)C(k))A(k − 1)x̃ue (k − 1|k − 1)− Le(k)δ(k), (17)

d̃se(k − 1) = −Me(k)C(k)A(k − 1)x̃se(k − 1|k − 1)−Me(k)C(k)ω(k − 1)−Me(k)ν(k), (18)

d̃ue (k − 1) = −Me(k)C(k)A(k − 1)x̃ue (k − 1|k − 1)−Me(k)δ(k) (19)

where x̃se(k|k) and x̃ue (k|k) represent the stochastic and deterministic parts of the state estimation
error, respectively. Similarly, d̃se(k) and d̃ue (k) represent the stochastic and deterministic parts of
the input estimation error, respectively.

3. Estimator design

In this section, for the system (1) with the event-based estimator E2, we will first obtain the upper
bounds of the error covariances of both the input and state estimates, and then look for appropriate
gain matrices Me(k) and Ke(k) such that the obtained upper bounds are minimized.
Before proceeding further, we introduce the following lemmas which will be used in subsequent

developments.

Lemma 2: Given two vectors x, y ∈ Rm, the following inequality holds,

(x+ y)(x+ y)T ≤ (1 + ε)xxT + (1 + ε−1)yyT (20)

where ε is an arbitrary positive scalar.

Proof. (20) follows from (
√
εx−

√
ε−1y)(

√
εx−

√
ε−1y)T ≥ 0 immediately.

Lemma 3: Define a matrix function f : Sn+ 7→ R as follows:

f(X) = Tr{(ATX−1A)−1}

where A is a given matrix of appropriate dimension and ATX−1A is nonsingular. For two matrices
X1,X2 ∈ Sn+, if X1 < X2, then f(X1) < f(X2).

Proof. For two arbitrary positive definite matrices X1,X2 ∈ Sn+, assume that X1 < X2. Then, the
following are true:

0 < X1 < X2 ⇒ 0 < X−1
2 < X−1

1 ⇒ 0 < ATX−1
2 A < ATX−1

1 A

⇒ 0 < (ATX−1
1 A)−1 < (ATX−1

2 A)−1 ⇒ f(X1) < f(X2).

The last deduction is based on the property that if matrix A ≤ B, then the inequality Tr{A} ≤
Tr{B} holds as well. Now the proof is completed.
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Lemma 4: [Anderson & Moore (2005)] Consider the following recursion equation

P (k + 1) = FP (k)F T +Q

where matrix P (k) ∈ Rn×n, and F and Q are known real matrices of appropriate dimensions.
If |λ(F )| < 1, for arbitrary initial P (0), we have lim

k→∞

P (k) = P̄ where P̄ is the solution to

P̄ − FP̄F T = Q.

Lemma 5: Liu et al. (2015) For 0 ≤ k ≤ N , suppose that X,Y ∈ Rn×n, X = XT > 0, Y = Y T >

0, φ(X, k) = φT (X, k) ∈ Rn×n. If

φ(X, k) ≤ φ(Y, k), ∀X ≤ Y, (21)

then the solutions M(k) and N(k) to the following difference equations

M(k + 1) ≤ φ(M(k), k), N(k + 1) = φ(N(k), k), M(0) = N(0) > 0 (22)

satisfy

M(k) ≤ N(k).

3.1 Input estimation

In this section, we consider the unknown input estimation problem. At time instant k, assume
that P̂ u

e (k − 1|k − 1), the upper bound of estimation covariance matrix P u
e (k − 1|k − 1), is Known

(the derivation of P̂ u
e (k − 1|k − 1) will be given in the next subsection). Given the event-based

measurement ye(k), we aim to obtain the input estimate d̂e(k) and an upper bound on the error
covariance of the input estimate, and then we look for an appropriate estimation gain Me(k) which
minimizes such an upper bound.
An upper bound on the error covariance of the input estimate is given in the following theorem.

Theorem 1: Consider the linear system (1) and the event-based estimator E2 in (5) with event
generator condition (3). Assume that the condition (11) is satisfied. For a given positive scalar
sequence {ε1(k), k ∈ N}, an upper bound on the error covariance matrix of the input estimation

Σ̂e(k − 1) is given by

Σ̂e(k − 1) = Me(k)Φ(k)M
T
e (k) (23)

where

Φ(k) = C(k)Q(k − 1|k − 1)CT (k) +R(k) + (1 + ε−1
1 (k))σI,

Q(k − 1|k − 1) = A(k − 1)
(

P s
e (k − 1|k − 1) + (1 + ε1(k))P̂

u
e (k − 1)

)

AT (k − 1) +W (k − 1).

