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An Evolutionary Approach to the Design of
Controllable Cellular Automata Structure for
Random Number Generation

Sheng-Uei Guan and Shu Zhang

Abstract—Cellular automata (CA) has been used in pseudo- of the patterns generated by maximum-length CA is signifi-
random number generation for over a decade. Recent studies cantly better than other widely used methods, such as linear
show that two-dimensional (2-D) CA pseudorandom number teaqpack shift registers. The intensive interest in this field can
generators (PRNGs) may generate better random sequences thanb ttributed to the ph | th of the VLS technol
conventional one-dimensional (1-D) CA PRNGs, but they are e attn u.e othep epomeng g'_’OW 0 Q echnology
more complex to implement in hardware than 1-D CA PRNGs. that permits cost-effective realization of the simple structure of
In this paper, we propose a new class of 1-D CA—controllable local-neighborhood CA. CA has become one of the commonly
cellular automata (CCA)—without much deviation from the ysed pseudorandom number generators (PRNGs) [20].

structural simplicity of conventional 1-D CA. We first give a T ; -
general definition of CCA and then introduce two types of CCA: In the last decade, one-dimensional (1-D) CA PRNGs have

CCAO0 and CCA2. Our initial study shows that these two CCA been St“d'e‘?' extensively [9], [11]-{14], [17]{19], [2_1]_[23_]’
PRNGs have better randomness quality than conventional 1-D CA [25]. Recentinterest has been focused more on two-dimensional
PRNGS, but that their randomness is affected by their structures. (2-D) CA PRNGs [3], [15] since their randomness appears
To find good CCAO/CCAZ structures for pseudorandom number  petter than that of 1-D CA PRNGs. But taking into account
generation, we evolve them using evolutionary multiobjective the design complexity and computation efficiency, it is quite

optimization techniques. Three different algorithms are presented. ... . .
One makes use of an aggregation function; the other two are difficult to conclude which one is better. Compared to 2-D CA

based on the vector-evaluated genetic algorithm. Evolution results PRNGS, 1-D PRNGs are easier to implement on a large scale.
show that these three algorithms all perform well. Applying a set In this paper, we propose a novel CA PRNG—controllable

of randomness tests on the evolved CCA PRNGs, we demonstratecellular automata (CCA) PRNG, which obtains comparable

Egar‘]t égeé%ﬁ”g?:;)?eefs t'ﬁa?itfte{_éhém%t,fé Sl'D CAPRNGs and r5ndomness quality as that of 2-D CA PRNGs without losing
P ' _ the structural simplicity of 1-D CA PRNGs.

Index Terms—Controllable cellular automata, genetic algo-  Based on the observation of the tested CCA PRNGs, we find

rithms (GAs), multiobjective optimization. that the randomness of CCA PRNGs is affected by their struc-
tures. To find some CCA structures for pseudorandom number
NOMENCLATURE generation, we use evolutionary multiobjective optimization

(EMOOQO) techniques. Three different algorithms based on

CA Cellular automata. EMOO are presented. They generate compatible results on the
CCA Contrqllable cellu!ar .autc-)mata.- o CCA structures evolved, with slight difference in performance.
EMOO Evoluqonary multlobjectNe optimization. Randomness test results on the evolved CCA PRNGs show
GA Gen_etlp algorithm. that they can generate good randomness quality and the quality
PBCA Periodic boundary cellular automata. remains good for a wide range of initial seeds.

PCA Programmable cellular automata. The paper is organized as follows. We first give an overview
PRNGs Psgudorandom numbgr_generators. on CA background and related work in Section Il. In Sec-
SCC Serial correlation coefficient.

tion Ill, two CCA PRNGs—CCAOQ and CCA2—are introduced.

Section IV presents three EMOO algorithms. Section V shows

the evolution results on CCA structures and the comparison

|. INTRODUCTION on these three techniques. Section VI compares the evolved

ELLULAR automata (CA) were initiated in the earlyCCA PRNGs with 1-D/2-D CA PRNGs. Section VII provides
1950s to explore self-replicating structures. Later i Conclusion.

1986, Wolfram first applied them in pseudorandom number

generation. Wolfram’s work in [24] proved that the randomness Il. RELATED WORK

A. CA PNGs
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3is used in practice. We define the state of a CA at tirteebe From left - From right

then-tuple formed from the states of the individual cell&;) =
[21(t), ..., x,(t)]. The next-state function of a 3-neighbor-
hood ¢ = 1) CA is computed a%(t + 1) = f(z(t)) =
[f10, z1(), @2(t)), ..., filwioa(t), @i(t), wiga(t)), -] Rule Control
When eachy; is a linear function,f is also a linear function,
mappingn-tuples ton-tuples. The evolution of théh cell in a Signals . T
1-D, 3-neighborhood CA can be represented as a function of
the present states of the-{ 1)th, (;)th, and ¢ + 1)th cells as:
zi(t + 1) = fi(zi—1(t), z:(t), z;+1(t)), where f; represents Fig. 1. Programmable cell structure.
the transition rule for theijth cell.

Some definitions to characterize the properties of CA a
noted below.

Definition 1: If the rules of a CA cell involve onlxoRr logic,

v

Fumber generation. Fig. 1 shows a programmable cell structure.
The rule control signals can be stored in a ROM or generated

o . ) ) . by a CA. In the latter case, we call it a two-stage PCA. Unlike
then it is called dinear rule. Rules involvingxNOR logic are

ferred t | ted ruletn thi uniform rule-30 CA, adjacent cells in nonuniform CA are not
referred to asomplemented rule IS Paper, We US€ a COM-¢, . 0ated in both time and space [17]. Hortensius [18] also

binatipn O.f both linear and complemented r_ules. A CA ha\."ngﬁ’oposed another PCA PRNG that uses a combination of rules
Eomgzaggn OXOR andxNoR (~xOR) rules is called amddi- 30 and 45. This generator can evolve to a random pattern of
ve &/ .[. ! outputs, but its bit sequence correlation is much higher than
Definition 2: If all the CA cells obey the same rule, thenthe, " < 1o pCA 90150 [18]
ﬁﬁ‘)'risdsgf t90 be aniform C/ otherwise, it is aonuniform or Later in 1996, Sipper and Tomassini [14] evolved a 50-cell
y [9]. CA with a mélange of rules 90, 150, and 165. This CA is

Def'”'t_'O” 3: A CA s said to _be geriodic boundary C.:A henceforth referred to as PCA 90-165. Based on their work,
(PBCA) if the extreme cells (the first and last cells) are adjace? massiniet al. [15] evolved another 50-cell CA with the

to each other. A CA is said to bermill-boundaryCA if every 1" miination 90, 105, 150, and 165 in 1999. This CA
extreme cellis only connected to its left (right) cell [22]. is henceforth referred to as PCA 90-105. These two 2-bit