7
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Proof. First, let us derive the expression of Σe(k − 1). It follows from (18) and (19) that

Σe(k − 1) = Σs
e(k − 1) + Σu

e (k − 1) (24)

Σs
e(k − 1) = Me(k)

(

C(k)(A(k − 1)P s
e (k − 1|k − 1)AT (k − 1) +W (k − 1))CT (k) +R(k)

)

MT
e (k)(25)

Σu
e (k − 1) = Me(k)

(

δ(k)δT (k) + C(k)A(k − 1)P u
e (k − 1|k − 1)AT (k − 1)CT (k)

)

(Me(k))
T

+
(

Me(k)C(k)A(k − 1)x̃u(k − 1|k − 1)
)

(Me(k)δ(k))
T

+Me(k)δ(k)
(

Me(k)C(k)A(k − 1)x̃u(k − 1|k − 1)
)T

. (26)

Using Lemma 2, we obtain

(

Me(k)C(k)A(k − 1)x̃ue (k − 1|k − 1)
)

(Me(k)δ(k))
T +Me(k)δ(k)

(

Me(k)C(k)A(k − 1)x̃ue (k − 1|k − 1)
)T

≤Me(k)
(

ε1(k)C(k)A(k − 1)P u
e (k − 1|k − 1)AT (k − 1)CT (k) + ε−1

1 (k)δ(k)δT (k)
)

MT
e (k).

(27)

Substituting (27) into (26) and noting that P u
e (k − 1|k − 1) ≤ P̂ u

e (k − 1|k − 1), we have

Σe(k − 1) ≤ Σ̂e(k − 1),

where Σ̂e(k − 1) is given in (23).

Now, we are ready to minimize the upper bound Σ̂e(k− 1) at each time instant by appropriately
designing the estimator parameter Me(k).

Theorem 2: Consider the linear system (1) and the event-based estimator E2 in (5) with event
generator condition (3). If the parameter Me(k) is chosen as

Me(k) = Π−1(k)GT (k − 1)CT (k)Φ−1(k), (28)

then 1) the condition (11) is satisfied; 2) The upper bound Σ̂e(k − 1) (given in (23)) on the error
covariance of the input estimation is minimized and the minimized upper bound is given by

Σ̂e(k − 1) = Π−1(k) (29)

where

Π(k) = GT (k − 1)CT (k)Φ−1(k)C(k)G(k − 1),

Φ(k) and Q(k) are defined in Theorem 1.

Proof. We need to search for an appropriate gain matrix Me(k) which minimizes the upper bound

matrix Σ̂e(k − 1), and the corresponding problem can be equivalently written as the following
constrained optimization problem:

min
Me(k)

Σ̂e(k − 1),

subject to Me(k)C(k)G(k − 1) = Ip.
(30)

8
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Using the completion-of-squares method, Σ̂e(k − 1) can be rearranged as follows:

Σ̂e(k − 1) =
(

Me(k)−Π−1(k)GT (k − 1)CT (k)Φ−1(k)
)

Φ(k)

×
(

Me(k)−Π−1(k)GT (k − 1)CT (k)Φ−1(k)
)T

+Π−1(k)
(31)

By choosing

Me(k) = Π−1(k)GT (k − 1)CT (k)Φ−1(k),

it can be easily found that the equality constraint in (30) is satisfied and Σ̂e(k− 1) is minimized as

Σ̂e(k − 1) = Π−1(k).

This completes the proof.

3.2 State estimation

In this section, we consider the estimation problem of the system state. We are interested in finding
an appropriate gain matrix Ke(k) for the event-based estimator E2 such that the upper bound on
the error covariance of the state estimation is minimized. First, an upper bound on the error
covariance of the state estimation is given in the following theorem.