CA PRNGs: boundary condition, transition rule, length of CAyio4rithm while those two CA proposed by Hortensius [18]
and initial seed. We use the periodic boundary condition becawgge handcrafted. The DIEHARD test results showed that these
it is better than the null-boundary condition in random nUMb&L nonuniform CA PRNGs were better than those designed
generatipn [23]. The cho'ice of transitipn rules i; important fQ}y, Hortensius in [17], [18]; however, they still cannot pass
both uniform and nonuniform CAs. Since considerable effof e of the tests in DIEHARD and are inferior to the classical
is expended exploring the effect of different rules, we use On&énerators.
thos_e rules that hav_e proven to be good in random number 9€NT1e first work on 2-D CA PRNGs was done by Chowdhaty
eration. Here, we give the Boolean form of the rules used agfl|3i, 1994. Their results suggest that 2-D CA are superior to
their numbers are given in accordance with Wolfram’s conveR-p = of the same size in pseudorandom number generation.
tion [24]. The following rules are either additive or linear excegi'ollowing their idea, Tomassiet al.[L5] evolved several & 8
rule 30. 2-D CA PRNGs with rules 15, 63, 31, and 47. Their DIEHARD
* Rule 30:z;(t + 1) = m;_1(t) XOR [;(t) ORx;41(t)]. test results show that some of the evolved CA PRNGs can pass
* Rule 90:z;(t + 1) = x;—1(t) XOR m;41(t). all the tests. Based on the observation of these evolved 2-D CA
Rule 105, (t+1) = z;(¢) XNOR [x;_1(t) XOR z;41(t)]. PRNGs, they can handcraft even better PRNGs.
* Rule 150:z;(t 4+ 1) = x;i_1(t) XOR z;(t) XOR m;41(t). Although 2-D CA PRNGs are better than 1-D CA PRNGs in
* Rule 165:x;(¢t + 1) = x;—1(t) XNOR m;41(t). random number generation, they lose the structural simplicity
and computation efficiency of 1-D CA PRNGs. Therefore,
finding a set of CA PRNGs that can obtain good randomness

. . _ %'uality without losing the merits of 1-D CA PRNGs becomes
tion was done by Wolfram on rule-30 uniform CA in 1986 [19]Important. Following the idea of PCA, in which a rule control

His work dgmonstrated CA's ability to produce highly randorrhne is added into each cell to improve the randomness of CA
temporal bit sequences [23], [24]. Later, other rules were al NGs, we add more control lines on CA cells to control the

applied in uniform CA PRNGs. Tomassiet al. concluded in neighborhood relation and updating of states to further improve

[14] that according to the DIEHARD test results, rule 105 is tht('ﬁe randomness of 1-D CA PRNGs. This results in a new type
best, followed by rules 165, 90, and 150, with rule 30 comin(g|z CA—a CCA

in last.

Hortensius proposed the first nonuniform CA [or pro- .
grammable CA (PCA)] PRNG using rules 90 and 150 in 198%‘ Introduction to Randomness Tests
[17]. This CA PRNG is referred to hence as PCA 90-150. Statistical (empirical) tests are used widely to evaluate the
PCAs that allow different rules to be used on the same celindomness of PRNGs. ENT [26] and DIEHARD [8] are
at different time steps have proven better than CA in randaiime two commonly used test suites. The former is designed
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Fig. 2. Controllable cell structure. (a) Programmable controllable cell. (b) Non-programmable controllable cell.
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Fig. 3. Structure of a CCA.

according to the criteria set by Knuth [2]; the latter is devised The structure of a CCA is shown in Fig. 3. It hascells in
by Marsaglia [8]. total. M (M <= L) cells are controllable cells and the re-
mainingL — M cells are basic cells. Here, all the basic cells are
IIl. CCA PRNGs programmable cells. Thus, in this CCA, there d&reule con-
trol bits andM cell control bits. Compared to ah-cell PCA,

A. CCA which hasL rule control bits, the extra cost of CCA is tlid

In this section, the CCA is introduced. To explain the schenoell control bits. During the CA transition, the rule control sig-
explicitly, several new concepts are defined first to identify theals will decide which rule to be employed on both basic and
CCA properties. controllable cells; the cell control signals will decide the status

Definition 4: A CCA is a CA in which the action (how the of controllable cells. In our work, the rule and cell control sig-
state of a cell is updated in each cycle) of some cells can bels are generated by two uniform CA separately. All the CCA
controlled via cell control signals. Similar to rule control sigdiscussed in this paper are based on this structure. The only
nals, cell control signals can be stored in ROM or generated difference among them is that they could have different types
a CA. of controllable cells. The number and location of controllable

Definition 5: If a cell is under the control of cell control cells in CCA are called as “setting” of controllable cells in the
signal, it is acontrollable cel] otherwise, it is dasic cell CCA following.
is the combination of controllable cells and basic cells. Both The usage of controllable cells in a CCA differentiates it from
controllable cells and basic cells could have rule control signaisPCA, in which only rule control signals exist. Once the actions
Fig. 2 shows the nonprogrammable/programmable controllalaiecontrollable cells and basic cells are specified, the setting
cell structure. In this paper, we discuss programmable controf-controllable cells will decide the performance of CCA. The
lable cells only, henceforth referred to as controllable cells. common idea in PCA and CCA is that they both use some con-

The action of a controllable cell is determined by its currenitol lines on the CA cells to make the CA transition more unpre-
cell control signal. A controllable cell can be normal (when thdictable and flexible. The difference is that in PCA, all the cells
cell control signal is 0) or activated (when the cell control sign&lave uniform structures, while obviously in CCA, the structure
is 1). When the controllable cell is normal, the computation @f controllable cells are not the same as that of basic cells. To
the states of the controllable cell and its neighbors is as usaahieve similar CA performance, we may use other methods;
(according to the current rule control signals and the statesfof example, increasing the radius (i.e., number of neighbors),
its neighbors). When the controllable cell is activated, the comsing more states in each cell, or evolving the rule tables for
putation of the states of the controllable cell and its neighboesch cell as some researchers do in [15], [16]. It is hard to say
is specified by some predefined actions. The actions appliedabich method is better in performance or hardware design since
the controllable cell and its neighbors could be different. It itheir costs are not comparable.
observed that the predefined actions affect the state computanstead of evolving rule tables, we propose a scheme to
tion of controllable cells. control the status of CA cells so that different computation
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approaches could be applied when a cell status changes. B¢ Initial seed
on this, we propose a new class of CA—CCA, capable l l l
changing cell status on the fly. Our work then focuses c¢ (Rule control word | Rule control CA  4—— Initial seed
finding good configurations of CCA that can obtain goot| cc
randomness quality. In the following, we introduce two cor

trollable cell types and use them as examples of CCA to furth l l l
study their performance. Output sequence