Theorem 3: Consider the linear system (1) and the event-based estimator E2 in (5) with event
generator condition (3). Let the condition (11) be satisfied. Assume that, for a given positive scalar

sequence {ε2(k), k ∈ N}, there exist two sets of real-valued matrices P̂ u
e (k|k) and Le(k) satisfying

the following Riccati-like difference equation with the initial condition P̂ u
e (0|0) = 0:

P̂ u
e (k|k) = φ(P̂ u

e (k − 1|k − 1), k − 1), (32)

where

φ(P̂ u
e (k−1|k−1), k−1) = (1+ε2(k))Āe(k−1)P̂ u

e (k−1|k−1)ĀT
e (k−1)+(1+ε−1

2 (k))σLe(k)L
T
e (k),

Āe(k−1) = (I−Le(k)C(k))A(k−1), Le(k) = Ke(k)+E(k)G(k−1)Me(k), E(k) = I−Ke(k)C(k).

Then, we have P̂ u
e (k|k) ≥ P u

e (k|k). Accordingly, an upper bound P̂e(k|k) on the estimation error
covariance matrix Pe(k|k) is given as follows:

P̂e(k|k) = P s
e (k|k) + P̂ u

e (k|k) (33)

where

P s
e (k|k) =Ā(k − 1)P s

e (k − 1|k − 1)ĀT (k − 1) + Le(k)R(k)LT
e (k)

+ (I − Le(k)C(k))W (k − 1)(I − Le(k)C(k))T , P s
e (0|0) = P (0|0).

9
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Proof. From (16) and (17), it is straightforward to obtain that

P s
e (k|k) = Āe(k − 1)P s

e (k − 1|k − 1)ĀT
e (k − 1) + Le(k)R(k)LT

e (k) (34)

+(I − Le(k)C(k))W (k − 1)(I − Le(k)C(k))T , (35)

P u
e (k|k) = Āe(k − 1)P u

e (k − 1|k − 1)ĀT
e (k − 1) + Le(k)δ(k)δ

T (k)LT
e (k)

+Āe(k − 1)x̃ue (k − 1|k − 1)(Le(k)δ(k))
T + Le(k)δ(k)(Āe(k − 1)x̃ue (k − 1|k − 1))T .(36)

For an arbitrary positive scalar ε2(k), it follows from Lemma 2 that

Āe(k − 1)x̃ue (k − 1|k − 1)(Le(k)δ(k))
T + Le(k)δ(k)(Ā(k − 1)x̃ue (k − 1|k − 1))T

≤ε2(k)Āe(k − 1)P u
e (k − 1|k − 1)ĀT

e (k − 1) + ε−1
2 (k)σLe(k)L

T
e (k)

which, together with (36), indicates that φ(P u
e (k − 1|k − 1), k − 1) ≥ P u

e (k|k). As P̂ u
e (0|0) =

P u
e (0|0) = 0, and P̂ u

e (k|k) can be calculated iteratively by the Riccati-like difference equation

P̂ u
e (k|k) = φ(P̂ u

e (k − 1|k − 1), k − 1). It follows from Lemma 5 that

P̂ u
e (k|k) ≥ P u

e (k|k),∀k > 0, (37)

and, furthermore, we can easily obtain from (33) and (37) that

P̂e(k|k) ≥ Pe(k|k),∀k > 0

and the proof is now complete.

Before we design the estimator, we denote

Ω(k) ,

{[

P̃e(k − 1|k − 1) + Λ(k)GT (k − 1)
]

CT (k)Ξ−1(k)−G(k − 1)Me(k)
}

×
{

I −
[

I − C(k)G(k − 1)Me(k)
]+[

I − C(k)G(k − 1)Me(k)
]

}

In the following theorem, the upper bound matrix P̂e(k|k) at each time instant is minimized by
appropriately designing the estimator parameter Ke(k).

Theorem 4: Consider the linear system (1) and the event-based estimator E2 (5) with event gen-
erator condition (3). Assume that the estimation parameter Me(k) is chosen as in (28). The matrix

P̂e(k|k) given in (33), which is an upper bound on the error covariance Pe(k|k) of the state esti-
mation, can be minimized at the iteration when Ω(k) = 0 with the parameter Ke(k) given by

Ke(k) =
(

(

P̃e(k−1|k−1)+Λ(k)GT (k−1)
)

CT (k)Ξ−1(k)−G(k−1)Me(k)
)

(

I−C(k)G(k−1)Me(k)
)+

(38)
and the minimum given by

P̂e(k|k) =Λ(k)GT (k − 1)CT (k)Ξ−1(k)C(k)G(k − 1)ΛT (k) + P̃e(k − 1|k − 1)

− P̃e(k − 1|k − 1)CT (k)Ξ−1(k)C(k)P̃e(k − 1|k − 1)
(39)

10
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where

P̃e(k − 1|k − 1) = A(k − 1)
(

P s
e (k − 1|k − 1) + (1 + ε2(k))P̂

u
e (k − 1|k − 1)

)

AT (k − 1) +W (k − 1),

Ξ(k) = C(k)P̃e(k − 1|k − 1)CT (k) +R(k) + (1 + ε−1
2 (k))σI,

Λ(k) =
(

G(k − 1)− P̃e(k − 1|k − 1)CT (k)Ξ−1(k)C(k)G(k − 1)
)(

GT (k − 1)CT (k)Ξ−1(k)C(k)G(k − 1)
)

−1
.

(40)

In the special case that the two sets of positive scalar sequences are identical, that is, ε2(k) =
ε1(k),∀k ∈ N, the expression of Ke(k) reduces to the following equation,

Ke(k) = P̃e(k − 1|k − 1)CT (k)Ξ−1(k). (41)

Proof. For locally minimum-variance estimation, we first look for Le(k) which minimizes P̂e(k|k)
subject to the constraint Le(k)C(k)G(k− 1) = G(k− 1). Using the completion-of-squares method,

P̂e(k|k) can be rewritten as follows:

P̂e(k|k) =
(

Le(k)Ξ(k) − P̃e(k − 1|k − 1)CT (k)− Λ(k)GT (k − 1)CT (k)
)

Ξ−1(k)

×
(

Le(k)Ξ(k) − P̃e(k − 1|k − 1)CT (k)− Λ(k)GT (k − 1)CT (k)
)T

+ P̃e(k − 1|k − 1) + Λ(k)GT (k − 1)CT (k)Ξ−1(k)C(k)G(k − 1)ΛT (k)

− P̃e(k − 1|k − 1)CT (k)Ξ−1(k)C(k)P̃e(k − 1|k − 1)

(42)

where P̃e(k − 1|k − 1), Λ(k), Ξ(k) are defined in (40).
By choosing

Le(k) =
(

P̃e(k − 1|k − 1) + Λ(k)GT (k − 1)
)

CT (k)Ξ−1(k), (43)

it can be found that P̂e(k|k) is minimized and the minimum of P̂e(k|k) is given by

P̂e(k|k) =Λ(k)GT (k − 1)CT (k)Ξ−1(k)C(k)G(k − 1)ΛT (k) + P̃e(k − 1|k − 1)

− P̃e(k − 1|k − 1)CT (k)Ξ−1(k)C(k)P̃e(k − 1|k − 1).

Note that Le(k) = Ke(k) +
(

I −Ke(k)C(k)
)

G(k − 1)Me(k) and Ω(k) = 0, it is easy to see that
the minimum-norm solution Ke(k) to

(

P̃e(k − 1|k − 1) + Λ(k)GT (k − 1)
)

CT (k)Ξ−1(k) = Ke(k) +
(

I −Ke(k)C(k)
)

G(k − 1)Me(k) (44)

exists and is given by

Ke(k) =
(

(

P̃e(k−1|k−1)+Λ(k)GT (k−1)
)

CT (k)Ξ−1(k)−G(k−1)Me(k)
)

(

I−C(k)G(k−1)Me(k)
)+

.

When ε2(k) = ε1(k), we have Φ(k) = Ξ(k). Accordingly, Ke(k) is obtained from (44) as follows:

Ke(k) = P̃e(k − 1|k − 1)CT (k)Ξ−1(k).

This completes the proof.

11
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Remark 2: In case that Ω(k) 6= 0, the estimator gain (38) would lead to a practical (not necessarily

minimum-variance) solution with guaranteed upper bound P̂e(k|k). On the other hand, if the
threshold of event-triggering σ is set to be zero, then the event-based mechanism reduces to the
traditional time-based mechanism and, accordingly, our proposed estimator reduces to the optimal
time-based estimator proposed in Gillijns & Moor (2007).