A | Cell control word
< Cell control CA [ 4—— [nitial seed

B. Two Types of CCA: CCAO and CCA2 Fig. 4. CCA PRNG structure.

As we have just introduced, when the cell control signal is

zero, a controllable cell acts the same as a basic cell, while Whgitselves. The four additive rules used in our work are rules 90,
the cell control signal is one, the controllable cell performs som&q, 105, and 30. Rules 90 and 150 are used as the transition
predefined action, which can be different from the action it pefgles in CCA,; this is to facilitate the comparison with 1-bit PCA
forms when it is normal. This means that the action a contralo_150. Rule 30 is used in the rule control CA and rule 105 is
lable cell performs when it is activated decides the property @éed in the cell control CA, since these two rules are said to be
controllable cell. The Simplest action that an activated Contqunong the best ones in random number generation according to
lable cell can take is to keep its state during the CA computati@fbrtensius [17].
process. In the meantime, the states of its neighbors are comfraditionally, CA PRNGs are handcrafted. The design
puted as usual. This type of controllable cell is called a Typeddocess is time consuming and troublesome. During the past
controllable cell. A CCA that is a combination of Type 0 conten years, researchers began to use evolutionary algorithm to
trollable cells and basic cells is henceforth referred to as CCAQ,olve CA PRNGS. Recently, Tomassatial.[14] successfully

A Type 2 controllable cell is found when a controllable celbyolved the rule tables of 2-D CA PRNGs using their cellular
is activated, and it keeps its latest state, while its neighbors wilogramming algorithm. Because our objective is to evolve
bypass it. This means the activated controllable cell will not Re setting of controllable cells but not rule tables, cellular

involved in the sate computation of its neighbors. In this wagrogramming is not suitable in our work. EMOO is employed
the neighborhood relationship is changed dynamically durif@re to evolve CCA PRNGS.

the CA computation process. A CCA that is a combination of
Type 2 controllable cells and basic cells is referred to as CCA2 IV. EMOO APPROACHES
or neighbor-changing CA (NCA). CCA2 cannot be simulated o
by any PCA due to its neighbor-changing behavior. A. Objectives
With the introduction of controllable cells in CCA, the struc-

C. CCAPRNGs ture of CCA is not uniform, as that of conventional CA. The ob-

As we have introduced in Section IlI-A, the rule control sigjective of our work is to find good settings of controllable cells
nals and cell control signals for CCA are generated by two CCAO0/CCA2 PRNGs. Moreover, because controllable cells
CA separately. The CA generating rule (cell) control signals imay affect the choice of output cells, we also have to consider
called as rule (cell) control CA. In each cycle, the bit combindrow to choose output cells (the CCA cells generating output bits
tion of rule (cell) control signals for CCA cells is termed the rul@er cycle) other than by using cell spacing, which is a conven-
(cell) control word. The length of rule control word is the sam&onal method used in uniform CA and PCA. Thus, we evolve
as that of CCA, while the length of cell control word is decidethe setting of controllable cells and output cells. By “setting” we
by the number of controllable cells in CCA. mean the number and location of the controllable (output) cells

Fig. 4 shows the structure of a CCA PRNG. The running s& concern. The chromosome in our evolutionary algorithm is an
guence of a CCA PRNG is described as the following. Initidl*2 bitstring. The firstl. bits identify the controllable cells’ set-
seeds and transition rules are input to the rule/cell control Qg in which “1” stands for controllable cell, and “0” stands for
and CCA to initialize them. The two control CA run synchronone-controllable cell. The remainirgbits identify the output
nously with CCA to generate rule/cell control words for CCAells’ setting in which 1 stands for output cell, and 0 stands for
cells. In each cycle, the previous states of CCA cells plus thenoutput cell.
rule/cell control words decide CCA cells’ current states. The In [15], entropy was used as a fithess measure. Randomness
current states of some CCA cells are recorded in every cytsts show that some generators obtain good entropy values but
as the output bit sequence. We call these cells output cells. Htidl cannot pass the chi-square test. To get a better evaluation
bit sequence is then converted into an 8-bit random number se-the randomness of CCA PRNGs, we use chi-square, en-
guence as the final output. Each CCA rufiscycles to gen- tropy, and serial correlation coefficient (SCC) tests instead of
erate the random number sequences. Generally, a long randwottropy alone. Furthermore, realizing that the randomness of
number sequence is needed to evaluate CCA PRNG'’s rand@&GA PRNGs may differ under different initial seeds, we test
ness. Considering computation feasibility, we €eto 10000 the CCA PRNGs under a group of randomly generated initial
cycles. seeds.

Because considerable work has been done on the searching @b ensure that the results obtained under one group of initial
good transition rules in PCA PRNGs [17], [18], we follow theseeds are valid, we do the following test to decide the number
recommended choice of rules here instead of evolving the rutgfsnitial seeds to be included in one group. We set the number
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Fig. 6. Relationship among chi-square, entropy, and SCC values. (a) Entropy and SCC values (ckifgquayr€hi-square, entropy, and SCC values.