3.3 Discussion on choosing the scalar parameters

From Theorems 1 and 3, it is clear that the estimation performance at time instant k depends on
system data and the scalar sequences εi(0), εi(1), . . . , εi(k), i = 1, 2. It means that, to compute an
optimal event-based estimator at time k, the scalar sequences εi(0), εi(1), . . . , εi(k − 1), i = 1, 2,
need to be re-computed, and so do the corresponding estimator gain matrices (28) and (38). The
optimization over the scalar sequences becomes numerically intractable as the time instant k tends
to +∞.
To reduce the computation complexity, instead of optimizing the performance over all the k

scalar parameters, a practical way is to optimize the trace of matrices Σ̂e(k) and P̂e(k|k) over a
fixed length of scalar parameters εi(k+1−T ), εi(k+2−T ), . . . , εi(k), i = 1, 2. For the special case
that the length T is equal to 1, an optimal and suboptimal algorithms on how to choose the scalar
parameters are given below respectively.

Proposition 1: For the event-based estimator E2 in (5) with the parameters Me(k) and Ke(k)

given in (28) and (38), respectively, Tr{Σ̂e(k)} and Tr{P̂e(k|k)} are minimized if the scalars ε1(k)
and ε2(k) are given as follows:

ε1(k) = arg min
ε1(k)

Tr
{

Π−1(k)
}

(45)

ε2(k) = arg min
ε2(k)

Tr
{

Λ(k)GT (k − 1)CT (k)Ξ−1(k)C(k)G(k − 1)ΛT (k) + P̃e(k − 1|k − 1)

− P̃e(k − 1|k − 1)CT (k)Ξ−1(k)C(k)P̃e(k − 1|k − 1)
}

.

(46)

An analytical suboptimal scalar ε1(k) can be chosen as follows:

ε1(k) =







√

σ
ρ̄(k) , if Φ

(

√

σ
ρ̄(k) , k

)

< Φ(
√

σ
ρ(k) , k)

√

σ
ρ(k) , otherwise.

(47)

where ρ̄(k), ρ(k) are the minimum and the maximum eigenvalues of C(k)A(k − 1)P̂e(k − 1|k −
1)AT (k − 1)CT (k), respectively.

Proof. With the obtained optimal gain matrices Me(k) and Ke(k), we search for the opti-
mal/suboptimal scalar parameters ε1(k) and ε2(k). From (29) and (42), it is straightforward to
derive the optimal ε1(k) and ε2(k), which are given in (45) and (46), respectively. However, since
it is numerical intractable to compute the analytical solution for the optimal ε1(k) from (45), we
would like to look for a suboptimal ε1(k). Instead of searching for the optimal ε1(k) from the interval

(0,+∞), in the following, a suboptimal ε1(k) belonging to the interval
(

0,
√

σ
ρ̄(k)

]

⋃

[

√

σ
ρ(k) ,+∞

)

,

is derived in the analytical form.

12
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Choosing two arbitrary scalar variables ε2(k) > ε̃1(k) > 0, we have

Φ(ε̃1(k), k) − Φ(ε1(k), k) = (ε̃1(k)− ε1(k))C(k)A(k − 1)P̂e(k|k)AT (k − 1)CT (k) + σ(ε̃−1
1 (k)− ε−1

1 (k))Im

= (ε̃1(k)− ε1(k))
(

C(k)A(k − 1)P̂e(k|k)AT (k − 1)CT (k)− σ

ε1(k)ε̃1(k)
Im

)

,

from which we conclude the following:

(i) if ε1(k), ε̃1(k) ∈
(

0,
√

σ
ρ̄(k)

]

, then Φ(ε̃1(k), k) < Φ(ε1(k), k);

(ii) if ε1(k), ε̃1(k) ∈
[

√

σ
ρ(k) ,+∞

)

, then Φ(ε̃1(k), k) > Φ(ε1(k), k);

(iii) if ε1(k), ε̃1(k) ∈
[

√

σ
ρ̄(k) ,

√

σ
ρ(k)

]

, then Φ(ε̃1(k), k) and Φ(ε1(k), k) are not dominated by each

other.
On the other hand, it follows from Lemma 3 that Tr{Σe(k)} is a strictly increasing function

of Φ(k). Hence, it is known that, for ε1(k) ∈
(

0,
√

σ
ρ̄(k)

]

⋃

[

√

σ
ρ(k) ,+∞

)

, Tr{Σe(k)} attains the

minimum when

ε1(k) =







√

σ
ρ̄(k) , if Φ(

√

σ
ρ̄(k) , k) < Φ(

√

σ
ρ(k) , k)

√

σ
ρ(k) , otherwise.