of initial seeds §) in one group to 100, 1000, and 10 000. Thé&ves which to some extent decides whether EMOO is suitable
variance of the entropy is used to decide whether or not tbenot.
performance of CCA PRNGs becomes stable. If the varianceThe chi-square test result is a percentage and any value be-
gets to a stable value, we conclude that the performance of C@#feen 10%—-90% means the tested sequence cannot be declared
PRNGs is also stable. Fig. 5 shows the test results. We can sebe nonrandom. We convert the chi-square test result as the
that the entropy variances in all the 100 tests obtain a stafidlowing: the chi-square value is 1 if the percentage is between
value of 0.000 003 whefi is set to 10 000. Using the variance 0fL0%—90%, the chi-square value is 0O if the percentage is greater
chi-square or SCC as indication, we get results similar to thoden 99% or less than 1%; otherwise, the chi-square value is 0.5.
presented here. The entropy value is between 0 and 8. A larger value means the
The randomness of CCA PRNGs is represented by the amndomness of the tested sequence is better. Generally, the en-
erage value of chi-square, entropy, and SCC tests on 10 000 trepy value is greater than 7. The SCC test resultis a real number
tial seeds. We use the variance of these values to indicate thase to 0, which can be positive or negative. Only the absolute
performance stability of CCA PRNGs. As a whole, the peralue is meaningful and the sign does not affect the randomness.
formance of CCA PRNGs is evaluated using the average valGenerally, absolute SCC values falls in [0, 1] and O is the op-
and variance of the chi-square, SCC, and entropy, respectivéityal value. We convert the SCC valueto- |[SCJ. Thus, in
Thus, the number of the objectives in our evolutionary approattie adjusted SCC value, 1 is the optimal value and a larger value
is six, not just one. Since traditional genetic algorithms (GA$3 better.
cannot handle multiobjective optimization effectively, EMOO Running CCA2 PRNGs under 10000 randomly configured
techniques are introduced. structures, we get the distribution of chi-square, entropy, and
Various EMOO techniques have been developed [1], [6]. ABCC values as presented in Fig. 6. We can see that most CCA2
though surveys and comparative study have been conductedP®NGs obtain a chi-square value at 1. Fig. 6(a) shows the rela-
them [1], [6], none can claim to be the best, since there are stiin of entropy and SCC values while the chi-square value is
some open questions in this field. Generally, most of the tech- Obviously, the search space shown in Fig. 6(a) is convex.
nigues known work in a convex space, while they may have dnd it is evident that the average value and variance are not re-
ficulties in a concave space. Before we introduce the EMO@ted because the variance can be high or low no matter the av-
techniques, we first analyze the relationship of the six objeerage value is high or low. Thus, the search space is most likely
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convex. Because most EMOO techniques work well in a conveant generation of each subpopulatip(y =1-6) according to
search space, we have a wide range of choices here. objectivei and copy the besP «+ RATELl (RATE1= 0.1, P x
Taking computation efficiency into account, we choose tHRATEL1 = 2) chromosomes into the next generation of subpop-
vector-evaluated genetic algorithm (VEGA) as our basic algatation. It is likely that the chromosomes in subpopulation
rithm. VEGA was developed by Schaffer in 1985 [7]. It is th¢; =1-6) can still generate relatively good results in objective
first multiobjective optimization algorithm proposed. The mairj, since they have been evolved fQrsteps in subpopulation
strength of this technique is its simplicity but it has several prob- The total number of the chromosomes being copied from all
lems, such as “middling” as described in Schaffer’s paper[7]. The subpopulations into subpopulatiois K « 2 (K = 6). The
overcome the problems of VEGA, Cvetkowtal.[5] proposed remaining P — K * 2) chromosomes in the next generation of
two approaches. One is to wait for a certain number of genegabpopulationt are generated by crossbreeding (crossover and
tions before shuffling the subpopulations together; the other isrtautation between two individuals that are from two different
avoid shuffling individuals, instead migrating or copying a cersubpopulations). This is based on the assumption that utopian
tain number of individuals from one subpopulation to anothendividuals are more likely to result from crossbreeding than in-
Reference [5] showed that these two methods obtain better bbeeeding [7].
sults than Schaffer's and can be comparable to the other EMOOrhe main idea in Algorithm 1 is that we think the two chro-
techniques. Following the ideas of Schaffer and Cvetkovic, weosomes copied from the current generation of objectite
propose two EMOO approaches here. These two approacheglagenext generation of objectiveare likely to be good at both
both based on VEGA, but the evolution algorithm on the wholgbjective; andi after some generations. Thus, those chromo-
population is different. In addition to these two approaches, vgemes that obtain good values in more than one objective will
also use an aggregation function to evolve CCA PRNGs.  have a greater chance of being maintained during the evolution.

B. Algorithm 1 and 2—VEGA-Based Approaches Algorithm 1: VEGA With Elitist Copying

We develop two EMOO algorithms based on VEGA. One i initialization
to copy chromosomes among subpopulations; the other is to us@lomly generate the initial population with
a weighted fitness function to help select individual chromo- a fixed size P« K;
somes from the whole population into subpopulations. The dendomly divide the whole population into

tail of these two algorithms is presented in Algorithms 1 and 2 K subpopulations (groups), each one has P
individually. The common parameters in these two algorithmschromosomes;
are set to the same value. /I evolution

In both algorithms, the whole population is divided im0 while (stopping criteria is not true) do
(K = 6, number of objectives) subpopulations. In each subpop- // evolution of subpopulations
ulation, we haveP (P = 20) chromosomesP is set to 20 so for (m=1to K) do in parallel
that the computation time in one generation will not be too long. for (t=1to ¢,) do
During the evolution process, the population size is fixed. Each Il fitness calculation of subpopulation
CCA haslL (L = 64) cells. L is set to 64 because it is a widely m
used number in both real applications and simulations. To de- calculate each chromosome’s fitness
scribe the setting of controllable cells and output cells, eachvalue according to objective m;
chromosome ha3 x L bits. Each CCA rung’ (C' = 10000) Il crossover & mutation
cycles to generate the random number sequence. For each CCA, e in each subpopulation, roulette-

S (S = 10000) initial seeds are tested. The subpopulation evo-wheel select parents, do crossover to gen-
lution algorithms are identical in both Algorithms 1 and 2. Each erate child chromosomes;

subpopulation evolves; (t; = 3) steps before being mixed ¢ mutate child chromosomes according
together or copied:, is set to 3 because a smaller value may to mutation ratio 7,
weaken the effect of subpopulation evolution. And a large value Il selection
may waste computation time on subpopulation evolution be- e calculate child chromosomes’ fit-
cause we find that from the 4th step onward, the best chromoness;
somes’ fitness may become stable. The crossover rate is setto 1 e copy the best Px RATE parents into
and mutation rate is set to 0.01. RATE is set to 0.5 when se- the next generation;
lecting parent and child chromosomes into the next generation. e copy the best P—Px RATE child chro-
Because the population size is small, the selection rate—RATEInosomes into the next generation;
and RATEZ2 is set to 0.1. Stopping criteria is set to the maximum end for (¢)
stagnation steps. If the best chromosome in each subpopulation end for (m)
remains unchanged f&f (' = 200) steps continuously, the /I whole population evolution: select and
evolution process will stop. copy among subpopulations
In Algorithm 1, the subpopulations will not be mixed to- for (i=1to K) do
gether. To copy some good chromosomes from the current gen- for (=1t K) do
eration of the whole population to the next generation of sub- e rank the chromosomes in group j ac-

population: (¢ =1-6), we rank the chromosomes in the cur- cording to objective i
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e copy the best Px RATE1l chromosomes  different aspects of randomness. Taking into account these fac-

into the next generation of subpopulation i tors, we assign entropy and SCC the same ratio while giving the
end for () chi-square test a slightly higher ratio for emphasis. We use the
for (n=Px+Kx RATE1 to P; n=n+2) do function F'1 as follows to evaluate the overall randomness of the
e randomly select two chromosomes CCA PRNGs
among the whole population, make sure the two
parents selected are from different subpopu- F1 = (entropy value- 7) x 0.3 + (1 — [SCCJ) = 0.3
lation (crossbreeding); +(chi-square valuex 0.4. (1)
e do crossover and mutation to gen-
erate 2 child chromosomes: We describe thig'1 value as the randomness value hence-
e copy the two child chromosomes into forth. A higher randomness value represents better randomness
the next generation of subpopulation i and the optimal value is 1. For the entropy value, 7 is deducted
end for (n) from the original value and the adjusted value most likely falls
end for (i) within [0, 1]. Itis based on our observation from the ENT test re-
end while sults of CCA PRNGs under 10 000 initial seeds. Generally, there

is no sequence that earns an entropy value less than 7. To em-
phasize the difference of the randomness of tested CCA PRNGs,
In Algorithm 2, the subpopulations are mixed together aftgfe deduct the common value (7) they obtained from the orig-

being evolved. Crossover and mutation are performed on g test results. The optimal value of the adjusted entropy test
whole population to generate « K child chromosomes. Dif- result is 1. The larger the adjusted entropy value, the better the
ferent from the selection procedure in the basic VEGA alg@andomness. Generally, absolute SCC test values fall into [0,
rithm, we use a weighted fitness function to select the parefjt Contrary to the other two tests in which a better random se-
and child chromosomes in the next generation. The fundtionquence gets a larger adjusted result, a smaller absolute value gets
is > (the value of objectiveé)  1/6 (i = 1to 6)* This func- 3 petter randomness in the SCC test. To adjust an SCC value to
tion aims at finding those chromosomes that can generate g@qé same direction as the other two tests, we deduct its absolute
results in all the objectives. Both the parent and child chromga|ye from 1.
somes are ranked aCCOfding to the Welghted fitness value anﬁxcept randomneSS, we also consider the performance sta-
the bestk (R = 3) chromosomes are copied into each sulility of CCA PRNGs using the variance of chi-square, entropy,

population: (i =1-6). R is set empirically according to someand SCC values. We set the same ratio on these three variances
initial test results. A smaller value dt may degrade the ef- 55 indicated in the following functiof’2

fect of weighted fitness function while a larger value may re-

sultin a quick convergence of chromosomes. Moreover, we rafR = (chi-square value variance entropy value variance

all the parent and child chromosomes according to objective + SCC value variandg3. (2)

(i =1-6) and copy the bedt « RATE2 (RATE2= 0.1, P x

RATE2= 2) chromosomes into subpopulatiorfter these two Taking into account that both good and bad CCA PRNGs can
steps, there arB x RATE24+ R chromosomes in each subpopuyield small variance, the value dfl is a more important in-
lation. The remaining chromosomes are selected randomly fr@ligation than variance in evaluating the performance of CCA
the whole population. During the selection, we avoid choosiRRNGs. We emphasize the randomness in the overall fitness
those that have been selected. This is to avoid rapid convergefigestion F'3

in the population. The main idea of Algorithm 2 is that we use

a weighted fitness function to ensure that the chromosomes that F3 = F1value 0.7 + F2 value x 0.3. )
obtain relatively good values in all objectives are maintained

during evolution. The ratios in functiorf'1 and F'2 are set empirically. Further

study may be done to replace it using fuzzy functions or other
techniques, while we think that it is acceptable in our algorithm.
_ ) o ) In Algorithm 3, the population size B+ K (120). The crossover

The simplest way to evaluate multiple objectives in evolyxte mutation rate, selection RATE, and stopping criteria are

tionary algorithm is to combine them into a single weighted-Ssugfe same as the settings in Algorithms 1 and 2. Algorithm 3is a
function using arithmetical operations. Here, we use a fithesgndard GA.

function that is different from the one used in Algorithm 2.
If a sequence cannot pass the chi-square test, it is thoughtto  \, ResuLTS OF THEEVOLUTIONARY APPROACHES
be unsatisfactory in randomness. That is to say, the chi-square AND DISCUSSIONS
value is an important indication as to the randomness of the se-
quences tested. Thus, we think that the chi-square test is mrePreference
important than the entropy and SCC tests in evaluating the ranin addition to measurement and searching, decision making is
domness of CCA PRNGs. Itis difficult to decide which betweealso an important step for multiobjective evolution problems [4].
entropy and SCC is more important because they are testingAlgorithm 3, the decision making process is not necessary
(i.e., itis implicit in the search itself). In Algorithms 1 and 2, the
1The value of object 1 (entropy) is adjusted|astropy-7]. evolution results are a group of nondominated chromosomes.

C. Algorithm 3—An Aggregation Function Approach
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To decide which chromosome obtains the best randomness, M evolved CCAO has 35 controllable cells too, but it has only
set the preference as follows: the chi-square value is the m@gtoutput cells, which is less than 35 output cells in CCA2.
important, the entropy value and the SCC value come next, aivad among the 27 output cells, only 12 cells are controllable
the variance of these three statistics is less important. cells. Similarly, we compare the performance of evolved CCAO
We first compare the chi-square values of the nondorRRNGs with the average performance of CCAO PRNGs before
inated chromosomes; the one with the highest chi-squaeolution and the results are similar to that of CCA2.
value is regarded as obtaining the best randomness qualityThe major difference is that in CCAO, the chi-square value
If their chi-square values are identical, then we compare thmproved greatly from 0.1245 to 0.745 after evolution, and the
entropy value; if the entropy values are identical, then wentropy and SCC value became more stable than those before
compare the SCC values, and so on. This preference is ugeélution. Referring to Fig. 7, we can see that the difference of
to differentiate the performance of the three algorithms, toghj-square values in CCA2 PRNGs before and after evolution
The algorithm whose nondominated chromosome obtaigsonly around 0.195. But in CCAO PRNGs, it is 0.6. It shows

the highest chi-square value is believed to achieve the bggl; 4 good setting of controllable cells and output cells is more

performance. The preference used is simple; we could us rlical in CCAO PRNGs to generate good random number
more complicated method such as a fuzzy function to make

final decision. Looking at the experimental results, we feel tq gquences. The performance of CCA2 PRNGS is more stable
preference cHosen is acceptable. ' Ran that of CCAO PRNGs. Moreover, we find that the evolved
CCA2 PRNGs yield better performance than CCA0 PRNGs
in general. The average performance of CCA2 PRNGs before
B. Evolved CCA2/CCAD Structure evolution is even comparable to the performance of CCAO
The evolution results of CCA2/CCAO PRNGs are presentdétRNGs after evolution. Considering output efficiency, the
in this subsection. The evolution result of CCA2 from Algoevolved CCAO0 PRNGs have from 19 to 35 cells as output cells.
rithm 1 is the best among the three algorithms according to tiiais range is larger than that of CCA2 PRNGs and the output
preference set, with Algorithms 2 and 3 following. The evolvegfficiency of CCAO is noticeably lower. It shows that CCA2 is
CCAZ structure (Algorithm 1) is as follows: generally better than CCAO in random number generation.