This completes the proof.

The complete procedure of our proposed estimation algorithm is described in Algorithm 1.

Remark 3: Different from the traditional time-based estimation problem, in the event-based
estimation one, the exact values of the measurements at the time instants when no transmission is
triggered cannot be obtained by the estimator. Instead, only the inequality form of the measurement
information in (4) is known. In our algorithm, using the information of measurement (expressed
in (4)) and the system parameters, the input and state estimates are obtained with a guaranteed
upper bound on estimation covariances.

4. Boundedness Analysis

In the section, we investigate the asymptotic boundedness properties of the upper bound P̂e(k|k)
for the time-invariant system. Without notation confusion, when referring to the time invariant
system (1), it is explicitly assumed that the parameter matrices are fixed as constant matrices,
that is, A(k) = A, G(k) = G, C(k) = C, W (k) = W , and R(k) = R.
To facilitate our analysis, existing results on time-based estimation problems for time-invariant

systems are summarized in the following lemma.

Lemma 6: Darouach & Zasadzinski (1997) Consider the linear time-invariant system with un-
known input (1) and the time-based estimator E1 in (2). The corresponding error covariance matrix
Pt(k|k) of the state estimation converges to a unique fixed positive semi-definite matrix P̄t for any
given initial condition Pt(0|0) if and only if the following two equations hold,

Rk

{[

zIn −A G

C 0

]}

= n+ p,∀z ∈ C, |z| ≥ 1. (48)

13
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Algorithm 1 Event-based Simultaneous Input and State Estimation (ESISE)

1: Initialize:
k = 0, P̂u

e
(0) = 0, P s

e
(0) = P (0|0) ;

2: while k ≥ 1 do
3: if opt=“optimal” then
4: Choose the scalar ε1(k) via (45) ;
5: Calculate the input estimate gain Me(k) via (28);

6: Calculate the upper bound of the input estimation Σ̂e(k − 1) via (29);
7: Choose the scalar ε2(k) via (46) ;
8: Calculate the state estimate gain Ke(k) via (38) ;

9: Calculate P̂e(k|k) via (39) ;
10: else if opt=“sub-optimal” then
11: Choose the scalar ε1(k) via (47) ;
12: Calculate the input estimate gain Me(k) via (28);

13: Calculate the upper bound of the input estimation Σ̂e(k − 1) via (29);
14: Set the scalar ε2(k) = ε1(k);
15: Calculate the state estimate gain Ke(k) via (41) ;

16: Calculate P̂e(k|k) via (39) ;
17: end if
18: Input and state estimate d̂e(k), x̂e(k|k) via (5);
19: k = k + 1;

20: end while

Rk

{[

A− ejωI G W
1

2 0

ejωC 0 0 R
1

2

]}

= n+m,∀ω ∈ [0, 2π]. (49)

Moreover, with the associate limiting gain matrices Kt := lim
k→∞

Kt(k), Mt := lim
k→∞

Mt(k), the time-

invariant estimator is stable as well, i.e., the spectral radius ρ(Āt) of matrix Āt := (I − LtC)A is
less than 1, where Lt = Kt + (I −KtC)GMt.

Theorem 5: Consider the linear time-invariant system with unknown input (1) and event gener-
ator condition (3). Assume that both (48) and (49) are satisfied and an event-based estimator is
designed according to Algorithm 1. With an arbitrarily chosen constant scalar ε2 ∈ (0, ε̄), where

ε̄ = 1
ρ2(Āt)

− 1, the state error covariance matrix Pe(k|k) is bounded and the upper bound P̂e(k|k)
is asymptotically convergent.

Proof. 1). First, we prove that, for the event-based state estimator, when the filter gain Ke(k) is
set to be equivalent to the optimal gain Kt(k) obtained in the time-based scenario, then the state
estimation error covariance is bounded.
When the filter parameters are chosen as Ke(k) = Kt(k), Le(k) = Lt(k), then Āe = Āt. From

Lemma 6, it is known that Āe is a stable matrix and lim
k→∞

Pt(k|k) = P̄ . Moreover, it is easily found

that P s
e (k|k) coincides with Pt(k|k) and hence P s

e (k|k) converges to matrix P̄t. As Āe is a stable
matrix and ε ∈ (0, ε̄), then Ãe :=

√
1 + εĀe is a stable matrix as well.

Noting that P̂ u
e (k|k) satisfies

P̂ u
e (k|k) = ÃeP̂

u
e (k − 1|k − 1)ÃT

e + (1 + ε−1)σLeL
T
e ,

it follows from Lemma 4 that P̂ u
e (k|k) → P̄ u

e when k → ∞, where P̄ u
e = ÃeP̄

u
e Ã

T
e +(1+ε−1)σLeL

T
e .

Furthermore, by noticing the fact that P̂e(k|k) = P̂ s
e (k|k)+P̂ u

e (k|k), we have lim
k→∞

Pe(k|k) = P̄t+P̄ u
e .

2). Next, through the induction approach, we aim to prove that, with the proposed optimal filter

parameters Ke(k) and Me(k), the upper bound matrix P̂ u(k|k) is always less than the one with

14
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the gain Kt(k). That is, we would like to show that

P̂e

(

k|k,Ke(k), P̂e

(

k − 1|k − 1,Ke(k − 1)
)

)

≤ P̂e

(

k|k,Kt(k), P̂e

(

k − 1|k − 1,Kt(k − 1)
)

)

. (50)

When k = 0, P s
e (0|0) = P (0|0), and P u

e (0|0) = 0, it is easy to find that P̂e(0|0,Ke(0)) =

P̂e(0|0,Kt(0)). Suppose that, when k = i− 1, P̂e(i− 1|i− 1,Ke(i− 1)) ≤ P̂e(i− 1|i− 1,Kt(i− 1))

and we like to prove that (50) holds for k = i. In this case, since Ke(i) minimizes P̂e(i|i) given

P̂e(i− 1|i− 1), we can see that

P̂e

(

i|i,Ke(i), P̂e

(

i− 1|i− 1,Ke(i− 1)
)

)

≤ P̂e

(

i|i,Kt(i), P̂e

(

i− 1|i− 1,Ke(i− 1)
)

)

. (51)

On the other hand, it can be found that

P̂e

(

i|i,Kt(i), P̂e

(

i− 1|i − 1,Kt(i− 1)
)

)

− P̂e

(

i|i,Kt(i), P̂e

(

i− 1|i− 1,Ke(i− 1)
)

)

= Āe(i− 1)
(

(1 + ε)
(

P̂ u
e (i− 1|i− 1,Kt(i− 1))− P̂ u

e (i− 1|i− 1,Ke(i− 1))
)

−
(

P s
e (i− 1|i− 1,Ke(i− 1))− P s

e (i− 1|i− 1,Kt(i− 1))
)

)

ĀT
e (i− 1).

(52)

Noting that P s
e (i− 1|i− 1,Kt(i− 1)) ≤ P s

e (i− 1|i− 1,Ke(i− 1)), and P̂e(i− 1|i− 1,Ke(i− 1)) ≤
P̂e(i− 1|i− 1,Kt(i− 1)), it can be inferred that

0 ≤ P s
e

(

i− 1|i− 1,Ke(i− 1)
)

− P s
e

(

i− 1|i− 1,Kt(i− 1)
)

≤ P̂ u
e

(

i− 1|i− 1,Kt(i− 1)
)

− P̂ u
e

(

i− 1|i − 1,Ke(i− 1)
)

.

Substituting the above inequalities into (52), one obtains

P̂e

(

i|i,Kt(i), P̂e

(

i− 1|i− 1,Ke(i− 1)
)

)

≤ P̂e

(

i|i,Kt(i), P̂e

(

i− 1|i− 1,Kt(i− 1)
)

)

. (53)

Combining the inequalities (51) and (53) leads to (50).
3). In this step, we aim to prove that the upper bound is asymptotically bounded. Noting that

lim
k→∞

P̂e

(

k|k,Kt(k), P̂e

(

k − 1|k − 1,Kt(k − 1)
)

)

= P̂ ,

it follows from (53) that

lim
k→∞

P̂e

(

k|k,Ke(k), P̂e

(

i− 1|i− 1,Ke(i− 1)
)

)

≤ P̂ .