01101011110010110001110010101 111011110111 100
11000100010000001 111 35 C. Comparison on the Performance of the Three Algorithms
0000111110000001101011111 000100101 100111100101

011110001 101 111 101 35 (20). We have presented the three algorithms and their evolution re-

sults above. Here, we compare their performance and give some

In the evolved CCA2 PRNG, there are 35 controllable cell§commendation on the choice of algorithms in CCA PRNG
and 35 output cells, in which 20 are controllable cells. The pegvolution. We have pointed out that Algorithms 1 and 2 obtain
formance of the evolved CCA2 PRNG and the average perféhe best results in CCA2 and CCAO PNRG evolution individ-
mance of CCA2 PRNGs before evolution are compared to exally, and their relative performance is comparable. Although
amine the evolution result. The evolved CCA2 PRNG is testelde evolution results of Algorithm 3 in both CCA PRNGs are
1000 times. In each test, the randomness value and variancenefworst, its results differ only slightly from the best results.
chi-square, entropy, and SCC tests are recorded. At the safpgs, we can say that Algorithm 3 is also effective. Fig. 8 shows

time, 1000 randomly configured CCA2 PRNGs are tested {Qe randomness value of the evolved CCA structure under each
compare with the evolved one. We present the comparison QBorithm.

the randomness value in Fig. 7 ; In addition to comparing the randomness of the evolved CCA
We can see the average chi-square value improved (by

evolved one) from 0.75 to 0.945; the entropy value improv NGS} we algo need to consider their evollutior) speed when
from 7.9795 to 7.9816: the SCC value decreased from 0.009gMParing their performance. The computation time of Algo-
to 0.0082. As shown in Fig. 7, we can see that the improveméfiims 1 and 2 in one generation is around 4900 and 5300 s (cal-
on the entropy and SCC values is not as significant as thatcfated under 1.4-GHz, 256-MB PC), individually, while that
the chi-square value in CCA2 PRNGs. Considering the outpeftAlgorithm 3 is only 1000 s. Our stopping criteria is the max-
efficiency of evolved CCA PRNGs, we find that the evolvedmum stagnation steps. Algorithms 1 and 2 both stop evolution
chromosomes have a range from 28 to 38 cells as output celéfter 1700 evolution steps, while Algorithm 3 stops around 3800
Differing with the evolution results of CCA2 PRNGs, theevolution steps. The total computation time of Algorithm 3 is
chromosome which obtains the best chi-square value in CCARorter than that of Algorithms 1 and 2.
PRNGs is generated by Algorithm 2. Algorithm 1 obtains the Realizing that one generation in Algorithms 1 and 2 costs
second best results and Algorithm 3 comes in last. The evolvglee generations of subpopulation evolution and one generation
CCAQ structure is as follows: of the whole population evolution, we can see that the evolution
1101100 100 100 011 100 101 010 111 110 101 100 000 011 011 steps of Algorithm 3 actually cost less than those of.AIgorithms
1 and 2. In conclusion, we can say that both Algorithms 1 and
001111111100101100 35 2 obtain good performance, while Algorithm 3 gets comparable
10001000011011110010011 010010011 001 001 001 001 performance. While taking into account the evolution speed and
00100100010010010111 27 (12). effort, we may claim that Algorithm 3 is also a good choice.
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Fig. 7. Comparison of the randomness values between the evolved CCA2 PRNG and the average performance of 1000 randomly configured CCA2 PRNGs. Left
column: the evolved CCA2. Right column: the average performance. (a) Chi-square value. (b) Entropy value. (c) SCC value. The straight linara(c3$ss(a)
the average value in 1000 tests.

D. Analysis of the Evolved CCAO and CCA2 Structures Undarethods: evolved output, cell spacing (cell spacing is set to
Different Output Methods 1), and randomly configured output. The randomness under
the evolved output and the cell spacing method is calculated
In this section, we further study how the settings of corbased onS (S = 10000) randomly generated initial seeds.
trollable cells and output cells affect the performance of CCBhe randomness of the randomly configured output method is
PRNGs. At first, we explore the effect of output cells in botlthe average of (S = 10000) randomly configured outputs
CCA2 and CCAO0 PRNGs. We compare the performance of thader the evolved controllable cell settings. The tested initial
evolved controllable cells’ settings under three different outpaeeds are identical in these three methods. Fig. 9 shows the
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Fig. 8. Comparison on the evolution results of Algorithms 1-3. (a) Chi-square value and variance. (b) Entropy value and variance. (c) SCC vidne&and var

randomness values of CCA PRNGs under the tested thrmaethod. We can say that the generation of random number se-

guence in the evolved CCAZ2 structure is more efficient than that
We can see in Fig. 9 that the evolved output method in CCA2 the conventional cell spacing method.

yields the highest chi-square value, while the other two methodsAlso shown in Fig. 9, we can see that in CCAO, only the

output methods.

obtain similar results. The results may mean that the settingesfolved method can generate good randomness value while the
output cells is not as important as that of controllable cells wther two methods vyield peer results. It shows that in CCAQ
CCAZ2. That is to say, the performance of CCA2 PRNGs is dBRNGs, the setting of output cells is as important as that of con-
cided mainly by the setting of controllable cells. Once the cotrollable cells. To find a good CCAO PRNG in random number
trollable cell setting has been evolved, the output cell setting cgeneration, we have to evolve them together. The evolved CCAO
be flexible if the performance requirement is not strict. Note th®RNGs has 27 cells (results of Algorithm 2), which is fewer than
the number of output cells in the evolved CCA2 structure is 382 cells. This means that output efficiency may have to be sac-
which is more than the 32 used in the conventional cell spacirificed to generate good randomness in CCAO PRNGs.
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El evolved output of cellsis 16. Note that all the chromosomels have at least 2 con-
B cell spacing trollable cells. This means that CCAO is a better scheme than
[__] random output . .
PCA, which corresponds to a CCA with no controllable cells.
Fig. 11(a) also shows that there is a tradeoff for the number of
controllable cells in a CCAO. Too many controllable cells may
degrade the randomness of CCAO; too few controllable cells
may not have the desired “randomizing” effect on the basic cells.
Fig. 11(b) presents the evolution results of CCA2. We can
see that in CCA2, evolved chromosomesls generally have
3-12 controllable cells, which has a wider range than CCAO.
In CCA2, most chromosomels have 5-10 controllable cells;
- ‘ while in CCAQ, they generally have 4—7 controllable cells. This
CCA2 15 CCAO : shows that in evolved CCAZ2, the ratio of controllable cells is
higher than that in CCAO. Combining the results presented in
Fig. 9. Comparison on the chi-square values of the evolved controllable c'glllgs' 10and 11, we (.:an see th"?‘t. a suitable number and location
configuration under different output method& £ 10 000). of controllable cells is more critical for CCAO than CCA2 to
generate good random numbers. CCA2 PRNGs can get good

. . results under a wider range. This conclusion is compatible with
E. Discussions on the Evolved 16-Cell CCAO/CCA2 Structurgar previous evolution regults obtained on 64 cells P

The discussion in Section V-B is only concerned with some
individual evolved CCA2/CCAO0 PRNGs. To find out more VI. COMPARISON ON THERANDOMNESS OFEVOLVED CCA
about the interrelations between the setting of controllable cells PRNGs VERSUS1-D/2-D CA PRNGs
and output cells in a wide range, we conducted the following
experiment. The output method is fixed using the conventionalln this section, the randomness of the evolved 64-cell
cell spacing method (cs 1) in both CCA PRNGs and we CCA2/CCAO PRNGs is compared to that of 1-D/2-D CA
evolve the setting of controllable cells alone. Due to the hugRNGs [15], [17].
computation effort involved, to simplify the analysis we use First, we present the average chi-square, entropy, and SCC
Algorithm 3 and evolve 16- instead of 64-cell CA. The settinyalues of the evolved CCA2/CCAO0 PRNGs and 1-bit/2-bit
of controllable cells is encoded as chromsome1 in this evolutiBiRNGs in Table |. The evolved CCA2 PRNG obtains the
approach. The crossover, mutation, and selection rates in fhighest chi-square value with 2-bit PCA and the evolved CCAO
approach are the same as those in Algorithm 3. PRNGs following it. These three generators obtain similar
Setting the stopping criteria to 100, 200, 300, and 400 evolropy and SCC values. The 1-bit PCA PRNG gets the lowest
tion steps, we observe the results as shown in Fig. 10. It showt-Sauare, entropy, and SCC values. The randomness of the
the distribution of evolved chromosomel in CCA0/CCA£Volved CCA2/CCAD PRNGs are highly improved compared
according to the number of controllable cells included in the8 that of 1-bit PCA PRNG, and the evolved CCA2 PRNG

output cells. Referring to the results in Fig. 10(a), we can s@dtPerforms the 2-bit PCA 90-105 PRNG.

that most CCAO PRNGs have zero, one, or two controllable Until now, CCA PRNGs were evaluated using the ENT
cells within eight output cells. No CCAO has four or mordest suite only. During the evolution process, the randomness

controllable cells within its output cells. This means a goodf CCA PRNGs is evaluated using the ENT test suite. To

CCAO PRNG generally has zero, one, or two controllable ceiy@lidate our evolution results, the randomness of the evolved
in its output cells. CCAO PRNGs with one controllable cefFCA PRNGs is examined from three aspects: DIEHARD,
their output cells are most common. It shows that the trend ©fcl€ length, and time-space diagram. Furthermore, their
evolution is to avoid choosing too many controllable cells ifRndomness is compared to those well-known 1-D/2-D CA
the output cells in CCAO. PRNGs [15], [17].

Referring to Fig. 10(b), we can see that most CCA2 chro-
mosome2s have three to five controllable cells within the eigft DIEHARD Test Results
output cells. This means that the number of basic cells and conThe DIEHARD test suite is said to currently be the most dif-
trollable cells in the output cells are nearly the same. Thus, \fgult test suite to pass. Table Il presents the DIEHARD test re-
can say that the probability of a controllable cell to be chos&pits of the evolved CCA0/CCA2 PRNGs, 1-bit PCA 90-150
as an output cell is similar to that of a basic cell. PRNG, 2-bit PCA 90-105 PRNG, and 2-Dx88 CA PRNG.

Fig. 11 presents the evolution results of CCA0 and CCA2 sephe tested sequence length is 10 Mbytes. The results show that
arately. Referring to Fig. 11(a), we can see that in CCAO masstcept for 1-bit PCA, which can pass only 15 tests, the other
evolved chromosomels have 4-8 controllable cells. No chrombree PRNGs can pass all the tests. Thus, the evolved CCA
somels have fewer than 2, or more than 10, controllable ceBRNG is comparable to the well-known 2-bit PCA and 2-D CA
Only a small number of chrosomosomels have 9-10 contr®RNGs. Furthermore, we apply DIEHARD to all the nondomi-
lable cells. That is to say, when we design CCAO PRNGs, it i@ated chromosomes obtained from the three algorithms. We find
generally better to have 4—-8 controllable cells if the total numbtrat each of them can pass all the tests in DIEHARD.
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TABLE |
AVERAGE CHI-SQUARE, ENTROPY, AND SCC VALUES OF PCA/CCA PRNG (C' = 10000, S = 10000)
chi-square entropy SCC
1-bit PCA 90-150 PRNG 0.450 7.301210 0.0091479
2-bit PCA 90-105 PRNG 0.785 7.981210 0.007932
evolved CCA2 PRNG (Alg.2) 0.945 7.981707 0.007965
evolved CCAO PRNG (Alg.1) 0.745 7.972676 0.007807
B. Cycle Length and 2-D CAPRNGs. The cycle lengths are calculated as average

values over 20 random initial seeds.

In addition to statistical tests, cycle length (the length of a The results show that the cycle length of PCA 90-150 is the
CA's state cycle) is also important to determine whether or nsinallest. The cycle length of CCAO is greater than 2-bit PCA,
a CAis suitable for random number generation. We do not coout less than CCA2. This matches with the conclusion we have
sider it one of the objectives when evolving CCA PRNGs bealerived from the ENT tests that CCA2 is better than CCAOQ in
cause the calculation of cycle length is too time consuming arehdom number generation. The average cycle length of 2-D CA
the value may not be stable under different initial seeds. T®greater than CCAO but less than CCA2. It means that CCA
verify our evolution results, we calculate the cycle lengths ¢fRNGs can be better than or comparable to 2-D CA PRNGs.
evolved CCA2/CCAO0 PRNGs. Fig. 12 shows the cycle lengtfi$e evolved three CCAO PRNGs get closer cycle lengths and
of 1-bit PCA 90-150, 2-hit PCA 90-105, evolved CCAO/CCAZ is the same case in CCA2. We can say that the randomness
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TABLE I
DIEHARD TesST RESULTS OFCCA/CA PRNG

Test name CCAO0 L=64 CCA2 L=64 PCA 90- 8x8 2-bit
150 2-dCA PCA
Algl Alg2 Alg3 Algl Alg2 Alg3 L=64 L=64
1. Overlapping sum Pass Pass Pass Pass Pass Pass Pass Pass Pass
2. Runs up 1 Pass Pass Pass Pass Pass Pass Pass Pass Pass
Runs Down 1 Pass Pass Pass Pass Pass Pass Pass Pass Pass
Runs up 2 Pass Pass Pass Pass Pass Pass Pass Pass Pass
Runs Down 2 Pass Pass Pass Pass Pass Pass Pass Pass Pass
3. 3D sphere Pass Pass Pass Pass Pass Pass Pass Pass Pass
4. A parking lot Pass Pass Pass Pass Pass Pass Fail Pass Pass
5. Birthday Spacing Pass Pass Pass Pass Pass Pass Pass Pass Pass
6. Count the ones 1 Pass Pass Pass Pass Pass Pass Fail Pass Pass
7. Binary Rank 6*8 Pass Pass Pass Pass Pass Pass Fail Pass Pass
8. Binary Rank 31*31 Pass Pass Pass Pass Pass Pass Pass Pass Pass
9. Binary Rank 32*32 Pass Pass Pass Pass Pass Pass Pass Pass Pass
10. Count the ones 2 Pass Pass Pass Pass Pass Pass Pass Pass Pass
11. Bitstream test Pass Pass Pass Pass Pass Pass Pass Pass Pass
12. Craps wins Pass Pass Pass Pass Pass Pass Fail Pass Pass
throws Pass Pass Pass Pass Pass Pass Pass Pass Pass
13. Minimum distance Pass Pass Pass Pass Pass Pass Pass Pass Pass
14. Overlapping Permu Pass Pass Pass Pass Pass Pass Fail Pass Pass
15. Squeeze Pass Pass Pass Pass Pass Pass Pass Pass Pass
16. OPSO test Pass Pass Pass Pass Pass Pass Pass Pass Pass
17. OQSO test Pass Pass Pass Pass Pass Pass Fail Pass Pass
18. DNA test Pass Pass Pass Pass Pass Pass Pass Pass Pass
Number of tests passed 18 18 18 18 18 18 12 18 18