This completes the proof.
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5. Numerical example

The simulation example proposed in Hsieh (2000) is used here to demonstrate the effectiveness of
our proposed estimator, where the parameters for the linear system equations (1) are given by

A(k) =





0.1 0.5 0.08
0.6 0.01 0.04
0.1 0.7 0.05



 , W (k) =





10 0 0
0 10 0
0 0 10



 ,

C(k) =

[

1 1 0
0 1 1

]

, G(k) =





0
2
1



 , R(k) =

[

20 0
0 20

]

.

The initial state is x(0) = [1 1 1]T . The initial estimate of the state is assumed to be zero and its
covariance is given by P (0|0) = diag{10, 10, 10}. The unknown input is given by

d(k) = 50us(k)− 100us(k − 20)

where us(k) is the unit-step function. The simulation time is 40 time steps. The threshold of the
event-generator is set as σ = 40.
In order to ensure the generality of the experimental results, 100 Monte-Carlo simulations are run.

The notion of mean square error (MSE) is adopted to evaluate the estimation accuracy. Let MSEi,k

denotes MSE for the kth-run for the estimate of the ith state. The estimation for the accuracy
on the ith state is MSEi =

1
100

∑100
k=1(xi,k − x̂i,k)

2, and the average estimation performance of all

states (AMSE) is defined as AMSE := 1
n

∑n
j=1MSEj, where n is the number of the state variables.

Figs. 1-2 show the actual and the estimated values of the unknown input and the system states.
It can be seen that the proposed event-based estimator can estimate the input and the system
state accurately. Fig. 3 shows the AMSE of the input and the states, which confirms that the
AMSEs stay below their upper bounds. Moreover, it can be seen that the upper bounds converge
to constant values, which confirms the asymptotic boundedness property of upper bounds proposed
in Theorem 5.
To illustrate the effect of the parameter sequence ε1(k) on the estimation performance, a compar-

ison experiment is implemented. The two estimator are of the same structure, and in one estimator,
the suboptimal parameter sequences ε1(k) is calculated based on the equation (47), while in the
other estimator, the parameter sequences are chosen arbitrarily as ε1(k) = 0.5 for all k. From
Fig. 3-b, it can be found that the estimator with the suboptimal parameter sequence ε1(k) yields a
tighter bound on the estimation error covariance than the one with an arbitrarily chosen parameter
sequence ε1(k).
Fig. 4 shows the triggering events during the simulation period. Compared with the time-based

mechanism, it can be found that the transmission times are significantly reduced, which clearly
shows the superiority of the proposed event-based mechanism.

6. Conclusion

In this paper, an event-based joint input and state estimator has been proposed for the sake of
reducing the sensor data transmission rate and the energy consumption. Based on an SOD concept,
the sensors transmit the measurements when the prescribed conditioned is violated. By using the
inductive method and intensive analysis on the estimation error, upper bounds of the estimation
error covariances are obtained recursively. Subsequently, by choosing some scalar parameters prop-
erly, such upper bounds are reduced. In addition, for linear time-invariant system, the upper bounds
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Figure 1. The actual and estimated states x1
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Figure 2. The actual and estimated states x1 and x2

are proved to be asymptotically bounded under certain conditions. Finally, through a numerical
simulation, we have demonstrated that the proposed event-based estimator yields acceptable esti-
mation performance while reduces the number of transmission greatly. Our future research topic
would be the extension of the main results of this paper to more complex systems, see e.g. Chen,
Liang, & Wang (2016); Li, Shen, Liu, & Alsaadi (2016); Liu, Liu, & Alsaadi (2016); Liu, Wei, Song,
& Liu (2016a,b); Li, Wei, Han, & Liu (2016); Liu, Liu, Obaid, & Abbas (2016); Shu, Zhang, Shen,
& Liu (2016); Wen, Cai, Liu, & Wen (2016); Zeng, Wang, & Zhang (2016); Zhang, Wang, Liu,
Ding, & Alsaadi (2017); Zhang, Ma, & Liu (2016).
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Figure 3. The AMSEs and their upper bounds
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