31n each algorithm, the chromosome that obtains the best chi-square value is tested here.
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Fig. 12. Average cycle lengths of CA PRNSs. Note: All the tested 1-D CA

PRNGs have 16 cells. 1: PCA90-150 PRNG. 2-4: evolved CCAO PRNGs.5-7: (8 (b) ©
evolved CCA2 PRNGs. 8: 2-D # 4 CAPRNG. 9: 2-bit PCA90-105 PRNG. iy 13 Time-space diagram of evolved CCA2/CCAO and 2-bit PCA.
Results are based on 20 initial seeds. (a) CCA2. (b) CCAO. (c) 2-bit PCA 90-105.

of evolved CCA PRNGs is stable. It will not vary greatly under
different evolved structures.

stands for cells from cell 1 to 64, while theaxis traces each cell
C. Time—Space Diagram from time step 0 to 200 (from top to bottom). We can see that
none of the generators have obvious patterns in their diagrams.
We present the 2-D time—space diagram of the evolvddmassiniet al. presented the time—space diagram of their 2-D
CCA2/CCAO0 PRNGs and 2-bit PCA PRNG in Fig. 13. EaclRA PRNGs in [15]. The diagram shows that there is no obvious
generator has 64 cells and runs for 200 time steps.zFagis pattern in 2-D CA PRNGs. From this point of view, we can say
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that the evolved CCA2/CCAO PRNGs are as good as 2-D CA11] M. Matsumoto, “Simple cellular automata as pseudoranderse-
_hi guence generators for built-in self-teskCM Trans. Modeling and
PRNGs or 2-bit PCA PRNGs. Comput. Simuj.vol. 8, no. 1, pp. 31-42, 1998.
[12] M. Mihaljevic, “Security examination of a cellular automata based pseu-
dorandom bit generator using an algebraic replica approachrtan.
VII. CONCLUSIONS Applied Algebra, Algorithms and Error Correcting Codeé997, vol.

; ; ; 1255, Lecture notes in Computer Science, pp. 250-262.
Controllable CA is proposed in this paper and two types Of[13] M. Mihaljevic and H. Imai, “A family of fast keystream generators based

CCA—CCAQ and CCA2 are introduced. CCAO/CCA2 PRNGs on programmable linear cellular automata over GF(q) and time-variant
are evolved using the EMOO techniques. Two EMOO algo- table,”IEICE Trans. Fundamentalsol. E82-A, no. 1, pp. 32—39, 1999.

; : ; ; 14] M. Tomassini, M. Sipper, M. Zolla, and M. Perrenoud, “Generating
rithms based on VEGA and an evolutionary algorithm using arﬁ high-quality random numbers in parallel by cellular automafature

aggregation function are described. Each of them can produce  Gen. Comput. Systol. 16, pp. 291-305, 1999. _ _

good CCA PRNGs while the performance of Algorithms 1 and(15] M. TlfimaSS(ljnh M. Slpger, ?)ndt'\/l- F(’jf_%rrenqud, “IOnltIhle gen?raﬂg%é{;hlgh-
. . . H _ quality ranaom numbers by two-dimensional cellular autom

2 is slightly better than that of Algorithm 3. The evolution re Trans. Comput.vol. 49, pp. 1146-1151, 2000.

sults show that EMOO helps improve the randomness of CCAu6] M. Sipper and M. Tomassini, “Generating parallel random number gen-

PRNGs by evolving the setting of controllable cells and output  erators by cellular programmingjit. J. Modern Physvol. 7, no. 2, pp.

. 181-190, 1996.
cells in them. 17] P. D. Hortensius, R. D. Mcleod, and H. C. Card, “Parallel random

. [
The evolved CCA2 PRNGs not only obtain good random- number generation for VLSI system using cellular automalBFE
ness quality, but also generate a better output efficiency than the  Trans. Comput.vol. 38, pp. 1466-1473, 1989.

. . . 8] P.D. Hortensius, R. D. Mcleod, W. Pries, D. M. Miller, and H. C. Card,
conventional cell spacing method. Comparison of the eVOIVe&l “Cellular automata-based pseudorandom number generators for built-in

CCA2/CCAO0 PRNGs shows that CCA2 is better than CCAQ in self-test,”IEEE Trans. Computer-Aided Desigvol. 8, pp. 842-859,
random number generation. The setting of controllable cells an&gl 1989.

. .. . . P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and S. Chattopadhyay,
output cells is more critical for CCAO than CCA2 in generating Additive Cellular Automata: Theory and ApplicationsLos Alamitos,

good random number sequences. Randomness test results on CA: IEEE CS Press, 1997, vol. 1.

the evolved CCAOQ/CCA2 PRNGs show they can be comparabl@ol P. Sarkar, “A brief history of cellular automataCM Comput. Surveys
. vol. 32, no. 1, pp. 80-107, 2000.
to the well-known 2-bit PCA and 2-D CA PRNGs. Moreover, [21] p. H. Bardell, “Analysis of cellular automata used as pseudorandom pat-

the cycle length and time—space diagram of these PRNGs are tern generators,” ifroc. Int. Test Conf.1990, pp. 762-768.

presented. In our current work, we only consider average rarf¢2! S- Nandi, B. K. Kar, and P. P. Chaudhuri, “Theory and applications of
. L . cellular automata in cryptographylEEE Trans. Computvol. 43, pp.
domness value and variance as objectives when evolving CCA  1346-1357, 1994.

structures. Further, we may take into account other parameteiis] S. Wolfram, “Cryptography with cellular automata,” Rroc. CRTPTO

together as evolution objectives. For example, output efficiency ~ >-—Advances 'K:‘pc?gfgg‘;phyo" 218, Lecture Notes in Computer

and cycle length are also important to evaluate the performanggs] —— Theory and Applications of Cellular Automata: Including Selected

of CA PRNGs and they can be considered as two objectives i[r; - \F/’\é/ip;r_s 19§3ﬁ986_|R;yer E(égﬁ, (l\:IJC Wodrld gcientific. 1986.  celul
i ; At . Pries, A. Thanailakis, and H. C. Card, “Group properties of cellular

addition to the current six Objectlves used. automata and VLSI applicationdEEE Trans. Computvol. C-35, pp.
1013-1024, 1986.

[26] (1998) ENT test suite. [Online]. Available: http://www.fourmilab.ch/
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